Abstract

Previous modeling of near-infrared (NIR) light distribution in models of the adult head incorporating a clear nonscattering cerebrospinal fluid (CSF) layer have shown the latter to have a profound effect on the resulting photon measurement density function (PMDF). In particular, the presence of the CSF limits the PMDF largely to the outer cortical gray matter with little signal contribution from the deeper white matter. In practice, the CSF is not a simple unobstructed clear layer but contains light-scattering membranes and is crossed by various blood vessels. Using a radiosity-diffusion finite-element model, we investigated the effect on the PMDF of introducing intrusions within the clear layer. The results show that the presence of such obstructions does not significantly increase the light penetration into the brain tissue, except immediately adjacent to the obstruction and that its presence also increases the light sampling of the adjacent skull tissues, which would lead to additional contamination of the NIR spectroscopy signal by the surface tissue layers.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Brazy, D. V. Lewis, M. H. Mitnick, F. F. Jobsis vander Vliet, “Noninvasive monitoring of cerebral oxygenation in preterm infants: preliminary observations,” Pediatrics 25, 217–225 (1985).
  2. J. S. Wyatt, D. T. Delpy, M. Cope, S. Wray, E. O. R. Reynolds, “Quantification of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectroscopy,” Lancet ii, 1063–1066 (1986).
  3. M. Ferrari, E. Zanette, I. Giannini, G. Sideri, C. Fieschi, A. Carpi, “Effect of cartid artery compression test on regional cerebral blood volume, haemoglobin oxygen saturation and cytochrome-c-oxidase redox level in cerebrovascular patients,” Adv. Exp. Med. Biol. 200, 213–222 (1986).
    [CrossRef]
  4. N. B. Hampson, E. M. Camporesi, B. W. Stolp, R. E. Moon, J. E. Shook, J. A. Griebel, C. A. Piantadosi, “Cerebral oxygen availability by NIR spectroscopy during transient hypoxia in humans,” J. Appl. Physiol. 69, 907–913 (1990).
    [PubMed]
  5. Y. Hoshi, M. Tamura, “Detection of dynamic changes in cerebral oxygenation coupled to neuronal function during mental work in man,” Neurosci. Lett. 150, 5–8 (1993).
    [CrossRef] [PubMed]
  6. S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, E. O. R. Reynolds, “Characterisation of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non invasive monitoring of cerebral oxygenation,” Biochem. Biophys. Acta 933, 184–192 (1988).
  7. E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
    [CrossRef] [PubMed]
  8. H. Liu, D. A. Boas, A. G. Yodh, B. Chance “Influence of clear cerebrospinal fluid on NIR brain imaging and cerebral oxygenation monitoring,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, James G. Fujimoto, eds. Vol. 2 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996), pp. 372–375.
  9. M. Firbank, S. R. Arridge, M. Schweiger, D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol. 41, 767–783 (1996).
    [CrossRef] [PubMed]
  10. A. H. Hielscher, R. E. Alcouffe, R. L. Barbour, “Transport and diffusion calculations on MRI-generated data,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 500–508 (1997).
  11. S. R. Arridge, H. Dehghani, M. Schweiger, E. Okada, “The finite element model for the propagation of light in scattering media: a direct method for domains with non-scattering regions,” Med. Phys. 27, 252–264 (2000).
    [CrossRef] [PubMed]
  12. H. Dehghani, D. T. Delpy, S. R. Arridge, “Photon migration in non-scattering tissue and the effects on image reconstruction,” Phys. Med. Biol. 44, 2897–2906 (1999).
    [CrossRef]
  13. A. H. Hielscher, R. E. Alcouffe, R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissue,” Phys. Med. Biol. 43, 1285–1302 (1998).
    [CrossRef] [PubMed]
  14. M. Firbank, E. Okada, D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near infrared spectroscopy studies of visual evoked responses,” Neuroimag. 8, 69–78 (1998).
    [CrossRef]
  15. R. A. J. Groenhuis, H. A. Ferwada, J. J. Ten Bosch, “Scattering and absorption of turbid materials determined from reflection measurements. 1. Theory,” Appl. Opt. 22, 2456–2462 (1983); “Scattering and absorption of turbid materials determined from reflection measurements. 2. Measuring method and callibration,” Appl. Opt. 22, 2463–2467 (1983).
    [CrossRef] [PubMed]
  16. T. Nakai, G. Nishimura, K. Yamamoto, M. Tamura, “Expression of optical diffusion coefficient in high-absorption turbid media,” Phys. Med. Biol. 42, 2541–2549 (1997).
    [CrossRef]
  17. M. Bassani, F. Martelli, G. Zaccanti, D. Contini, “Independence of the diffusion coefficient from absorption: experimental and numerical evidence,” Opt. Lett. 22, 853–855 (1997).
    [CrossRef] [PubMed]
  18. M. F. Cohen, J. R. Wallace, Radiosity and Realistic Image Synthesis (Academic, London, 1993).
  19. S. R. Arridge, M. Schweiger, “Photon-measurement density functions. II. Finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).
    [CrossRef] [PubMed]
  20. S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
    [CrossRef] [PubMed]
  21. M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
    [CrossRef] [PubMed]

2000

S. R. Arridge, H. Dehghani, M. Schweiger, E. Okada, “The finite element model for the propagation of light in scattering media: a direct method for domains with non-scattering regions,” Med. Phys. 27, 252–264 (2000).
[CrossRef] [PubMed]

1999

H. Dehghani, D. T. Delpy, S. R. Arridge, “Photon migration in non-scattering tissue and the effects on image reconstruction,” Phys. Med. Biol. 44, 2897–2906 (1999).
[CrossRef]

1998

A. H. Hielscher, R. E. Alcouffe, R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissue,” Phys. Med. Biol. 43, 1285–1302 (1998).
[CrossRef] [PubMed]

M. Firbank, E. Okada, D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near infrared spectroscopy studies of visual evoked responses,” Neuroimag. 8, 69–78 (1998).
[CrossRef]

1997

1996

M. Firbank, S. R. Arridge, M. Schweiger, D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol. 41, 767–783 (1996).
[CrossRef] [PubMed]

1995

S. R. Arridge, M. Schweiger, “Photon-measurement density functions. II. Finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

1993

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

Y. Hoshi, M. Tamura, “Detection of dynamic changes in cerebral oxygenation coupled to neuronal function during mental work in man,” Neurosci. Lett. 150, 5–8 (1993).
[CrossRef] [PubMed]

1990

N. B. Hampson, E. M. Camporesi, B. W. Stolp, R. E. Moon, J. E. Shook, J. A. Griebel, C. A. Piantadosi, “Cerebral oxygen availability by NIR spectroscopy during transient hypoxia in humans,” J. Appl. Physiol. 69, 907–913 (1990).
[PubMed]

1988

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, E. O. R. Reynolds, “Characterisation of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non invasive monitoring of cerebral oxygenation,” Biochem. Biophys. Acta 933, 184–192 (1988).

1986

J. S. Wyatt, D. T. Delpy, M. Cope, S. Wray, E. O. R. Reynolds, “Quantification of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectroscopy,” Lancet ii, 1063–1066 (1986).

M. Ferrari, E. Zanette, I. Giannini, G. Sideri, C. Fieschi, A. Carpi, “Effect of cartid artery compression test on regional cerebral blood volume, haemoglobin oxygen saturation and cytochrome-c-oxidase redox level in cerebrovascular patients,” Adv. Exp. Med. Biol. 200, 213–222 (1986).
[CrossRef]

1985

J. E. Brazy, D. V. Lewis, M. H. Mitnick, F. F. Jobsis vander Vliet, “Noninvasive monitoring of cerebral oxygenation in preterm infants: preliminary observations,” Pediatrics 25, 217–225 (1985).

1983

Alcouffe, R. E.

A. H. Hielscher, R. E. Alcouffe, R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissue,” Phys. Med. Biol. 43, 1285–1302 (1998).
[CrossRef] [PubMed]

A. H. Hielscher, R. E. Alcouffe, R. L. Barbour, “Transport and diffusion calculations on MRI-generated data,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 500–508 (1997).

Arridge, S. R.

S. R. Arridge, H. Dehghani, M. Schweiger, E. Okada, “The finite element model for the propagation of light in scattering media: a direct method for domains with non-scattering regions,” Med. Phys. 27, 252–264 (2000).
[CrossRef] [PubMed]

H. Dehghani, D. T. Delpy, S. R. Arridge, “Photon migration in non-scattering tissue and the effects on image reconstruction,” Phys. Med. Biol. 44, 2897–2906 (1999).
[CrossRef]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
[CrossRef] [PubMed]

M. Firbank, S. R. Arridge, M. Schweiger, D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol. 41, 767–783 (1996).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, “Photon-measurement density functions. II. Finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

Barbour, R. L.

A. H. Hielscher, R. E. Alcouffe, R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissue,” Phys. Med. Biol. 43, 1285–1302 (1998).
[CrossRef] [PubMed]

A. H. Hielscher, R. E. Alcouffe, R. L. Barbour, “Transport and diffusion calculations on MRI-generated data,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 500–508 (1997).

Bassani, M.

Boas, D. A.

H. Liu, D. A. Boas, A. G. Yodh, B. Chance “Influence of clear cerebrospinal fluid on NIR brain imaging and cerebral oxygenation monitoring,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, James G. Fujimoto, eds. Vol. 2 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996), pp. 372–375.

Brazy, J. E.

J. E. Brazy, D. V. Lewis, M. H. Mitnick, F. F. Jobsis vander Vliet, “Noninvasive monitoring of cerebral oxygenation in preterm infants: preliminary observations,” Pediatrics 25, 217–225 (1985).

Camporesi, E. M.

N. B. Hampson, E. M. Camporesi, B. W. Stolp, R. E. Moon, J. E. Shook, J. A. Griebel, C. A. Piantadosi, “Cerebral oxygen availability by NIR spectroscopy during transient hypoxia in humans,” J. Appl. Physiol. 69, 907–913 (1990).
[PubMed]

Carpi, A.

M. Ferrari, E. Zanette, I. Giannini, G. Sideri, C. Fieschi, A. Carpi, “Effect of cartid artery compression test on regional cerebral blood volume, haemoglobin oxygen saturation and cytochrome-c-oxidase redox level in cerebrovascular patients,” Adv. Exp. Med. Biol. 200, 213–222 (1986).
[CrossRef]

Chance, B.

H. Liu, D. A. Boas, A. G. Yodh, B. Chance “Influence of clear cerebrospinal fluid on NIR brain imaging and cerebral oxygenation monitoring,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, James G. Fujimoto, eds. Vol. 2 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996), pp. 372–375.

Cohen, M. F.

M. F. Cohen, J. R. Wallace, Radiosity and Realistic Image Synthesis (Academic, London, 1993).

Contini, D.

Cope, M.

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
[CrossRef] [PubMed]

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, E. O. R. Reynolds, “Characterisation of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non invasive monitoring of cerebral oxygenation,” Biochem. Biophys. Acta 933, 184–192 (1988).

J. S. Wyatt, D. T. Delpy, M. Cope, S. Wray, E. O. R. Reynolds, “Quantification of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectroscopy,” Lancet ii, 1063–1066 (1986).

Dehghani, H.

S. R. Arridge, H. Dehghani, M. Schweiger, E. Okada, “The finite element model for the propagation of light in scattering media: a direct method for domains with non-scattering regions,” Med. Phys. 27, 252–264 (2000).
[CrossRef] [PubMed]

H. Dehghani, D. T. Delpy, S. R. Arridge, “Photon migration in non-scattering tissue and the effects on image reconstruction,” Phys. Med. Biol. 44, 2897–2906 (1999).
[CrossRef]

Delpy, D. T.

H. Dehghani, D. T. Delpy, S. R. Arridge, “Photon migration in non-scattering tissue and the effects on image reconstruction,” Phys. Med. Biol. 44, 2897–2906 (1999).
[CrossRef]

M. Firbank, E. Okada, D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near infrared spectroscopy studies of visual evoked responses,” Neuroimag. 8, 69–78 (1998).
[CrossRef]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
[CrossRef] [PubMed]

M. Firbank, S. R. Arridge, M. Schweiger, D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol. 41, 767–783 (1996).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, E. O. R. Reynolds, “Characterisation of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non invasive monitoring of cerebral oxygenation,” Biochem. Biophys. Acta 933, 184–192 (1988).

J. S. Wyatt, D. T. Delpy, M. Cope, S. Wray, E. O. R. Reynolds, “Quantification of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectroscopy,” Lancet ii, 1063–1066 (1986).

Ferrari, M.

M. Ferrari, E. Zanette, I. Giannini, G. Sideri, C. Fieschi, A. Carpi, “Effect of cartid artery compression test on regional cerebral blood volume, haemoglobin oxygen saturation and cytochrome-c-oxidase redox level in cerebrovascular patients,” Adv. Exp. Med. Biol. 200, 213–222 (1986).
[CrossRef]

Ferwada, H. A.

Fieschi, C.

M. Ferrari, E. Zanette, I. Giannini, G. Sideri, C. Fieschi, A. Carpi, “Effect of cartid artery compression test on regional cerebral blood volume, haemoglobin oxygen saturation and cytochrome-c-oxidase redox level in cerebrovascular patients,” Adv. Exp. Med. Biol. 200, 213–222 (1986).
[CrossRef]

Firbank, M.

M. Firbank, E. Okada, D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near infrared spectroscopy studies of visual evoked responses,” Neuroimag. 8, 69–78 (1998).
[CrossRef]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
[CrossRef] [PubMed]

M. Firbank, S. R. Arridge, M. Schweiger, D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol. 41, 767–783 (1996).
[CrossRef] [PubMed]

Giannini, I.

M. Ferrari, E. Zanette, I. Giannini, G. Sideri, C. Fieschi, A. Carpi, “Effect of cartid artery compression test on regional cerebral blood volume, haemoglobin oxygen saturation and cytochrome-c-oxidase redox level in cerebrovascular patients,” Adv. Exp. Med. Biol. 200, 213–222 (1986).
[CrossRef]

Griebel, J. A.

N. B. Hampson, E. M. Camporesi, B. W. Stolp, R. E. Moon, J. E. Shook, J. A. Griebel, C. A. Piantadosi, “Cerebral oxygen availability by NIR spectroscopy during transient hypoxia in humans,” J. Appl. Physiol. 69, 907–913 (1990).
[PubMed]

Groenhuis, R. A. J.

Hampson, N. B.

N. B. Hampson, E. M. Camporesi, B. W. Stolp, R. E. Moon, J. E. Shook, J. A. Griebel, C. A. Piantadosi, “Cerebral oxygen availability by NIR spectroscopy during transient hypoxia in humans,” J. Appl. Physiol. 69, 907–913 (1990).
[PubMed]

Hielscher, A. H.

A. H. Hielscher, R. E. Alcouffe, R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissue,” Phys. Med. Biol. 43, 1285–1302 (1998).
[CrossRef] [PubMed]

A. H. Hielscher, R. E. Alcouffe, R. L. Barbour, “Transport and diffusion calculations on MRI-generated data,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 500–508 (1997).

Hiraoka, M.

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

Hoshi, Y.

Y. Hoshi, M. Tamura, “Detection of dynamic changes in cerebral oxygenation coupled to neuronal function during mental work in man,” Neurosci. Lett. 150, 5–8 (1993).
[CrossRef] [PubMed]

Jobsis vander Vliet, F. F.

J. E. Brazy, D. V. Lewis, M. H. Mitnick, F. F. Jobsis vander Vliet, “Noninvasive monitoring of cerebral oxygenation in preterm infants: preliminary observations,” Pediatrics 25, 217–225 (1985).

Lewis, D. V.

J. E. Brazy, D. V. Lewis, M. H. Mitnick, F. F. Jobsis vander Vliet, “Noninvasive monitoring of cerebral oxygenation in preterm infants: preliminary observations,” Pediatrics 25, 217–225 (1985).

Liu, H.

H. Liu, D. A. Boas, A. G. Yodh, B. Chance “Influence of clear cerebrospinal fluid on NIR brain imaging and cerebral oxygenation monitoring,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, James G. Fujimoto, eds. Vol. 2 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996), pp. 372–375.

Martelli, F.

Mitnick, M. H.

J. E. Brazy, D. V. Lewis, M. H. Mitnick, F. F. Jobsis vander Vliet, “Noninvasive monitoring of cerebral oxygenation in preterm infants: preliminary observations,” Pediatrics 25, 217–225 (1985).

Moon, R. E.

N. B. Hampson, E. M. Camporesi, B. W. Stolp, R. E. Moon, J. E. Shook, J. A. Griebel, C. A. Piantadosi, “Cerebral oxygen availability by NIR spectroscopy during transient hypoxia in humans,” J. Appl. Physiol. 69, 907–913 (1990).
[PubMed]

Nakai, T.

T. Nakai, G. Nishimura, K. Yamamoto, M. Tamura, “Expression of optical diffusion coefficient in high-absorption turbid media,” Phys. Med. Biol. 42, 2541–2549 (1997).
[CrossRef]

Nishimura, G.

T. Nakai, G. Nishimura, K. Yamamoto, M. Tamura, “Expression of optical diffusion coefficient in high-absorption turbid media,” Phys. Med. Biol. 42, 2541–2549 (1997).
[CrossRef]

Okada, E.

S. R. Arridge, H. Dehghani, M. Schweiger, E. Okada, “The finite element model for the propagation of light in scattering media: a direct method for domains with non-scattering regions,” Med. Phys. 27, 252–264 (2000).
[CrossRef] [PubMed]

M. Firbank, E. Okada, D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near infrared spectroscopy studies of visual evoked responses,” Neuroimag. 8, 69–78 (1998).
[CrossRef]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
[CrossRef] [PubMed]

Piantadosi, C. A.

N. B. Hampson, E. M. Camporesi, B. W. Stolp, R. E. Moon, J. E. Shook, J. A. Griebel, C. A. Piantadosi, “Cerebral oxygen availability by NIR spectroscopy during transient hypoxia in humans,” J. Appl. Physiol. 69, 907–913 (1990).
[PubMed]

Reynolds, E. O. R.

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, E. O. R. Reynolds, “Characterisation of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non invasive monitoring of cerebral oxygenation,” Biochem. Biophys. Acta 933, 184–192 (1988).

J. S. Wyatt, D. T. Delpy, M. Cope, S. Wray, E. O. R. Reynolds, “Quantification of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectroscopy,” Lancet ii, 1063–1066 (1986).

Schweiger, M.

S. R. Arridge, H. Dehghani, M. Schweiger, E. Okada, “The finite element model for the propagation of light in scattering media: a direct method for domains with non-scattering regions,” Med. Phys. 27, 252–264 (2000).
[CrossRef] [PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
[CrossRef] [PubMed]

M. Firbank, S. R. Arridge, M. Schweiger, D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol. 41, 767–783 (1996).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, “Photon-measurement density functions. II. Finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

Shook, J. E.

N. B. Hampson, E. M. Camporesi, B. W. Stolp, R. E. Moon, J. E. Shook, J. A. Griebel, C. A. Piantadosi, “Cerebral oxygen availability by NIR spectroscopy during transient hypoxia in humans,” J. Appl. Physiol. 69, 907–913 (1990).
[PubMed]

Sideri, G.

M. Ferrari, E. Zanette, I. Giannini, G. Sideri, C. Fieschi, A. Carpi, “Effect of cartid artery compression test on regional cerebral blood volume, haemoglobin oxygen saturation and cytochrome-c-oxidase redox level in cerebrovascular patients,” Adv. Exp. Med. Biol. 200, 213–222 (1986).
[CrossRef]

Stolp, B. W.

N. B. Hampson, E. M. Camporesi, B. W. Stolp, R. E. Moon, J. E. Shook, J. A. Griebel, C. A. Piantadosi, “Cerebral oxygen availability by NIR spectroscopy during transient hypoxia in humans,” J. Appl. Physiol. 69, 907–913 (1990).
[PubMed]

Tamura, M.

T. Nakai, G. Nishimura, K. Yamamoto, M. Tamura, “Expression of optical diffusion coefficient in high-absorption turbid media,” Phys. Med. Biol. 42, 2541–2549 (1997).
[CrossRef]

Y. Hoshi, M. Tamura, “Detection of dynamic changes in cerebral oxygenation coupled to neuronal function during mental work in man,” Neurosci. Lett. 150, 5–8 (1993).
[CrossRef] [PubMed]

Ten Bosch, J. J.

Wallace, J. R.

M. F. Cohen, J. R. Wallace, Radiosity and Realistic Image Synthesis (Academic, London, 1993).

Wray, S.

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, E. O. R. Reynolds, “Characterisation of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non invasive monitoring of cerebral oxygenation,” Biochem. Biophys. Acta 933, 184–192 (1988).

J. S. Wyatt, D. T. Delpy, M. Cope, S. Wray, E. O. R. Reynolds, “Quantification of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectroscopy,” Lancet ii, 1063–1066 (1986).

Wyatt, J. S.

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, E. O. R. Reynolds, “Characterisation of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non invasive monitoring of cerebral oxygenation,” Biochem. Biophys. Acta 933, 184–192 (1988).

J. S. Wyatt, D. T. Delpy, M. Cope, S. Wray, E. O. R. Reynolds, “Quantification of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectroscopy,” Lancet ii, 1063–1066 (1986).

Yamamoto, K.

T. Nakai, G. Nishimura, K. Yamamoto, M. Tamura, “Expression of optical diffusion coefficient in high-absorption turbid media,” Phys. Med. Biol. 42, 2541–2549 (1997).
[CrossRef]

Yodh, A. G.

H. Liu, D. A. Boas, A. G. Yodh, B. Chance “Influence of clear cerebrospinal fluid on NIR brain imaging and cerebral oxygenation monitoring,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, James G. Fujimoto, eds. Vol. 2 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996), pp. 372–375.

Zaccanti, G.

Zanette, E.

M. Ferrari, E. Zanette, I. Giannini, G. Sideri, C. Fieschi, A. Carpi, “Effect of cartid artery compression test on regional cerebral blood volume, haemoglobin oxygen saturation and cytochrome-c-oxidase redox level in cerebrovascular patients,” Adv. Exp. Med. Biol. 200, 213–222 (1986).
[CrossRef]

Adv. Exp. Med. Biol.

M. Ferrari, E. Zanette, I. Giannini, G. Sideri, C. Fieschi, A. Carpi, “Effect of cartid artery compression test on regional cerebral blood volume, haemoglobin oxygen saturation and cytochrome-c-oxidase redox level in cerebrovascular patients,” Adv. Exp. Med. Biol. 200, 213–222 (1986).
[CrossRef]

Appl. Opt.

Biochem. Biophys. Acta

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, E. O. R. Reynolds, “Characterisation of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non invasive monitoring of cerebral oxygenation,” Biochem. Biophys. Acta 933, 184–192 (1988).

J. Appl. Physiol.

N. B. Hampson, E. M. Camporesi, B. W. Stolp, R. E. Moon, J. E. Shook, J. A. Griebel, C. A. Piantadosi, “Cerebral oxygen availability by NIR spectroscopy during transient hypoxia in humans,” J. Appl. Physiol. 69, 907–913 (1990).
[PubMed]

Lancet

J. S. Wyatt, D. T. Delpy, M. Cope, S. Wray, E. O. R. Reynolds, “Quantification of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectroscopy,” Lancet ii, 1063–1066 (1986).

Med. Phys.

S. R. Arridge, H. Dehghani, M. Schweiger, E. Okada, “The finite element model for the propagation of light in scattering media: a direct method for domains with non-scattering regions,” Med. Phys. 27, 252–264 (2000).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

Neuroimag.

M. Firbank, E. Okada, D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near infrared spectroscopy studies of visual evoked responses,” Neuroimag. 8, 69–78 (1998).
[CrossRef]

Neurosci. Lett.

Y. Hoshi, M. Tamura, “Detection of dynamic changes in cerebral oxygenation coupled to neuronal function during mental work in man,” Neurosci. Lett. 150, 5–8 (1993).
[CrossRef] [PubMed]

Opt. Lett.

Pediatrics

J. E. Brazy, D. V. Lewis, M. H. Mitnick, F. F. Jobsis vander Vliet, “Noninvasive monitoring of cerebral oxygenation in preterm infants: preliminary observations,” Pediatrics 25, 217–225 (1985).

Phys. Med. Biol.

M. Firbank, S. R. Arridge, M. Schweiger, D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol. 41, 767–783 (1996).
[CrossRef] [PubMed]

T. Nakai, G. Nishimura, K. Yamamoto, M. Tamura, “Expression of optical diffusion coefficient in high-absorption turbid media,” Phys. Med. Biol. 42, 2541–2549 (1997).
[CrossRef]

H. Dehghani, D. T. Delpy, S. R. Arridge, “Photon migration in non-scattering tissue and the effects on image reconstruction,” Phys. Med. Biol. 44, 2897–2906 (1999).
[CrossRef]

A. H. Hielscher, R. E. Alcouffe, R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissue,” Phys. Med. Biol. 43, 1285–1302 (1998).
[CrossRef] [PubMed]

Other

M. F. Cohen, J. R. Wallace, Radiosity and Realistic Image Synthesis (Academic, London, 1993).

A. H. Hielscher, R. E. Alcouffe, R. L. Barbour, “Transport and diffusion calculations on MRI-generated data,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 500–508 (1997).

H. Liu, D. A. Boas, A. G. Yodh, B. Chance “Influence of clear cerebrospinal fluid on NIR brain imaging and cerebral oxygenation monitoring,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, James G. Fujimoto, eds. Vol. 2 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996), pp. 372–375.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Smooth-surfaced three-layer model. The model has a radius of 86 mm. The outer layer (representing scalp and skull) has a thickness of 12 mm; the middle layer (representing gray matter), a thickness of 4 mm; and the inner region (representing white matter), a radius of 70 mm. The optical properties are as stated in Table 1.

Fig. 2
Fig. 2

(a) Smooth-surfaced four-layer model. The model has a radius of 86 mm. The outer layer (representing scalp and skull) has a thickness of 10 mm; the second layer (representing CSF), a thickness of 2 mm; the third layer (representing gray matter), a thickness of 4 mm; and the inner region (representing white matter); a radius of 70 mm. The optical properties are as stated in Table 1. (b) For the four-layer model with a single block intrusion the thickness of the block is either 1 or 2 mm, and its height is varied from 0.5 mm to 2.0 mm.

Fig. 3
Fig. 3

PMDF for intensity data and absorption [units, optical density (OD) in millimeters]. (a) Three-layer model. (b) Four-layer model. (c) Four-layer model with block intrusion of width 1 mm and height 0.5 mm. (d) Four-layer model with block intrusion of width 1 mm and height 1 mm. (e) Four-layer model with block intrusion of width 1 mm and height 1.5 mm. (f) Four-layer model with block intrusion of width 1 mm and height 2 mm. (g) Four-layer model with block intrusion of width 2 mm and height 1.5 mm. The first column (i) shows the PMDF for a source-detector separation of 30 mm, the second (ii) for a separation of 40 mm, the third (iii) for a separation of 50 mm, and the fourth (iv) for a separation of 70 mm. For optical properties and model specifications see Tables 1 and 2. Each contour line represents a 5% change.

Fig. 4
Fig. 4

PMDF for intensity data and absorption (units, OD in millimeters). Cross section through the three-layer model shown in Fig. 3(a). The dashed vertical line represents the boundary of the skin layer.

Fig. 5
Fig. 5

PMDF for intensity data and absorption (units, OD in millimeters). Cross section through the smooth four-layer model shown in Fig. 3(b). The dashed vertical lines represent the boundaries of the clear CSF layer and also the boundary of the skin layer.

Fig. 6
Fig. 6

PMDF for intensity data and absorption (units, OD in millimeters). Cross section through all models for a source-detector spacing of 30 mm. The dashed vertical lines represent the boundaries of the clear CSF layer and also the boundary of the skin layer.

Fig. 7
Fig. 7

PMDF for intensity data and absorption (units, OD in millimeters). Cross section through all models for a source-detector spacing of 40 mm. The dashed vertical lines represent the boundaries of the clear CSF layer and also the boundary of the skin layer.

Fig. 8
Fig. 8

PMDF for intensity data and absorption (units, OD in millimeters). Cross section through all models for a source-detector spacing of 50 mm. The dashed vertical lines represent the boundaries of the clear CSF layer and also the boundary of the skin layer.

Fig. 9
Fig. 9

PMDF for intensity data and absorption (units, OD in millimeters). Cross section through all models for a source-detector spacing of 70 mm. The dashed vertical lines represent the boundaries of the clear CSF layer and also the boundary of the skin layer.

Fig. 10
Fig. 10

PMDF for intensity data and absorption (units, OD in millimeters). The four-layer model [similar to Fig. 3(d) with three block intrusions of width 1 mm and height 1.0 mm and a source detector separation on 70 mm]. Each contour line represents a 5% change.

Tables (2)

Tables Icon

Table 1 Definition of the Model Layers and Their Optical Properties

Tables Icon

Table 2 Definition of the Models

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

-·κrΦr, ω+μa+iωc Φr, ω=q0r, ω,
κ=1/3μa+μs.
Γ2ir2=I1r1cosθ1cosθ2|r1-r2|2 exp-|r1-r2|×μa+iω/c,
Kκ+Cμ+ζA+iωBΦω=q0ω,
Kij=Ω κruir·ujrdnr,
Cij=Ω μaruirujrdnr,
Bij=1cΩ uirujrdnr,
Aij=Ω uirujrdn-1r,
Kκ+Cμ+ζA+iωB-EωΦω=q0ω,
Eij=ζ Ai uir1Aj ujr2hr1, r2cosθ1cosθ2|r1-r2|2×exp-|r1-r2|μa+iω/cdn-1r2dn-1r1,
PMDFi, j=Φi×ΦAdjj.

Metrics