Abstract

Kromoscopy involves the transmission of a broad band of electromagnetic radiation through the sample of interest. The transmitted light is collected and divided evenly into four detector channels with complementary bandpass functions. This optical configuration provides high signal-to-noise ratios that are ideal for analytical measurements. The molecular basis of the four-channel response is critical, because it directly influences selectivity of the measurement and, therefore, the feasibility of applications in complex sample matrices. Selectivity of the Kromoscopic signal is demonstrated by resolution of glucose and urea with four channels of information collected over the 800–1300-nm near-infrared spectral region. Analysis of the individual channel responses indicates that the displacement of water from the optical path by the dissolution of solute is a major component of the Kromoscopic measurement in this spectral region. Nevertheless, significant differences are observed in channel responses for glucose and urea. A three-dimensional vector plot of the data highlights these differences and reveals unique vector directions for glucose and urea. This difference in direction of the response vectors represents the principal basis for distinguishing glucose and urea dissolved in aqueous solutions.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. A. Sodickson, M. J. Block, “Kromoscopic analysis: a possible alternative to spectroscopic analysis for noninvasive measurement of analytes in vivo,” Clin. Chem. 40, 1838–1844 (1994).
    [PubMed]
  2. M. J. Block, “Kromoscopic analysis challenges spectroscopy,” Photonics Spectra 28, 135–139 (1994).
  3. L. A. Sodickson, “Improvements in multivariate analysis via Kromoscopic measurements,” Spectroscopy12, 13–16, 18, 22, 24 (1997).
  4. M. W. Misner, M. J. Block, “The raw data of Kromoscopic analysis,” Spectroscopy 12, 20–21 (1997).
  5. M. J. Block, “Noninvasive testing,” U.S. patent5,321,265 (14June1994).
  6. M. J. Block, L. Sodickson, “Noninvasive non-spectrophotometric infrared measurement of blood analyte concentrations,” U.S. patent5,424,545 (13June1995).
  7. M. J. Block, L. Sodickson, “Non-spectrophotometric measurement of analyte concentrations and optical properties of objects,” U.S. patent5,434,412 (18July1995).
  8. M. J. Block, L. Sodickson, “Methods of minimizing scattering and improving tissue sampling in noninvasive testing and imaging,” U.S. patent5,672,875 (30September1997).
  9. L. Sodickson, M. J. Block, “Nonspectrophotometric measurement of analyte concentrations and optical properties of objects,” U.S. patent5,818,044 (6October1998).
  10. L. Sodickson, H. E. Guthermann, M. J. Block, “Rapid noninvasive optical analysis using broad bandpass spectral processing,” U.S. patent5,818,048 (6October1998).
  11. M. J. Block, “Noninvasive IR transmission measurement of analyte in the tympanic membrane,” U.S. patent6,002,953 (14December1999).
  12. L. Sodickson, H. E. Guthermann, M. J. Block, “Rapid noninvasive optical analysis using broad bandpass spectral processing,” U.S. Patent6,028,311 (22February2000).
  13. M. A. Arnold, G. W. Small, “Determination of physiological levels of glucose in aqueous matrix with digitally filtered Fourier transform near-infrared spectroscopy,” Anal. Chem. 62, 1457–1464 (1990).
    [CrossRef] [PubMed]
  14. H. Chung, M. A. Arnold, M. Rhiel, D. W. Murhammer, “Simultaneous measurements of glucose, glutamine, ammonia, lactate, and glutamate in aqueous solutions by near-infrared spectroscopy,” Appl. Spectrosc. 51, 270–276 (1996).
    [CrossRef]
  15. K. H. Hazen, M. A. Arnold, G. W. Small, “Measurement of glucose in water with first overtone near infrared spectra,” Appl. Spectrosc. 52, 1597–1605 (1998).
    [CrossRef]
  16. R. J. McNichols, G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt. 5, 5–16 (2000).
    [CrossRef] [PubMed]
  17. O. H. Wheeler, “Near infrared spectra of organic compounds,” Chem. Rev. 59, 629–666 (1959).
    [CrossRef]
  18. J. B. Reeves, “Effects of water on the spectra of model compounds in the short-wavelength near infrared spectral region (14,000–9091 cm-1 or 714–1100 nm),“ Near Infrared Spectrosc. 2, 199–212 (1994).
  19. J. D. Ingle, S. R. Crouch, Spectrochemical Analysis (Prentice-Hall, N.J., 1988).
  20. O. S. Khalil, “Spectroscopic and clinical aspects of noninvasive glucose measurements,” Clin. Chem. 45, 165–177 (1999).
    [PubMed]
  21. M. Kohl, M. Essenpreis, M. Cope, “The influence of glucose concentration upon the transport of light in tissue-simulating phantoms,” Phys. Med. Biol. 40, 1267–1287 (1995).
    [CrossRef] [PubMed]
  22. K. Buijs, G. R. Choppin, “Near-infrared studies of the structure of water. I. Pure water,” J. Chem. Phys. 39, 2035–2041 (1963).
    [CrossRef]
  23. J. G. Bayly, V. B. Kartha, W. H. Stevens, “The absorption spectra of liquid phase H2O, HDO, and D2O from 0.7 µm to 10 µm,” Infrared Phys. 3, 211–223 (1963).
    [CrossRef]
  24. J. Lin, C. W. Brown, “Near-IR spectroscopic determination of NaCl in aqueous solution,” Appl. Spectrosc. 46, 1809–1815 (1992).
    [CrossRef]
  25. J. Lin, C. W. Brown, “Spectroscopic measurement of NaCl and seawater salinity in the near-IR region of 680–1230 nm,” Appl. Spectrosc. 47, 239–241 (1993).
    [CrossRef]
  26. J. Lin, C. W. Brown, “Universal approach for determination of physical and chemical properties of water by near-IR spectroscopy,” Appl. Spectrosc. 47, 1720–1727 (1993).
    [CrossRef]
  27. R. C. Weast, ed., “Concentration properties of aqueous solutions: conversion tables,” in Handbook of Chemistry and Physics, 56th ed. (CRC Press, Cleveland, Ohio, 1975), p. D-230.
  28. Ref. 27, p. D-265.

2000 (1)

R. J. McNichols, G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt. 5, 5–16 (2000).
[CrossRef] [PubMed]

1999 (1)

O. S. Khalil, “Spectroscopic and clinical aspects of noninvasive glucose measurements,” Clin. Chem. 45, 165–177 (1999).
[PubMed]

1998 (1)

1997 (1)

M. W. Misner, M. J. Block, “The raw data of Kromoscopic analysis,” Spectroscopy 12, 20–21 (1997).

1996 (1)

H. Chung, M. A. Arnold, M. Rhiel, D. W. Murhammer, “Simultaneous measurements of glucose, glutamine, ammonia, lactate, and glutamate in aqueous solutions by near-infrared spectroscopy,” Appl. Spectrosc. 51, 270–276 (1996).
[CrossRef]

1995 (1)

M. Kohl, M. Essenpreis, M. Cope, “The influence of glucose concentration upon the transport of light in tissue-simulating phantoms,” Phys. Med. Biol. 40, 1267–1287 (1995).
[CrossRef] [PubMed]

1994 (3)

L. A. Sodickson, M. J. Block, “Kromoscopic analysis: a possible alternative to spectroscopic analysis for noninvasive measurement of analytes in vivo,” Clin. Chem. 40, 1838–1844 (1994).
[PubMed]

M. J. Block, “Kromoscopic analysis challenges spectroscopy,” Photonics Spectra 28, 135–139 (1994).

J. B. Reeves, “Effects of water on the spectra of model compounds in the short-wavelength near infrared spectral region (14,000–9091 cm-1 or 714–1100 nm),“ Near Infrared Spectrosc. 2, 199–212 (1994).

1993 (2)

1992 (1)

1990 (1)

M. A. Arnold, G. W. Small, “Determination of physiological levels of glucose in aqueous matrix with digitally filtered Fourier transform near-infrared spectroscopy,” Anal. Chem. 62, 1457–1464 (1990).
[CrossRef] [PubMed]

1963 (2)

K. Buijs, G. R. Choppin, “Near-infrared studies of the structure of water. I. Pure water,” J. Chem. Phys. 39, 2035–2041 (1963).
[CrossRef]

J. G. Bayly, V. B. Kartha, W. H. Stevens, “The absorption spectra of liquid phase H2O, HDO, and D2O from 0.7 µm to 10 µm,” Infrared Phys. 3, 211–223 (1963).
[CrossRef]

1959 (1)

O. H. Wheeler, “Near infrared spectra of organic compounds,” Chem. Rev. 59, 629–666 (1959).
[CrossRef]

Arnold, M. A.

K. H. Hazen, M. A. Arnold, G. W. Small, “Measurement of glucose in water with first overtone near infrared spectra,” Appl. Spectrosc. 52, 1597–1605 (1998).
[CrossRef]

H. Chung, M. A. Arnold, M. Rhiel, D. W. Murhammer, “Simultaneous measurements of glucose, glutamine, ammonia, lactate, and glutamate in aqueous solutions by near-infrared spectroscopy,” Appl. Spectrosc. 51, 270–276 (1996).
[CrossRef]

M. A. Arnold, G. W. Small, “Determination of physiological levels of glucose in aqueous matrix with digitally filtered Fourier transform near-infrared spectroscopy,” Anal. Chem. 62, 1457–1464 (1990).
[CrossRef] [PubMed]

Bayly, J. G.

J. G. Bayly, V. B. Kartha, W. H. Stevens, “The absorption spectra of liquid phase H2O, HDO, and D2O from 0.7 µm to 10 µm,” Infrared Phys. 3, 211–223 (1963).
[CrossRef]

Block, M. J.

M. W. Misner, M. J. Block, “The raw data of Kromoscopic analysis,” Spectroscopy 12, 20–21 (1997).

L. A. Sodickson, M. J. Block, “Kromoscopic analysis: a possible alternative to spectroscopic analysis for noninvasive measurement of analytes in vivo,” Clin. Chem. 40, 1838–1844 (1994).
[PubMed]

M. J. Block, “Kromoscopic analysis challenges spectroscopy,” Photonics Spectra 28, 135–139 (1994).

M. J. Block, “Noninvasive testing,” U.S. patent5,321,265 (14June1994).

M. J. Block, L. Sodickson, “Noninvasive non-spectrophotometric infrared measurement of blood analyte concentrations,” U.S. patent5,424,545 (13June1995).

M. J. Block, L. Sodickson, “Non-spectrophotometric measurement of analyte concentrations and optical properties of objects,” U.S. patent5,434,412 (18July1995).

M. J. Block, L. Sodickson, “Methods of minimizing scattering and improving tissue sampling in noninvasive testing and imaging,” U.S. patent5,672,875 (30September1997).

L. Sodickson, M. J. Block, “Nonspectrophotometric measurement of analyte concentrations and optical properties of objects,” U.S. patent5,818,044 (6October1998).

L. Sodickson, H. E. Guthermann, M. J. Block, “Rapid noninvasive optical analysis using broad bandpass spectral processing,” U.S. patent5,818,048 (6October1998).

M. J. Block, “Noninvasive IR transmission measurement of analyte in the tympanic membrane,” U.S. patent6,002,953 (14December1999).

L. Sodickson, H. E. Guthermann, M. J. Block, “Rapid noninvasive optical analysis using broad bandpass spectral processing,” U.S. Patent6,028,311 (22February2000).

Brown, C. W.

Buijs, K.

K. Buijs, G. R. Choppin, “Near-infrared studies of the structure of water. I. Pure water,” J. Chem. Phys. 39, 2035–2041 (1963).
[CrossRef]

Choppin, G. R.

K. Buijs, G. R. Choppin, “Near-infrared studies of the structure of water. I. Pure water,” J. Chem. Phys. 39, 2035–2041 (1963).
[CrossRef]

Chung, H.

H. Chung, M. A. Arnold, M. Rhiel, D. W. Murhammer, “Simultaneous measurements of glucose, glutamine, ammonia, lactate, and glutamate in aqueous solutions by near-infrared spectroscopy,” Appl. Spectrosc. 51, 270–276 (1996).
[CrossRef]

Cope, M.

M. Kohl, M. Essenpreis, M. Cope, “The influence of glucose concentration upon the transport of light in tissue-simulating phantoms,” Phys. Med. Biol. 40, 1267–1287 (1995).
[CrossRef] [PubMed]

Coté, G. L.

R. J. McNichols, G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt. 5, 5–16 (2000).
[CrossRef] [PubMed]

Crouch, S. R.

J. D. Ingle, S. R. Crouch, Spectrochemical Analysis (Prentice-Hall, N.J., 1988).

Essenpreis, M.

M. Kohl, M. Essenpreis, M. Cope, “The influence of glucose concentration upon the transport of light in tissue-simulating phantoms,” Phys. Med. Biol. 40, 1267–1287 (1995).
[CrossRef] [PubMed]

Guthermann, H. E.

L. Sodickson, H. E. Guthermann, M. J. Block, “Rapid noninvasive optical analysis using broad bandpass spectral processing,” U.S. patent5,818,048 (6October1998).

L. Sodickson, H. E. Guthermann, M. J. Block, “Rapid noninvasive optical analysis using broad bandpass spectral processing,” U.S. Patent6,028,311 (22February2000).

Hazen, K. H.

Ingle, J. D.

J. D. Ingle, S. R. Crouch, Spectrochemical Analysis (Prentice-Hall, N.J., 1988).

Kartha, V. B.

J. G. Bayly, V. B. Kartha, W. H. Stevens, “The absorption spectra of liquid phase H2O, HDO, and D2O from 0.7 µm to 10 µm,” Infrared Phys. 3, 211–223 (1963).
[CrossRef]

Khalil, O. S.

O. S. Khalil, “Spectroscopic and clinical aspects of noninvasive glucose measurements,” Clin. Chem. 45, 165–177 (1999).
[PubMed]

Kohl, M.

M. Kohl, M. Essenpreis, M. Cope, “The influence of glucose concentration upon the transport of light in tissue-simulating phantoms,” Phys. Med. Biol. 40, 1267–1287 (1995).
[CrossRef] [PubMed]

Lin, J.

McNichols, R. J.

R. J. McNichols, G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt. 5, 5–16 (2000).
[CrossRef] [PubMed]

Misner, M. W.

M. W. Misner, M. J. Block, “The raw data of Kromoscopic analysis,” Spectroscopy 12, 20–21 (1997).

Murhammer, D. W.

H. Chung, M. A. Arnold, M. Rhiel, D. W. Murhammer, “Simultaneous measurements of glucose, glutamine, ammonia, lactate, and glutamate in aqueous solutions by near-infrared spectroscopy,” Appl. Spectrosc. 51, 270–276 (1996).
[CrossRef]

Reeves, J. B.

J. B. Reeves, “Effects of water on the spectra of model compounds in the short-wavelength near infrared spectral region (14,000–9091 cm-1 or 714–1100 nm),“ Near Infrared Spectrosc. 2, 199–212 (1994).

Rhiel, M.

H. Chung, M. A. Arnold, M. Rhiel, D. W. Murhammer, “Simultaneous measurements of glucose, glutamine, ammonia, lactate, and glutamate in aqueous solutions by near-infrared spectroscopy,” Appl. Spectrosc. 51, 270–276 (1996).
[CrossRef]

Small, G. W.

K. H. Hazen, M. A. Arnold, G. W. Small, “Measurement of glucose in water with first overtone near infrared spectra,” Appl. Spectrosc. 52, 1597–1605 (1998).
[CrossRef]

M. A. Arnold, G. W. Small, “Determination of physiological levels of glucose in aqueous matrix with digitally filtered Fourier transform near-infrared spectroscopy,” Anal. Chem. 62, 1457–1464 (1990).
[CrossRef] [PubMed]

Sodickson, L.

M. J. Block, L. Sodickson, “Noninvasive non-spectrophotometric infrared measurement of blood analyte concentrations,” U.S. patent5,424,545 (13June1995).

L. Sodickson, H. E. Guthermann, M. J. Block, “Rapid noninvasive optical analysis using broad bandpass spectral processing,” U.S. Patent6,028,311 (22February2000).

L. Sodickson, H. E. Guthermann, M. J. Block, “Rapid noninvasive optical analysis using broad bandpass spectral processing,” U.S. patent5,818,048 (6October1998).

M. J. Block, L. Sodickson, “Methods of minimizing scattering and improving tissue sampling in noninvasive testing and imaging,” U.S. patent5,672,875 (30September1997).

L. Sodickson, M. J. Block, “Nonspectrophotometric measurement of analyte concentrations and optical properties of objects,” U.S. patent5,818,044 (6October1998).

M. J. Block, L. Sodickson, “Non-spectrophotometric measurement of analyte concentrations and optical properties of objects,” U.S. patent5,434,412 (18July1995).

Sodickson, L. A.

L. A. Sodickson, M. J. Block, “Kromoscopic analysis: a possible alternative to spectroscopic analysis for noninvasive measurement of analytes in vivo,” Clin. Chem. 40, 1838–1844 (1994).
[PubMed]

L. A. Sodickson, “Improvements in multivariate analysis via Kromoscopic measurements,” Spectroscopy12, 13–16, 18, 22, 24 (1997).

Stevens, W. H.

J. G. Bayly, V. B. Kartha, W. H. Stevens, “The absorption spectra of liquid phase H2O, HDO, and D2O from 0.7 µm to 10 µm,” Infrared Phys. 3, 211–223 (1963).
[CrossRef]

Wheeler, O. H.

O. H. Wheeler, “Near infrared spectra of organic compounds,” Chem. Rev. 59, 629–666 (1959).
[CrossRef]

Anal. Chem. (1)

M. A. Arnold, G. W. Small, “Determination of physiological levels of glucose in aqueous matrix with digitally filtered Fourier transform near-infrared spectroscopy,” Anal. Chem. 62, 1457–1464 (1990).
[CrossRef] [PubMed]

Appl. Spectrosc. (5)

Chem. Rev. (1)

O. H. Wheeler, “Near infrared spectra of organic compounds,” Chem. Rev. 59, 629–666 (1959).
[CrossRef]

Clin. Chem. (2)

O. S. Khalil, “Spectroscopic and clinical aspects of noninvasive glucose measurements,” Clin. Chem. 45, 165–177 (1999).
[PubMed]

L. A. Sodickson, M. J. Block, “Kromoscopic analysis: a possible alternative to spectroscopic analysis for noninvasive measurement of analytes in vivo,” Clin. Chem. 40, 1838–1844 (1994).
[PubMed]

Infrared Phys. (1)

J. G. Bayly, V. B. Kartha, W. H. Stevens, “The absorption spectra of liquid phase H2O, HDO, and D2O from 0.7 µm to 10 µm,” Infrared Phys. 3, 211–223 (1963).
[CrossRef]

J. Biomed. Opt. (1)

R. J. McNichols, G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt. 5, 5–16 (2000).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

K. Buijs, G. R. Choppin, “Near-infrared studies of the structure of water. I. Pure water,” J. Chem. Phys. 39, 2035–2041 (1963).
[CrossRef]

Near Infrared Spectrosc. (1)

J. B. Reeves, “Effects of water on the spectra of model compounds in the short-wavelength near infrared spectral region (14,000–9091 cm-1 or 714–1100 nm),“ Near Infrared Spectrosc. 2, 199–212 (1994).

Photonics Spectra (1)

M. J. Block, “Kromoscopic analysis challenges spectroscopy,” Photonics Spectra 28, 135–139 (1994).

Phys. Med. Biol. (1)

M. Kohl, M. Essenpreis, M. Cope, “The influence of glucose concentration upon the transport of light in tissue-simulating phantoms,” Phys. Med. Biol. 40, 1267–1287 (1995).
[CrossRef] [PubMed]

Spectroscopy (1)

M. W. Misner, M. J. Block, “The raw data of Kromoscopic analysis,” Spectroscopy 12, 20–21 (1997).

Other (12)

M. J. Block, “Noninvasive testing,” U.S. patent5,321,265 (14June1994).

M. J. Block, L. Sodickson, “Noninvasive non-spectrophotometric infrared measurement of blood analyte concentrations,” U.S. patent5,424,545 (13June1995).

M. J. Block, L. Sodickson, “Non-spectrophotometric measurement of analyte concentrations and optical properties of objects,” U.S. patent5,434,412 (18July1995).

M. J. Block, L. Sodickson, “Methods of minimizing scattering and improving tissue sampling in noninvasive testing and imaging,” U.S. patent5,672,875 (30September1997).

L. Sodickson, M. J. Block, “Nonspectrophotometric measurement of analyte concentrations and optical properties of objects,” U.S. patent5,818,044 (6October1998).

L. Sodickson, H. E. Guthermann, M. J. Block, “Rapid noninvasive optical analysis using broad bandpass spectral processing,” U.S. patent5,818,048 (6October1998).

M. J. Block, “Noninvasive IR transmission measurement of analyte in the tympanic membrane,” U.S. patent6,002,953 (14December1999).

L. Sodickson, H. E. Guthermann, M. J. Block, “Rapid noninvasive optical analysis using broad bandpass spectral processing,” U.S. Patent6,028,311 (22February2000).

J. D. Ingle, S. R. Crouch, Spectrochemical Analysis (Prentice-Hall, N.J., 1988).

L. A. Sodickson, “Improvements in multivariate analysis via Kromoscopic measurements,” Spectroscopy12, 13–16, 18, 22, 24 (1997).

R. C. Weast, ed., “Concentration properties of aqueous solutions: conversion tables,” in Handbook of Chemistry and Physics, 56th ed. (CRC Press, Cleveland, Ohio, 1975), p. D-230.

Ref. 27, p. D-265.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the four-channel instrument used to collect the Kromoscopic responses.

Fig. 2
Fig. 2

Transmission spectra of the filters used in the four-channel detector module.

Fig. 3
Fig. 3

Four-channel intensity-time traces for experiments in which (A) glucose is added first, followed by urea and (B) urea is added first, followed by glucose. Responses are shown as solid lines for the 850- and the 1150-nm channels and as broken lines for the 1000- and the 1224-nm channels. Letters indicate different glucose-urea solution compositions as explained in Section 3. Solutions correspond to blank buffer (a and m), solutions following a standard addition of glucose (b–f and t–x), and solutions following a standard addition of urea (h–l and n–r). Solutions g and s correspond to points after all the initial solute additions (glucose and urea, respectively) and before additions of the second solute (urea and glucose, respectively).

Fig. 4
Fig. 4

Three-dimensional vector plots for experiments in which (A) glucose is added first, followed by urea [points a–l in (A)] and urea is added first, followed by glucose [points m–x in (A)]. Axes correspond to relative intensity signals measured from the 1000-, 1150-, and 1224-nm channels. Points correspond to mean intensity values for each solution (a–x) as defined in Section 3 and the Fig. 3 legend. Plot in (B) shows the same data drop lines into the 1000–1150-nm plane.

Metrics