Abstract

We performed a direct side-by-side comparison of a Shack–Hartmann wave-front sensor and a phase-shifting interferometer for the purpose of characterizing large optics. An expansion telescope of our own design allowed us to measure the surface figure of a 400-mm-square mirror with both instruments simultaneously. The Shack–Hartmann sensor produced data that closely matched the interferometer data over spatial scales appropriate for the lenslet spacing, and much of the <20-nm rms systematic difference between the two measurements was due to diffraction artifacts that were present in the interferometer data but not in the Shack–Hartmann sensor data. The results suggest that Shack–Hartmann sensors could replace phase-shifting interferometers for many applications, with particular advantages for large-optic metrology.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription