Abstract

The operation of an incoherent optical frequency-domain reflectometer for monitoring the continuous Rayleigh backscatter in a multimode optical fiber is presented. A simple but effective model to predict the value of beat frequencies arising in the system when excited by a linearly frequency-swept amplitude modulation has been developed. We have verified the model’s predictions by experimental measurement of beat frequencies and modulation depth indices of different lengths of standard graded-index multimode optical fiber. Demonstration of the system sensitivity to the detection of microbending loss is then discussed. In particular the detection of loss in a hydrogel-based water-sensing cable allows an alternative interrogation to conventional optical time-domain reflectometry techniques to be implemented. We demonstrate that the incoherent optical frequency-domain reflectometer is capable of detecting and locating sections of increased loss in a multimode optical fiber, and we discuss the fundamental limits on spatial resolution and dynamic range.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Nolan, P. E. Blaszyk, E. Udd, “Optical fibres,” in Fibre Optic Sensors: An Introduction for Engineers and Scientists, E. Udd, ed. (Wiley, New York, 1991), pp. 9–36.
  2. G. L. Mitchell, “Intensity-based and Fabry-Perot interferometer sensors,” in Fibre Optic Sensors: An Introduction for Engineers and Scientists, E. Udd, ed. (Wiley, New York, 1991), pp. 139–156.
  3. T. Horiguchi, A. Rogers, W. C. Michie, G. Stewart, B. Culshaw, “Distributed sensors: recent developments,” in Optical Fibre Sensors: Applications, Analysis and Future Trends, J. Dakin, B. Culshaw, eds. (Artech House, Boston, Mass., 1997), Vol. 4, pp. 309–368.
  4. A. MacLean, W. C. Michie, S. G. Pierce, G. Thursby, B. Culshaw, C. Moran, N. B. Graham, “Hydrogel/fiber optic sensor for distributed measurement of humidity and pH value,” in Smart Structures and Materials: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, Proc. SPIE3330, 134–144 (1998).
    [CrossRef]
  5. J. P. Dakin, “Distributed optical fibre sensor systems,” in Optical Fibre Sensors: Systems and Applications, B. Culshaw, J. P. Dakin, eds. (Artech House, Boston, Mass., 1989), Vol. 2, pp. 575–598.
  6. A. D. Kersey, “Distributed and multiplexed fibre optic sensing,” in Fibre Optic Sensors: An Introduction for Engineers and Scientists, E. Udd, ed. (Wiley, New York, 1991), pp. 325–368.
  7. B. Garside, “Advances in high-speed OTDR detection techniques,” in Optical Fibre Sensors: Components and Subsystems, B. Culshaw, J. P. Dakin, eds. (Artech House, Boston, Mass., 1996), Vol. 3, pp. 145–189.
  8. W. B. Spillman, P. L. Fuhr, B. L. Anderson, “Performance of integrated source/detector combinations for smart skins incoherent optical frequency domain reflectometry distributed fibre optic sensors,” in Fiber Optic Smart Structures and Skins, E. Udd, ed., Proc. SPIE986, 106–118 (1988).
    [CrossRef]
  9. W. Eickhoff, R. Ulrich, “Optical frequency domain reflectometry in single mode fibre,” Appl. Phys. Lett. 39, 693–695 (1981).
    [CrossRef]
  10. D. Uttamchandani, B. Culshaw, “Precision time domain reflectometry in optical fibre systems using a frequency modulated continuous wave ranging technique,” J. Lightwave Technol. LT3, 971–976 (1985).
  11. S. A. Kingsley, D. E. N. Davies, “OFDR diagnostics for fibre and integrated-optic systems,” Electron. Lett. 21, 434–435 (1985).
    [CrossRef]
  12. R. Passy, N. Gisin, J. P. von der Weid, H. H. Gilgen, “Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources,” J. Lightwave Technol. 12, 1622–1630 (1994).
    [CrossRef]
  13. G. Mussi, N. Gisin, R. Passy, J. P. von der Weid, “-152.5 dB sensitivity high dynamic range optical frequency domain reflectometry,” Electron. Lett. 32, 926–927 (1996).
    [CrossRef]
  14. J. P. von der Weid, R. Passy, G. Mussi, N. Gisin, “On the characterisation of optical fibre network components with optical frequency domain reflectometry,” J. Lightwave Technol. 15, 1131–1141 (1997).
    [CrossRef]
  15. N. Tan-no, T. Ichimura, T. Funaba, N. Anndo, Y. Odagiri, “Optical multimode frequency-domain reflectometer,” Opt. Lett. 19, 587–589 (1994).
    [CrossRef] [PubMed]
  16. K. Tsuji, K. Shimizu, T. Horiguchi, Y. Koyamada, “Spatial resolution improvement in long range coherent optical frequency domain reflectometry by frequency sweep linearisation,” Electron. Lett. 33, 408–410 (1997).
    [CrossRef]
  17. K. Tsuji, K. Shimizu, T. Horiguchi, Y. Koyamada, “Coherent optical frequency domain reflectometry using phase decorrelated reflected and reference waves,” J. Lightwave Technol. 15, 1102–1109 (1997).
    [CrossRef]
  18. R. Rathod, R. D. Pechstedt, D. A. Jackson, D. J. Webb, “Distributed temperature-change sensor based on Rayleigh backscattering in an optical fiber,” Opt. Lett. 19, 593–595 (1994).
    [CrossRef] [PubMed]
  19. R. I. MacDonald, “Frequency domain optical reflectometer,” Appl. Opt. 20, 1840–1844 (1981).
    [CrossRef] [PubMed]
  20. S. Venkatesh, D. W. Dolfi, “Incoherent frequency modulated cw optical reflectometry with centimeter resolution,” Appl. Opt. 29, 1323–1326 (1990).
    [CrossRef] [PubMed]
  21. R. I. MacDonald, B. E. Swekla, “Frequency domain optical reflectometer using a GaAs optoelectronic mixer,” Appl. Opt. 29, 4578–4582 (1990).
    [CrossRef] [PubMed]
  22. R. L. Jungerman, D. W. Dolfi, “Frequency domain optical network analysis using intergated optics,” IEEE J. Quantum Electron. 27, 580–587 (1991).
    [CrossRef]
  23. N. A. Peppas, Polymers, Vol. 2 of Hydrogels in Medicine and Pharmacy (CRC Press, Boca Raton, Fla., 1987), pp. 96–111.

1997 (3)

J. P. von der Weid, R. Passy, G. Mussi, N. Gisin, “On the characterisation of optical fibre network components with optical frequency domain reflectometry,” J. Lightwave Technol. 15, 1131–1141 (1997).
[CrossRef]

K. Tsuji, K. Shimizu, T. Horiguchi, Y. Koyamada, “Spatial resolution improvement in long range coherent optical frequency domain reflectometry by frequency sweep linearisation,” Electron. Lett. 33, 408–410 (1997).
[CrossRef]

K. Tsuji, K. Shimizu, T. Horiguchi, Y. Koyamada, “Coherent optical frequency domain reflectometry using phase decorrelated reflected and reference waves,” J. Lightwave Technol. 15, 1102–1109 (1997).
[CrossRef]

1996 (1)

G. Mussi, N. Gisin, R. Passy, J. P. von der Weid, “-152.5 dB sensitivity high dynamic range optical frequency domain reflectometry,” Electron. Lett. 32, 926–927 (1996).
[CrossRef]

1994 (3)

1991 (1)

R. L. Jungerman, D. W. Dolfi, “Frequency domain optical network analysis using intergated optics,” IEEE J. Quantum Electron. 27, 580–587 (1991).
[CrossRef]

1990 (2)

1985 (2)

D. Uttamchandani, B. Culshaw, “Precision time domain reflectometry in optical fibre systems using a frequency modulated continuous wave ranging technique,” J. Lightwave Technol. LT3, 971–976 (1985).

S. A. Kingsley, D. E. N. Davies, “OFDR diagnostics for fibre and integrated-optic systems,” Electron. Lett. 21, 434–435 (1985).
[CrossRef]

1981 (2)

W. Eickhoff, R. Ulrich, “Optical frequency domain reflectometry in single mode fibre,” Appl. Phys. Lett. 39, 693–695 (1981).
[CrossRef]

R. I. MacDonald, “Frequency domain optical reflectometer,” Appl. Opt. 20, 1840–1844 (1981).
[CrossRef] [PubMed]

Anderson, B. L.

W. B. Spillman, P. L. Fuhr, B. L. Anderson, “Performance of integrated source/detector combinations for smart skins incoherent optical frequency domain reflectometry distributed fibre optic sensors,” in Fiber Optic Smart Structures and Skins, E. Udd, ed., Proc. SPIE986, 106–118 (1988).
[CrossRef]

Anndo, N.

Blaszyk, P. E.

D. A. Nolan, P. E. Blaszyk, E. Udd, “Optical fibres,” in Fibre Optic Sensors: An Introduction for Engineers and Scientists, E. Udd, ed. (Wiley, New York, 1991), pp. 9–36.

Claus, R. O.

A. MacLean, W. C. Michie, S. G. Pierce, G. Thursby, B. Culshaw, C. Moran, N. B. Graham, “Hydrogel/fiber optic sensor for distributed measurement of humidity and pH value,” in Smart Structures and Materials: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, Proc. SPIE3330, 134–144 (1998).
[CrossRef]

Culshaw, B.

D. Uttamchandani, B. Culshaw, “Precision time domain reflectometry in optical fibre systems using a frequency modulated continuous wave ranging technique,” J. Lightwave Technol. LT3, 971–976 (1985).

A. MacLean, W. C. Michie, S. G. Pierce, G. Thursby, B. Culshaw, C. Moran, N. B. Graham, “Hydrogel/fiber optic sensor for distributed measurement of humidity and pH value,” in Smart Structures and Materials: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, Proc. SPIE3330, 134–144 (1998).
[CrossRef]

T. Horiguchi, A. Rogers, W. C. Michie, G. Stewart, B. Culshaw, “Distributed sensors: recent developments,” in Optical Fibre Sensors: Applications, Analysis and Future Trends, J. Dakin, B. Culshaw, eds. (Artech House, Boston, Mass., 1997), Vol. 4, pp. 309–368.

Dakin, J. P.

J. P. Dakin, “Distributed optical fibre sensor systems,” in Optical Fibre Sensors: Systems and Applications, B. Culshaw, J. P. Dakin, eds. (Artech House, Boston, Mass., 1989), Vol. 2, pp. 575–598.

Davies, D. E. N.

S. A. Kingsley, D. E. N. Davies, “OFDR diagnostics for fibre and integrated-optic systems,” Electron. Lett. 21, 434–435 (1985).
[CrossRef]

Dolfi, D. W.

R. L. Jungerman, D. W. Dolfi, “Frequency domain optical network analysis using intergated optics,” IEEE J. Quantum Electron. 27, 580–587 (1991).
[CrossRef]

S. Venkatesh, D. W. Dolfi, “Incoherent frequency modulated cw optical reflectometry with centimeter resolution,” Appl. Opt. 29, 1323–1326 (1990).
[CrossRef] [PubMed]

Eickhoff, W.

W. Eickhoff, R. Ulrich, “Optical frequency domain reflectometry in single mode fibre,” Appl. Phys. Lett. 39, 693–695 (1981).
[CrossRef]

Fuhr, P. L.

W. B. Spillman, P. L. Fuhr, B. L. Anderson, “Performance of integrated source/detector combinations for smart skins incoherent optical frequency domain reflectometry distributed fibre optic sensors,” in Fiber Optic Smart Structures and Skins, E. Udd, ed., Proc. SPIE986, 106–118 (1988).
[CrossRef]

Funaba, T.

Garside, B.

B. Garside, “Advances in high-speed OTDR detection techniques,” in Optical Fibre Sensors: Components and Subsystems, B. Culshaw, J. P. Dakin, eds. (Artech House, Boston, Mass., 1996), Vol. 3, pp. 145–189.

Gilgen, H. H.

R. Passy, N. Gisin, J. P. von der Weid, H. H. Gilgen, “Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources,” J. Lightwave Technol. 12, 1622–1630 (1994).
[CrossRef]

Gisin, N.

J. P. von der Weid, R. Passy, G. Mussi, N. Gisin, “On the characterisation of optical fibre network components with optical frequency domain reflectometry,” J. Lightwave Technol. 15, 1131–1141 (1997).
[CrossRef]

G. Mussi, N. Gisin, R. Passy, J. P. von der Weid, “-152.5 dB sensitivity high dynamic range optical frequency domain reflectometry,” Electron. Lett. 32, 926–927 (1996).
[CrossRef]

R. Passy, N. Gisin, J. P. von der Weid, H. H. Gilgen, “Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources,” J. Lightwave Technol. 12, 1622–1630 (1994).
[CrossRef]

Graham, N. B.

A. MacLean, W. C. Michie, S. G. Pierce, G. Thursby, B. Culshaw, C. Moran, N. B. Graham, “Hydrogel/fiber optic sensor for distributed measurement of humidity and pH value,” in Smart Structures and Materials: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, Proc. SPIE3330, 134–144 (1998).
[CrossRef]

Horiguchi, T.

K. Tsuji, K. Shimizu, T. Horiguchi, Y. Koyamada, “Spatial resolution improvement in long range coherent optical frequency domain reflectometry by frequency sweep linearisation,” Electron. Lett. 33, 408–410 (1997).
[CrossRef]

K. Tsuji, K. Shimizu, T. Horiguchi, Y. Koyamada, “Coherent optical frequency domain reflectometry using phase decorrelated reflected and reference waves,” J. Lightwave Technol. 15, 1102–1109 (1997).
[CrossRef]

T. Horiguchi, A. Rogers, W. C. Michie, G. Stewart, B. Culshaw, “Distributed sensors: recent developments,” in Optical Fibre Sensors: Applications, Analysis and Future Trends, J. Dakin, B. Culshaw, eds. (Artech House, Boston, Mass., 1997), Vol. 4, pp. 309–368.

Ichimura, T.

Jackson, D. A.

Jungerman, R. L.

R. L. Jungerman, D. W. Dolfi, “Frequency domain optical network analysis using intergated optics,” IEEE J. Quantum Electron. 27, 580–587 (1991).
[CrossRef]

Kersey, A. D.

A. D. Kersey, “Distributed and multiplexed fibre optic sensing,” in Fibre Optic Sensors: An Introduction for Engineers and Scientists, E. Udd, ed. (Wiley, New York, 1991), pp. 325–368.

Kingsley, S. A.

S. A. Kingsley, D. E. N. Davies, “OFDR diagnostics for fibre and integrated-optic systems,” Electron. Lett. 21, 434–435 (1985).
[CrossRef]

Koyamada, Y.

K. Tsuji, K. Shimizu, T. Horiguchi, Y. Koyamada, “Coherent optical frequency domain reflectometry using phase decorrelated reflected and reference waves,” J. Lightwave Technol. 15, 1102–1109 (1997).
[CrossRef]

K. Tsuji, K. Shimizu, T. Horiguchi, Y. Koyamada, “Spatial resolution improvement in long range coherent optical frequency domain reflectometry by frequency sweep linearisation,” Electron. Lett. 33, 408–410 (1997).
[CrossRef]

MacDonald, R. I.

MacLean, A.

A. MacLean, W. C. Michie, S. G. Pierce, G. Thursby, B. Culshaw, C. Moran, N. B. Graham, “Hydrogel/fiber optic sensor for distributed measurement of humidity and pH value,” in Smart Structures and Materials: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, Proc. SPIE3330, 134–144 (1998).
[CrossRef]

Michie, W. C.

A. MacLean, W. C. Michie, S. G. Pierce, G. Thursby, B. Culshaw, C. Moran, N. B. Graham, “Hydrogel/fiber optic sensor for distributed measurement of humidity and pH value,” in Smart Structures and Materials: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, Proc. SPIE3330, 134–144 (1998).
[CrossRef]

T. Horiguchi, A. Rogers, W. C. Michie, G. Stewart, B. Culshaw, “Distributed sensors: recent developments,” in Optical Fibre Sensors: Applications, Analysis and Future Trends, J. Dakin, B. Culshaw, eds. (Artech House, Boston, Mass., 1997), Vol. 4, pp. 309–368.

Mitchell, G. L.

G. L. Mitchell, “Intensity-based and Fabry-Perot interferometer sensors,” in Fibre Optic Sensors: An Introduction for Engineers and Scientists, E. Udd, ed. (Wiley, New York, 1991), pp. 139–156.

Moran, C.

A. MacLean, W. C. Michie, S. G. Pierce, G. Thursby, B. Culshaw, C. Moran, N. B. Graham, “Hydrogel/fiber optic sensor for distributed measurement of humidity and pH value,” in Smart Structures and Materials: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, Proc. SPIE3330, 134–144 (1998).
[CrossRef]

Mussi, G.

J. P. von der Weid, R. Passy, G. Mussi, N. Gisin, “On the characterisation of optical fibre network components with optical frequency domain reflectometry,” J. Lightwave Technol. 15, 1131–1141 (1997).
[CrossRef]

G. Mussi, N. Gisin, R. Passy, J. P. von der Weid, “-152.5 dB sensitivity high dynamic range optical frequency domain reflectometry,” Electron. Lett. 32, 926–927 (1996).
[CrossRef]

Nolan, D. A.

D. A. Nolan, P. E. Blaszyk, E. Udd, “Optical fibres,” in Fibre Optic Sensors: An Introduction for Engineers and Scientists, E. Udd, ed. (Wiley, New York, 1991), pp. 9–36.

Odagiri, Y.

Passy, R.

J. P. von der Weid, R. Passy, G. Mussi, N. Gisin, “On the characterisation of optical fibre network components with optical frequency domain reflectometry,” J. Lightwave Technol. 15, 1131–1141 (1997).
[CrossRef]

G. Mussi, N. Gisin, R. Passy, J. P. von der Weid, “-152.5 dB sensitivity high dynamic range optical frequency domain reflectometry,” Electron. Lett. 32, 926–927 (1996).
[CrossRef]

R. Passy, N. Gisin, J. P. von der Weid, H. H. Gilgen, “Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources,” J. Lightwave Technol. 12, 1622–1630 (1994).
[CrossRef]

Pechstedt, R. D.

Peppas, N. A.

N. A. Peppas, Polymers, Vol. 2 of Hydrogels in Medicine and Pharmacy (CRC Press, Boca Raton, Fla., 1987), pp. 96–111.

Pierce, S. G.

A. MacLean, W. C. Michie, S. G. Pierce, G. Thursby, B. Culshaw, C. Moran, N. B. Graham, “Hydrogel/fiber optic sensor for distributed measurement of humidity and pH value,” in Smart Structures and Materials: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, Proc. SPIE3330, 134–144 (1998).
[CrossRef]

Rathod, R.

Rogers, A.

T. Horiguchi, A. Rogers, W. C. Michie, G. Stewart, B. Culshaw, “Distributed sensors: recent developments,” in Optical Fibre Sensors: Applications, Analysis and Future Trends, J. Dakin, B. Culshaw, eds. (Artech House, Boston, Mass., 1997), Vol. 4, pp. 309–368.

Shimizu, K.

K. Tsuji, K. Shimizu, T. Horiguchi, Y. Koyamada, “Coherent optical frequency domain reflectometry using phase decorrelated reflected and reference waves,” J. Lightwave Technol. 15, 1102–1109 (1997).
[CrossRef]

K. Tsuji, K. Shimizu, T. Horiguchi, Y. Koyamada, “Spatial resolution improvement in long range coherent optical frequency domain reflectometry by frequency sweep linearisation,” Electron. Lett. 33, 408–410 (1997).
[CrossRef]

Spillman, W. B.

A. MacLean, W. C. Michie, S. G. Pierce, G. Thursby, B. Culshaw, C. Moran, N. B. Graham, “Hydrogel/fiber optic sensor for distributed measurement of humidity and pH value,” in Smart Structures and Materials: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, Proc. SPIE3330, 134–144 (1998).
[CrossRef]

W. B. Spillman, P. L. Fuhr, B. L. Anderson, “Performance of integrated source/detector combinations for smart skins incoherent optical frequency domain reflectometry distributed fibre optic sensors,” in Fiber Optic Smart Structures and Skins, E. Udd, ed., Proc. SPIE986, 106–118 (1988).
[CrossRef]

Stewart, G.

T. Horiguchi, A. Rogers, W. C. Michie, G. Stewart, B. Culshaw, “Distributed sensors: recent developments,” in Optical Fibre Sensors: Applications, Analysis and Future Trends, J. Dakin, B. Culshaw, eds. (Artech House, Boston, Mass., 1997), Vol. 4, pp. 309–368.

Swekla, B. E.

Tan-no, N.

Thursby, G.

A. MacLean, W. C. Michie, S. G. Pierce, G. Thursby, B. Culshaw, C. Moran, N. B. Graham, “Hydrogel/fiber optic sensor for distributed measurement of humidity and pH value,” in Smart Structures and Materials: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, Proc. SPIE3330, 134–144 (1998).
[CrossRef]

Tsuji, K.

K. Tsuji, K. Shimizu, T. Horiguchi, Y. Koyamada, “Spatial resolution improvement in long range coherent optical frequency domain reflectometry by frequency sweep linearisation,” Electron. Lett. 33, 408–410 (1997).
[CrossRef]

K. Tsuji, K. Shimizu, T. Horiguchi, Y. Koyamada, “Coherent optical frequency domain reflectometry using phase decorrelated reflected and reference waves,” J. Lightwave Technol. 15, 1102–1109 (1997).
[CrossRef]

Udd, E.

D. A. Nolan, P. E. Blaszyk, E. Udd, “Optical fibres,” in Fibre Optic Sensors: An Introduction for Engineers and Scientists, E. Udd, ed. (Wiley, New York, 1991), pp. 9–36.

Ulrich, R.

W. Eickhoff, R. Ulrich, “Optical frequency domain reflectometry in single mode fibre,” Appl. Phys. Lett. 39, 693–695 (1981).
[CrossRef]

Uttamchandani, D.

D. Uttamchandani, B. Culshaw, “Precision time domain reflectometry in optical fibre systems using a frequency modulated continuous wave ranging technique,” J. Lightwave Technol. LT3, 971–976 (1985).

Venkatesh, S.

von der Weid, J. P.

J. P. von der Weid, R. Passy, G. Mussi, N. Gisin, “On the characterisation of optical fibre network components with optical frequency domain reflectometry,” J. Lightwave Technol. 15, 1131–1141 (1997).
[CrossRef]

G. Mussi, N. Gisin, R. Passy, J. P. von der Weid, “-152.5 dB sensitivity high dynamic range optical frequency domain reflectometry,” Electron. Lett. 32, 926–927 (1996).
[CrossRef]

R. Passy, N. Gisin, J. P. von der Weid, H. H. Gilgen, “Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources,” J. Lightwave Technol. 12, 1622–1630 (1994).
[CrossRef]

Webb, D. J.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

W. Eickhoff, R. Ulrich, “Optical frequency domain reflectometry in single mode fibre,” Appl. Phys. Lett. 39, 693–695 (1981).
[CrossRef]

Electron. Lett. (3)

S. A. Kingsley, D. E. N. Davies, “OFDR diagnostics for fibre and integrated-optic systems,” Electron. Lett. 21, 434–435 (1985).
[CrossRef]

G. Mussi, N. Gisin, R. Passy, J. P. von der Weid, “-152.5 dB sensitivity high dynamic range optical frequency domain reflectometry,” Electron. Lett. 32, 926–927 (1996).
[CrossRef]

K. Tsuji, K. Shimizu, T. Horiguchi, Y. Koyamada, “Spatial resolution improvement in long range coherent optical frequency domain reflectometry by frequency sweep linearisation,” Electron. Lett. 33, 408–410 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. L. Jungerman, D. W. Dolfi, “Frequency domain optical network analysis using intergated optics,” IEEE J. Quantum Electron. 27, 580–587 (1991).
[CrossRef]

J. Lightwave Technol. (4)

K. Tsuji, K. Shimizu, T. Horiguchi, Y. Koyamada, “Coherent optical frequency domain reflectometry using phase decorrelated reflected and reference waves,” J. Lightwave Technol. 15, 1102–1109 (1997).
[CrossRef]

J. P. von der Weid, R. Passy, G. Mussi, N. Gisin, “On the characterisation of optical fibre network components with optical frequency domain reflectometry,” J. Lightwave Technol. 15, 1131–1141 (1997).
[CrossRef]

R. Passy, N. Gisin, J. P. von der Weid, H. H. Gilgen, “Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources,” J. Lightwave Technol. 12, 1622–1630 (1994).
[CrossRef]

D. Uttamchandani, B. Culshaw, “Precision time domain reflectometry in optical fibre systems using a frequency modulated continuous wave ranging technique,” J. Lightwave Technol. LT3, 971–976 (1985).

Opt. Lett. (2)

Other (9)

N. A. Peppas, Polymers, Vol. 2 of Hydrogels in Medicine and Pharmacy (CRC Press, Boca Raton, Fla., 1987), pp. 96–111.

D. A. Nolan, P. E. Blaszyk, E. Udd, “Optical fibres,” in Fibre Optic Sensors: An Introduction for Engineers and Scientists, E. Udd, ed. (Wiley, New York, 1991), pp. 9–36.

G. L. Mitchell, “Intensity-based and Fabry-Perot interferometer sensors,” in Fibre Optic Sensors: An Introduction for Engineers and Scientists, E. Udd, ed. (Wiley, New York, 1991), pp. 139–156.

T. Horiguchi, A. Rogers, W. C. Michie, G. Stewart, B. Culshaw, “Distributed sensors: recent developments,” in Optical Fibre Sensors: Applications, Analysis and Future Trends, J. Dakin, B. Culshaw, eds. (Artech House, Boston, Mass., 1997), Vol. 4, pp. 309–368.

A. MacLean, W. C. Michie, S. G. Pierce, G. Thursby, B. Culshaw, C. Moran, N. B. Graham, “Hydrogel/fiber optic sensor for distributed measurement of humidity and pH value,” in Smart Structures and Materials: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, Proc. SPIE3330, 134–144 (1998).
[CrossRef]

J. P. Dakin, “Distributed optical fibre sensor systems,” in Optical Fibre Sensors: Systems and Applications, B. Culshaw, J. P. Dakin, eds. (Artech House, Boston, Mass., 1989), Vol. 2, pp. 575–598.

A. D. Kersey, “Distributed and multiplexed fibre optic sensing,” in Fibre Optic Sensors: An Introduction for Engineers and Scientists, E. Udd, ed. (Wiley, New York, 1991), pp. 325–368.

B. Garside, “Advances in high-speed OTDR detection techniques,” in Optical Fibre Sensors: Components and Subsystems, B. Culshaw, J. P. Dakin, eds. (Artech House, Boston, Mass., 1996), Vol. 3, pp. 145–189.

W. B. Spillman, P. L. Fuhr, B. L. Anderson, “Performance of integrated source/detector combinations for smart skins incoherent optical frequency domain reflectometry distributed fibre optic sensors,” in Fiber Optic Smart Structures and Skins, E. Udd, ed., Proc. SPIE986, 106–118 (1988).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1

Basic geometry for OFDR modeling.

Fig. 2
Fig. 2

Variation of |P T | with frequency and αL product for small αL showing the high depth of modulation.

Fig. 3
Fig. 3

Variation of |P T | with frequency and αL product for large αL showing a reduction in the modulation depth with increasing αL.

Fig. 4
Fig. 4

Modulation depth as a function of the αL product.

Fig. 5
Fig. 5

Model output and spectrum.

Fig. 6
Fig. 6

Squared, filtered, and decimated signal and spectrum.

Fig. 7
Fig. 7

Change in beat frequency spectrum as a function of excess loss.

Fig. 8
Fig. 8

Change in beat frequency in the presence of excess loss.

Fig. 9
Fig. 9

Beat frequency spectra for systems with Fresnel reflections.

Fig. 10
Fig. 10

Experimental incoherent optical frequency-domain reflectometer.

Fig. 11
Fig. 11

Experimental and theoretical beat signals from the IOFDR system for three different fiber lengths.

Fig. 12
Fig. 12

Experimentally measured beat frequencies. The theoretical plot was generated from Eq. (8).

Fig. 13
Fig. 13

Experimentally measured modulation depths as a function of the αL product. The theoretical plot was generated from Eq. (9).

Fig. 14
Fig. 14

Experimental microbend loss plates.

Fig. 15
Fig. 15

OTDR traces showing increasing microbend loss in a 2-m section of a 765-m total length of optical fiber.

Fig. 16
Fig. 16

Model output beat frequencies for increasing microbend loss.

Fig. 17
Fig. 17

Experimentally measured beat frequencies for increasing microbend loss.

Fig. 18
Fig. 18

Construction of a hydrogel sensor showing swelling in response to water. GRP, glass-reinforced plastic.

Fig. 19
Fig. 19

OTDR traces for wetted sections of hydrogel cable.

Fig. 20
Fig. 20

Beat frequency spectra for hydrogel cable.

Tables (2)

Tables Icon

Table 1 Experimentally Measured Beat Frequencies and Modulation Depths

Tables Icon

Table 2 Summary of Hydrogel Cable Results

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

dPA=Poα1A exp-2α1xexp-2ikxdx,
A=0.25NAn12,
dPB=Poα1A exp-2α1x1×exp-2α1x-x1exp-2ikxdx,
dPC=Poα1A exp-2α1x1exp-2α2x2-x1×exp-2α1x-x2exp-2ikxdx.
PT=Poα1A2α1+ik1-exp-2x1α1+ik+Poα1A2α1+ik exp2α2x1-α1x1exp-2x1α2+ik-exp-2x2α2+ik+Poα1A2α1+ik exp2x1-x2α2-α1exp-2x2α1+ik-exp-2Lα1+ik+PoB exp-2x1α1exp-2x2-x1α2exp-2xfn-x2α1exp-2ikxfnxfn>x2PoB exp-2x1α1exp-2ikxfnxfn<x1,
PT=Poα1A2α1+ik1-exp-2Lα1+ik.
|PT|2=PT*PT=Poα1A24α12+k21+exp-4α1L-2 exp-2α1Lcos2Lk.
cos2Lk=cos2L 2πftvg=cos2π 2Lvgdfdt t.
M=2 exp-2α1L1+exp-4α1L.
α1L  1,  M1,  α1L>1,  M2 exp-2α1L.
α=-ln 10-γ/101000,
pn2=2epΔf,

Metrics