Abstract

An x-ray interferometer (XRI), which takes the lattice spacing of silicon as a length unit, can measure displacement with subnanometer resolution. A scanning probe microscope that combines an XRI and a scanning-tunnel microscope is designed to measure pitch. Experimental results have proved the feasibility of the design.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. G. Chetwynd, N. O. Krylova, S. T. Smith, “Metrological x-ray interferometry in the micrometer region,” Nanotechnology 7, 1–12 (1996).
    [CrossRef]
  2. P. Becker, G. Mana, “The lattice parameter of silicon: a survey,” Metrologia 31, 203–209 (1994).
    [CrossRef]
  3. P. Seyfrid, P. Becker, P. Kozdon, “A determination of the Avogadro constant,” Z. Phys. B 87, 289–298 (1992).
    [CrossRef]
  4. G. Basile, “A measurement of the silicon (220)-lattice spacing,” Phys. Rev. Lett. 72, 3133–3136 (1994).
    [CrossRef] [PubMed]
  5. Y. R. Zhou, Semiconductor Materials (Beijing Institute of Technology Press, Beijing, 1992), pp. 347–356.
  6. C. L. Bai, STM and Its Applications (Shanghai Science and Technology, Shanghai, 1991), pp. 11–12.
  7. S. J. Huang, Digital Signal Processing and Its Application (Defence Industry Press, Beijing, 1982), pp. 12–25.

1996 (1)

D. G. Chetwynd, N. O. Krylova, S. T. Smith, “Metrological x-ray interferometry in the micrometer region,” Nanotechnology 7, 1–12 (1996).
[CrossRef]

1994 (2)

P. Becker, G. Mana, “The lattice parameter of silicon: a survey,” Metrologia 31, 203–209 (1994).
[CrossRef]

G. Basile, “A measurement of the silicon (220)-lattice spacing,” Phys. Rev. Lett. 72, 3133–3136 (1994).
[CrossRef] [PubMed]

1992 (1)

P. Seyfrid, P. Becker, P. Kozdon, “A determination of the Avogadro constant,” Z. Phys. B 87, 289–298 (1992).
[CrossRef]

Bai, C. L.

C. L. Bai, STM and Its Applications (Shanghai Science and Technology, Shanghai, 1991), pp. 11–12.

Basile, G.

G. Basile, “A measurement of the silicon (220)-lattice spacing,” Phys. Rev. Lett. 72, 3133–3136 (1994).
[CrossRef] [PubMed]

Becker, P.

P. Becker, G. Mana, “The lattice parameter of silicon: a survey,” Metrologia 31, 203–209 (1994).
[CrossRef]

P. Seyfrid, P. Becker, P. Kozdon, “A determination of the Avogadro constant,” Z. Phys. B 87, 289–298 (1992).
[CrossRef]

Chetwynd, D. G.

D. G. Chetwynd, N. O. Krylova, S. T. Smith, “Metrological x-ray interferometry in the micrometer region,” Nanotechnology 7, 1–12 (1996).
[CrossRef]

Huang, S. J.

S. J. Huang, Digital Signal Processing and Its Application (Defence Industry Press, Beijing, 1982), pp. 12–25.

Kozdon, P.

P. Seyfrid, P. Becker, P. Kozdon, “A determination of the Avogadro constant,” Z. Phys. B 87, 289–298 (1992).
[CrossRef]

Krylova, N. O.

D. G. Chetwynd, N. O. Krylova, S. T. Smith, “Metrological x-ray interferometry in the micrometer region,” Nanotechnology 7, 1–12 (1996).
[CrossRef]

Mana, G.

P. Becker, G. Mana, “The lattice parameter of silicon: a survey,” Metrologia 31, 203–209 (1994).
[CrossRef]

Seyfrid, P.

P. Seyfrid, P. Becker, P. Kozdon, “A determination of the Avogadro constant,” Z. Phys. B 87, 289–298 (1992).
[CrossRef]

Smith, S. T.

D. G. Chetwynd, N. O. Krylova, S. T. Smith, “Metrological x-ray interferometry in the micrometer region,” Nanotechnology 7, 1–12 (1996).
[CrossRef]

Zhou, Y. R.

Y. R. Zhou, Semiconductor Materials (Beijing Institute of Technology Press, Beijing, 1992), pp. 347–356.

Metrologia (1)

P. Becker, G. Mana, “The lattice parameter of silicon: a survey,” Metrologia 31, 203–209 (1994).
[CrossRef]

Nanotechnology (1)

D. G. Chetwynd, N. O. Krylova, S. T. Smith, “Metrological x-ray interferometry in the micrometer region,” Nanotechnology 7, 1–12 (1996).
[CrossRef]

Phys. Rev. Lett. (1)

G. Basile, “A measurement of the silicon (220)-lattice spacing,” Phys. Rev. Lett. 72, 3133–3136 (1994).
[CrossRef] [PubMed]

Z. Phys. B (1)

P. Seyfrid, P. Becker, P. Kozdon, “A determination of the Avogadro constant,” Z. Phys. B 87, 289–298 (1992).
[CrossRef]

Other (3)

Y. R. Zhou, Semiconductor Materials (Beijing Institute of Technology Press, Beijing, 1992), pp. 347–356.

C. L. Bai, STM and Its Applications (Shanghai Science and Technology, Shanghai, 1991), pp. 11–12.

S. J. Huang, Digital Signal Processing and Its Application (Defence Industry Press, Beijing, 1982), pp. 12–25.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Principle of an x-ray interferometer: S, splitter; M, mirror; A, analyzer; O, forward-diffracted beam; H, diffracted beam.

Fig. 2
Fig. 2

Block diagram of the pitch measurement system consisting of an XRI and a STM. (a) Structure of the measurement system, (b) detailed diagram of the measurement principle: ADC, analog-to-digital converter; DSP, digital signal processor; DAC, digital-to-analog converter; HV, high-voltage; PZT, piezoelectric transducer; I/U, current-to-voltage transformer.

Fig. 3
Fig. 3

Measurement loop of the experimental setup.

Fig. 4
Fig. 4

Cross section of the applied sample with pitch and height of 300 and 120 nm, respectively.

Fig. 5
Fig. 5

STM and XRI output signals of the pitch measurement system. Upper and lower curves, x-ray fringes and STM signal, respectively. Inset, enlarged x-ray fringes.

Tables (2)

Tables Icon

Table 1 Experimental Pitch Values (nm)

Tables Icon

Table 2 Uncertainty Budget of Silicon Lattice Spacing

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ΔL=0.01922+0.12+0.0452+0.222+0.22+0.00721/20.32 nm.

Metrics