Abstract

We describe image testing, surface metrology, and modeling of telescope mirrors (0.5 m in diameter, f/4.3) for the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. Laboratory image testing of wavelengths in the visible, vacuum, and midultraviolet validated a theoretical analysis by use of the Optical Surface Analysis Code (OSAC). Our modeling is based on surface metrology, including measurements of figure, midfrequency error, and microroughness. This combination of metrology, out-of-band performance testing, and modeling verified that the mirrors would meet mission requirements. We use OSAC to predict the FUSE telescope’s far-ultraviolet (90–120-nm) point-spread function and assess its effect on instrument efficiency. The mirrors have a 90% encircled energy diameter of 1.5 arc sec at λ = 100 nm. Including the effects of spacecraft pointing error, the mirrors have a predicted average slit transmission at λ = 100 nm of approximately 87% and 96% for the 1.25- and 4-arc sec-wide spectrograph slits, respectively, where the required transmissions are 50% and 95%.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. W. Moos et al., “Overview of the Far Ultraviolet Spectroscopic Explorer mission,” Astrophys. J. (in press).
  2. D. J. Sahnow, S. D. Friedman, H. W. Moos, J. C. Green, O. H. Siegmund, “Preliminary performance estimates for the Far Ultraviolet Spectroscopic Explorer (FUSE),” in Space Telescopes and Instruments V, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE3356, 552–560 (1998).
    [CrossRef]
  3. D. J. Sahnow et al., “On-orbit performance of the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite,” Astrophys. J. (in press).
  4. M. J. Kennedy, S. D. Friedman, R. H. Barkhouser, J. Hampton, P. Nikulla, “Design of the Far Ultraviolet Spectroscopic Explorer mirror assemblies,” in Space Telescopes and Instruments IV, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE2807, 172–183 (1996).
    [CrossRef]
  5. W. R. Hunter, J. F. Osantowski, G. Hass, “Reflectance of aluminum overcoated with MgF2 and LiF in the wavelength region from 1600 Å to 300 Å at various angles of incidence,” Appl. Opt. 10, 540–544 (1971).
    [CrossRef] [PubMed]
  6. R. A. M. Keski-Kuha, J. F. Osantowski, H. Herzig, J. S. Gum, A. R. Toft, “Normal incidence reflectance of ion beam deposited SiC films in the EUV,” Appl. Opt. 27, 2815–2816 (1988).
    [CrossRef] [PubMed]
  7. R. A. M. Keski-Kuha, J. I. Larruquert, J. S. Gum, C. M. Fleetwood, “Optical coatings and materials for ultraviolet space astronomy,” in Ultraviolet-Optical Space Astronomy Beyond HST, J. A. Morse, J. M. Shull, A. L. Kinney, eds., Astronomical Society of the Pacific Conference Series164, 406–419 (1999).
  8. FUSE Instrument and Science Operations Team, “FUSE instrument requirements document,” (Johns Hopkins University, Baltimore, Md., 1996).
  9. Silicon Valley Group, Inc., Tinsley Division, Tinsley Laboratories, 3900 Lakeside Drive, Richmond, Calif. 94806.
  10. R. G. Ohl, R. H. Barkhouser, M. J. Kennedy, S. D. Friedman, “Assembly and test-induced distortions of the FUSE mirrors—lessons learned,” in Space Telescopes and Instruments V, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE3356, 854–865 (1998).
    [CrossRef]
  11. R. J. Noll, P. Glenn, J. F. Osantowski, “Optical surface analysis code (OSAC),” in Scattering in Optical Materials II, S. Musikant, ed., Proc. SPIE62, 78–82 (1983).
    [CrossRef]
  12. T. T. Saha, D. B. Leviton, P. Glenn, “Performance of ion-figured silicon carbide SUMER telescope mirror in the vacuum ultraviolet,” Appl. Opt. 35, 1742–1750 (1996).
    [CrossRef] [PubMed]
  13. R. G. Ohl, S. D. Friedman, T. T. Saha, R. H. Barkhouser, H. W. Moos, “Optical testing of the Far Ultraviolet Spectroscopic Explorer primary mirrors and predicted on-orbit performance,” in EUV, X-Ray and Gamma-Ray Instrumentation for Astronomy X, O. H. Siegmund, K. A. Flanagan, eds., Proc. SPIE3765, 482–494 (1999).
    [CrossRef]
  14. J. E. Harvey, A. Kotha, “Scattering effects from residual optical fabrication errors,” in International Conference on Optical Fabrication and Testing, T. Kasai, ed., Proc. SPIE2576, 155–174 (1995).
    [CrossRef]
  15. J. C. Stover, Optical Scattering, Measurement and Analysis, Vol. PM24 of SPIE Monograph Series (SPIE Press, Bellingham, Wash., 1995).
  16. J. M. Bennett, L. Mattson, Introduction to Surface Roughness and Scattering, 2nd ed. (Optical Society of America, Washington, D.C., 1999), pp. 62–86.
  17. P. Glenn, “Metrology data processor (metdat),” (NASA Goddard Space Flight Center, Greenbelt, Md., 1994).
  18. J. E. Harvey, “Final report for FUSE telescope performance predictions,” (Johns Hopkins University, Baltimore, Md., 1996).
  19. R. H. Barkhouser, R. G. Ohl, “Interferometric alignment and figure testing of large (0.5 m) off-axis parabolic mirrors in a challenging cleanroom environment,” in Optical Manufacturing and Testing III, H. P. Stahl, ed., Proc. SPIE3782, 601–614 (1999).
    [CrossRef]
  20. P. Glenn, “Lambda-over-thousand metrology results for steep spheres using a curvature profiling technique,” in Advanced Optical Manufacturing and Testing II, V. J. Doherty, ed., Proc. SPIE1531, 54–61 (1991).
    [CrossRef]
  21. R. A. M. Keski-Kuha, NASA Goddard Space Flight Center, Greenbelt, Md. (personal communication, 2000).
  22. R. A. M. Keski-Kuha, G. M. Blumenstock, C. M. Fleetwood, D.-R. Schmitt, “Effects of space exposure on ion-beam-deposited silicon-carbide and boron-carbide coatings,” Appl. Opt. 37, 8038–8042 (1998).
    [CrossRef]
  23. J. F. Osantowski, R. A. M. Keski-Kuha, H. Herzig, A. R. Toft, J. S. Gum, C. M. Fleetwood, “Optical coating technology for the EUV,” Adv. Space Res. 11, 185–201 (1991).
    [CrossRef]
  24. S. J. Conard, R. H. Barkhouser (Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218), S. D. Friedman, J. W. Kruk, H. W. Moos, R. G. Ohl, D. J. Sahnow, are preparing a manuscript to be called “The Far Ultraviolet Spectroscopic Explorer optical system: lessons learned.”
  25. A ray trace calculation assuming a perfectly parabolic mirror with this offset from nominal focus yields a rms spot radius of 0.56 µm.
  26. WYKO Model 400 interferometer, Veeco Corporation (formerly WYKO Corporation), 2650 East Elvira Road, Tucson, Ariz. 85706.
  27. WYKO Model TOPO 3-D interferometer, Veeco Corporation (formerly WYKO Corporation), 2650 East Elvira Road, Tucson, Ariz. 85706.
  28. Nu-Tek Precision Optical Corporation, 1202 Technology Drive, Suites L-P, Aberdeen, Md. 21001.
  29. J. Radon, “Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten,” Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math.–Phy. Klasse 69, 262–277 (1917).
  30. S. W. Rowland, “Computer implementation of image reconstruction formulas,” in Image Reconstruction from Projections—Implementation and Applications, Vol. 32 of Topics in Applied Physics, G. T. Herman, ed. (Springer-Verlag, New York, 1979), pp. 9–79.
    [CrossRef]
  31. R. N. Bracewell, Two-Dimensional Imaging (Prentice-Hall, Englewood Cliffs, N.J., 1995), pp. 505–544.
  32. R. J. Noll, P. Glenn, “Mirror surface autocovariance functions and their associated visible scattering,” Appl. Opt. 21, 1824–1838 (1982).
    [CrossRef] [PubMed]
  33. A. Slomba, R. Babish, P. Glenn, “Mirror surface metrology and polishing for AXAF/TMA,” in X-Ray Instrumentation in Astronomy, J. L. Culhane, ed., Proc. SPIE597, 40–54 (1985).
    [CrossRef]
  34. T. T. Saha, ed., Optical Surface Analysis Code (OSAC), User’s Manual (NASA Goddard Space Flight Center, Greenbelt, Md., 1993), pp. 5-74–5-76.
  35. S. J. Conard, K. W. Redman, R. H. Barkhouser, J. A. Johnson, “Optical alignment of the Far Ultraviolet Spectroscopic Explorer,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy X, O. H. Siegmund, K. A. Flanagan, eds., Proc. SPIE3765, 618–629 (1999).
    [CrossRef]
  36. A. N. Cha, D. J. Sahnow, H. W. Moos, “Processing and interpretation of pre-flight FUSE spectra,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy X, O. H. Siegmund, K. A. Flanagan, eds., Proc. SPIE3765, 495–505 (1999).
    [CrossRef]
  37. P. Glenn, “Space telescope performance prediction using the optical surface analysis code (OSAC),” Opt. Eng. 25, 1026–1033 (1986).
    [CrossRef]
  38. T. T. Saha, D. A. Thomas, J. F. Osantowski, “OSAC analysis of the Far Ultraviolet Spectroscopic Explorer (FUSE) telescope,” in Grazing Incidence Optics, J. F. Osantowski, L. P. Van Speybroeck, eds., Proc. SPIE640, 79–84 (1986).
    [CrossRef]
  39. M. D. Freeman, J. P. Hughes, L. P. Van Speybroeck, J. W. Bilbro, M. C. Weisskopf, “Image analysis of the AXAF VETA-I x-ray mirror,” in Multilayer and Grazing Incidence X-Ray/EUV Optics for Astronomy and Projection Lithography, R. B. Hoover, A. B. Walker, eds., Proc. SPIE1742, 136–151 (1992).
    [CrossRef]

1998 (1)

1996 (1)

1991 (1)

J. F. Osantowski, R. A. M. Keski-Kuha, H. Herzig, A. R. Toft, J. S. Gum, C. M. Fleetwood, “Optical coating technology for the EUV,” Adv. Space Res. 11, 185–201 (1991).
[CrossRef]

1988 (1)

1986 (1)

P. Glenn, “Space telescope performance prediction using the optical surface analysis code (OSAC),” Opt. Eng. 25, 1026–1033 (1986).
[CrossRef]

1982 (1)

1971 (1)

1917 (1)

J. Radon, “Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten,” Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math.–Phy. Klasse 69, 262–277 (1917).

Babish, R.

A. Slomba, R. Babish, P. Glenn, “Mirror surface metrology and polishing for AXAF/TMA,” in X-Ray Instrumentation in Astronomy, J. L. Culhane, ed., Proc. SPIE597, 40–54 (1985).
[CrossRef]

Barkhouser, R. H.

R. H. Barkhouser, R. G. Ohl, “Interferometric alignment and figure testing of large (0.5 m) off-axis parabolic mirrors in a challenging cleanroom environment,” in Optical Manufacturing and Testing III, H. P. Stahl, ed., Proc. SPIE3782, 601–614 (1999).
[CrossRef]

M. J. Kennedy, S. D. Friedman, R. H. Barkhouser, J. Hampton, P. Nikulla, “Design of the Far Ultraviolet Spectroscopic Explorer mirror assemblies,” in Space Telescopes and Instruments IV, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE2807, 172–183 (1996).
[CrossRef]

S. J. Conard, K. W. Redman, R. H. Barkhouser, J. A. Johnson, “Optical alignment of the Far Ultraviolet Spectroscopic Explorer,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy X, O. H. Siegmund, K. A. Flanagan, eds., Proc. SPIE3765, 618–629 (1999).
[CrossRef]

S. J. Conard, R. H. Barkhouser (Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218), S. D. Friedman, J. W. Kruk, H. W. Moos, R. G. Ohl, D. J. Sahnow, are preparing a manuscript to be called “The Far Ultraviolet Spectroscopic Explorer optical system: lessons learned.”

R. G. Ohl, R. H. Barkhouser, M. J. Kennedy, S. D. Friedman, “Assembly and test-induced distortions of the FUSE mirrors—lessons learned,” in Space Telescopes and Instruments V, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE3356, 854–865 (1998).
[CrossRef]

R. G. Ohl, S. D. Friedman, T. T. Saha, R. H. Barkhouser, H. W. Moos, “Optical testing of the Far Ultraviolet Spectroscopic Explorer primary mirrors and predicted on-orbit performance,” in EUV, X-Ray and Gamma-Ray Instrumentation for Astronomy X, O. H. Siegmund, K. A. Flanagan, eds., Proc. SPIE3765, 482–494 (1999).
[CrossRef]

Bennett, J. M.

J. M. Bennett, L. Mattson, Introduction to Surface Roughness and Scattering, 2nd ed. (Optical Society of America, Washington, D.C., 1999), pp. 62–86.

Bilbro, J. W.

M. D. Freeman, J. P. Hughes, L. P. Van Speybroeck, J. W. Bilbro, M. C. Weisskopf, “Image analysis of the AXAF VETA-I x-ray mirror,” in Multilayer and Grazing Incidence X-Ray/EUV Optics for Astronomy and Projection Lithography, R. B. Hoover, A. B. Walker, eds., Proc. SPIE1742, 136–151 (1992).
[CrossRef]

Blumenstock, G. M.

Bracewell, R. N.

R. N. Bracewell, Two-Dimensional Imaging (Prentice-Hall, Englewood Cliffs, N.J., 1995), pp. 505–544.

Cha, A. N.

A. N. Cha, D. J. Sahnow, H. W. Moos, “Processing and interpretation of pre-flight FUSE spectra,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy X, O. H. Siegmund, K. A. Flanagan, eds., Proc. SPIE3765, 495–505 (1999).
[CrossRef]

Conard, S. J.

S. J. Conard, R. H. Barkhouser (Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218), S. D. Friedman, J. W. Kruk, H. W. Moos, R. G. Ohl, D. J. Sahnow, are preparing a manuscript to be called “The Far Ultraviolet Spectroscopic Explorer optical system: lessons learned.”

S. J. Conard, K. W. Redman, R. H. Barkhouser, J. A. Johnson, “Optical alignment of the Far Ultraviolet Spectroscopic Explorer,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy X, O. H. Siegmund, K. A. Flanagan, eds., Proc. SPIE3765, 618–629 (1999).
[CrossRef]

Fleetwood, C. M.

R. A. M. Keski-Kuha, G. M. Blumenstock, C. M. Fleetwood, D.-R. Schmitt, “Effects of space exposure on ion-beam-deposited silicon-carbide and boron-carbide coatings,” Appl. Opt. 37, 8038–8042 (1998).
[CrossRef]

J. F. Osantowski, R. A. M. Keski-Kuha, H. Herzig, A. R. Toft, J. S. Gum, C. M. Fleetwood, “Optical coating technology for the EUV,” Adv. Space Res. 11, 185–201 (1991).
[CrossRef]

R. A. M. Keski-Kuha, J. I. Larruquert, J. S. Gum, C. M. Fleetwood, “Optical coatings and materials for ultraviolet space astronomy,” in Ultraviolet-Optical Space Astronomy Beyond HST, J. A. Morse, J. M. Shull, A. L. Kinney, eds., Astronomical Society of the Pacific Conference Series164, 406–419 (1999).

Freeman, M. D.

M. D. Freeman, J. P. Hughes, L. P. Van Speybroeck, J. W. Bilbro, M. C. Weisskopf, “Image analysis of the AXAF VETA-I x-ray mirror,” in Multilayer and Grazing Incidence X-Ray/EUV Optics for Astronomy and Projection Lithography, R. B. Hoover, A. B. Walker, eds., Proc. SPIE1742, 136–151 (1992).
[CrossRef]

Friedman, S. D.

S. J. Conard, R. H. Barkhouser (Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218), S. D. Friedman, J. W. Kruk, H. W. Moos, R. G. Ohl, D. J. Sahnow, are preparing a manuscript to be called “The Far Ultraviolet Spectroscopic Explorer optical system: lessons learned.”

R. G. Ohl, R. H. Barkhouser, M. J. Kennedy, S. D. Friedman, “Assembly and test-induced distortions of the FUSE mirrors—lessons learned,” in Space Telescopes and Instruments V, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE3356, 854–865 (1998).
[CrossRef]

R. G. Ohl, S. D. Friedman, T. T. Saha, R. H. Barkhouser, H. W. Moos, “Optical testing of the Far Ultraviolet Spectroscopic Explorer primary mirrors and predicted on-orbit performance,” in EUV, X-Ray and Gamma-Ray Instrumentation for Astronomy X, O. H. Siegmund, K. A. Flanagan, eds., Proc. SPIE3765, 482–494 (1999).
[CrossRef]

M. J. Kennedy, S. D. Friedman, R. H. Barkhouser, J. Hampton, P. Nikulla, “Design of the Far Ultraviolet Spectroscopic Explorer mirror assemblies,” in Space Telescopes and Instruments IV, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE2807, 172–183 (1996).
[CrossRef]

D. J. Sahnow, S. D. Friedman, H. W. Moos, J. C. Green, O. H. Siegmund, “Preliminary performance estimates for the Far Ultraviolet Spectroscopic Explorer (FUSE),” in Space Telescopes and Instruments V, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE3356, 552–560 (1998).
[CrossRef]

Glenn, P.

T. T. Saha, D. B. Leviton, P. Glenn, “Performance of ion-figured silicon carbide SUMER telescope mirror in the vacuum ultraviolet,” Appl. Opt. 35, 1742–1750 (1996).
[CrossRef] [PubMed]

P. Glenn, “Space telescope performance prediction using the optical surface analysis code (OSAC),” Opt. Eng. 25, 1026–1033 (1986).
[CrossRef]

R. J. Noll, P. Glenn, “Mirror surface autocovariance functions and their associated visible scattering,” Appl. Opt. 21, 1824–1838 (1982).
[CrossRef] [PubMed]

R. J. Noll, P. Glenn, J. F. Osantowski, “Optical surface analysis code (OSAC),” in Scattering in Optical Materials II, S. Musikant, ed., Proc. SPIE62, 78–82 (1983).
[CrossRef]

A. Slomba, R. Babish, P. Glenn, “Mirror surface metrology and polishing for AXAF/TMA,” in X-Ray Instrumentation in Astronomy, J. L. Culhane, ed., Proc. SPIE597, 40–54 (1985).
[CrossRef]

P. Glenn, “Lambda-over-thousand metrology results for steep spheres using a curvature profiling technique,” in Advanced Optical Manufacturing and Testing II, V. J. Doherty, ed., Proc. SPIE1531, 54–61 (1991).
[CrossRef]

P. Glenn, “Metrology data processor (metdat),” (NASA Goddard Space Flight Center, Greenbelt, Md., 1994).

Green, J. C.

D. J. Sahnow, S. D. Friedman, H. W. Moos, J. C. Green, O. H. Siegmund, “Preliminary performance estimates for the Far Ultraviolet Spectroscopic Explorer (FUSE),” in Space Telescopes and Instruments V, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE3356, 552–560 (1998).
[CrossRef]

Gum, J. S.

J. F. Osantowski, R. A. M. Keski-Kuha, H. Herzig, A. R. Toft, J. S. Gum, C. M. Fleetwood, “Optical coating technology for the EUV,” Adv. Space Res. 11, 185–201 (1991).
[CrossRef]

R. A. M. Keski-Kuha, J. F. Osantowski, H. Herzig, J. S. Gum, A. R. Toft, “Normal incidence reflectance of ion beam deposited SiC films in the EUV,” Appl. Opt. 27, 2815–2816 (1988).
[CrossRef] [PubMed]

R. A. M. Keski-Kuha, J. I. Larruquert, J. S. Gum, C. M. Fleetwood, “Optical coatings and materials for ultraviolet space astronomy,” in Ultraviolet-Optical Space Astronomy Beyond HST, J. A. Morse, J. M. Shull, A. L. Kinney, eds., Astronomical Society of the Pacific Conference Series164, 406–419 (1999).

Hampton, J.

M. J. Kennedy, S. D. Friedman, R. H. Barkhouser, J. Hampton, P. Nikulla, “Design of the Far Ultraviolet Spectroscopic Explorer mirror assemblies,” in Space Telescopes and Instruments IV, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE2807, 172–183 (1996).
[CrossRef]

Harvey, J. E.

J. E. Harvey, “Final report for FUSE telescope performance predictions,” (Johns Hopkins University, Baltimore, Md., 1996).

J. E. Harvey, A. Kotha, “Scattering effects from residual optical fabrication errors,” in International Conference on Optical Fabrication and Testing, T. Kasai, ed., Proc. SPIE2576, 155–174 (1995).
[CrossRef]

Hass, G.

Herzig, H.

J. F. Osantowski, R. A. M. Keski-Kuha, H. Herzig, A. R. Toft, J. S. Gum, C. M. Fleetwood, “Optical coating technology for the EUV,” Adv. Space Res. 11, 185–201 (1991).
[CrossRef]

R. A. M. Keski-Kuha, J. F. Osantowski, H. Herzig, J. S. Gum, A. R. Toft, “Normal incidence reflectance of ion beam deposited SiC films in the EUV,” Appl. Opt. 27, 2815–2816 (1988).
[CrossRef] [PubMed]

Hughes, J. P.

M. D. Freeman, J. P. Hughes, L. P. Van Speybroeck, J. W. Bilbro, M. C. Weisskopf, “Image analysis of the AXAF VETA-I x-ray mirror,” in Multilayer and Grazing Incidence X-Ray/EUV Optics for Astronomy and Projection Lithography, R. B. Hoover, A. B. Walker, eds., Proc. SPIE1742, 136–151 (1992).
[CrossRef]

Hunter, W. R.

Johnson, J. A.

S. J. Conard, K. W. Redman, R. H. Barkhouser, J. A. Johnson, “Optical alignment of the Far Ultraviolet Spectroscopic Explorer,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy X, O. H. Siegmund, K. A. Flanagan, eds., Proc. SPIE3765, 618–629 (1999).
[CrossRef]

Kennedy, M. J.

R. G. Ohl, R. H. Barkhouser, M. J. Kennedy, S. D. Friedman, “Assembly and test-induced distortions of the FUSE mirrors—lessons learned,” in Space Telescopes and Instruments V, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE3356, 854–865 (1998).
[CrossRef]

M. J. Kennedy, S. D. Friedman, R. H. Barkhouser, J. Hampton, P. Nikulla, “Design of the Far Ultraviolet Spectroscopic Explorer mirror assemblies,” in Space Telescopes and Instruments IV, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE2807, 172–183 (1996).
[CrossRef]

Keski-Kuha, R. A. M.

R. A. M. Keski-Kuha, G. M. Blumenstock, C. M. Fleetwood, D.-R. Schmitt, “Effects of space exposure on ion-beam-deposited silicon-carbide and boron-carbide coatings,” Appl. Opt. 37, 8038–8042 (1998).
[CrossRef]

J. F. Osantowski, R. A. M. Keski-Kuha, H. Herzig, A. R. Toft, J. S. Gum, C. M. Fleetwood, “Optical coating technology for the EUV,” Adv. Space Res. 11, 185–201 (1991).
[CrossRef]

R. A. M. Keski-Kuha, J. F. Osantowski, H. Herzig, J. S. Gum, A. R. Toft, “Normal incidence reflectance of ion beam deposited SiC films in the EUV,” Appl. Opt. 27, 2815–2816 (1988).
[CrossRef] [PubMed]

R. A. M. Keski-Kuha, NASA Goddard Space Flight Center, Greenbelt, Md. (personal communication, 2000).

R. A. M. Keski-Kuha, J. I. Larruquert, J. S. Gum, C. M. Fleetwood, “Optical coatings and materials for ultraviolet space astronomy,” in Ultraviolet-Optical Space Astronomy Beyond HST, J. A. Morse, J. M. Shull, A. L. Kinney, eds., Astronomical Society of the Pacific Conference Series164, 406–419 (1999).

Kotha, A.

J. E. Harvey, A. Kotha, “Scattering effects from residual optical fabrication errors,” in International Conference on Optical Fabrication and Testing, T. Kasai, ed., Proc. SPIE2576, 155–174 (1995).
[CrossRef]

Kruk, J. W.

S. J. Conard, R. H. Barkhouser (Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218), S. D. Friedman, J. W. Kruk, H. W. Moos, R. G. Ohl, D. J. Sahnow, are preparing a manuscript to be called “The Far Ultraviolet Spectroscopic Explorer optical system: lessons learned.”

Larruquert, J. I.

R. A. M. Keski-Kuha, J. I. Larruquert, J. S. Gum, C. M. Fleetwood, “Optical coatings and materials for ultraviolet space astronomy,” in Ultraviolet-Optical Space Astronomy Beyond HST, J. A. Morse, J. M. Shull, A. L. Kinney, eds., Astronomical Society of the Pacific Conference Series164, 406–419 (1999).

Leviton, D. B.

Mattson, L.

J. M. Bennett, L. Mattson, Introduction to Surface Roughness and Scattering, 2nd ed. (Optical Society of America, Washington, D.C., 1999), pp. 62–86.

Moos, H. W.

S. J. Conard, R. H. Barkhouser (Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218), S. D. Friedman, J. W. Kruk, H. W. Moos, R. G. Ohl, D. J. Sahnow, are preparing a manuscript to be called “The Far Ultraviolet Spectroscopic Explorer optical system: lessons learned.”

R. G. Ohl, S. D. Friedman, T. T. Saha, R. H. Barkhouser, H. W. Moos, “Optical testing of the Far Ultraviolet Spectroscopic Explorer primary mirrors and predicted on-orbit performance,” in EUV, X-Ray and Gamma-Ray Instrumentation for Astronomy X, O. H. Siegmund, K. A. Flanagan, eds., Proc. SPIE3765, 482–494 (1999).
[CrossRef]

H. W. Moos et al., “Overview of the Far Ultraviolet Spectroscopic Explorer mission,” Astrophys. J. (in press).

A. N. Cha, D. J. Sahnow, H. W. Moos, “Processing and interpretation of pre-flight FUSE spectra,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy X, O. H. Siegmund, K. A. Flanagan, eds., Proc. SPIE3765, 495–505 (1999).
[CrossRef]

D. J. Sahnow, S. D. Friedman, H. W. Moos, J. C. Green, O. H. Siegmund, “Preliminary performance estimates for the Far Ultraviolet Spectroscopic Explorer (FUSE),” in Space Telescopes and Instruments V, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE3356, 552–560 (1998).
[CrossRef]

Nikulla, P.

M. J. Kennedy, S. D. Friedman, R. H. Barkhouser, J. Hampton, P. Nikulla, “Design of the Far Ultraviolet Spectroscopic Explorer mirror assemblies,” in Space Telescopes and Instruments IV, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE2807, 172–183 (1996).
[CrossRef]

Noll, R. J.

R. J. Noll, P. Glenn, “Mirror surface autocovariance functions and their associated visible scattering,” Appl. Opt. 21, 1824–1838 (1982).
[CrossRef] [PubMed]

R. J. Noll, P. Glenn, J. F. Osantowski, “Optical surface analysis code (OSAC),” in Scattering in Optical Materials II, S. Musikant, ed., Proc. SPIE62, 78–82 (1983).
[CrossRef]

Ohl, R. G.

R. H. Barkhouser, R. G. Ohl, “Interferometric alignment and figure testing of large (0.5 m) off-axis parabolic mirrors in a challenging cleanroom environment,” in Optical Manufacturing and Testing III, H. P. Stahl, ed., Proc. SPIE3782, 601–614 (1999).
[CrossRef]

R. G. Ohl, S. D. Friedman, T. T. Saha, R. H. Barkhouser, H. W. Moos, “Optical testing of the Far Ultraviolet Spectroscopic Explorer primary mirrors and predicted on-orbit performance,” in EUV, X-Ray and Gamma-Ray Instrumentation for Astronomy X, O. H. Siegmund, K. A. Flanagan, eds., Proc. SPIE3765, 482–494 (1999).
[CrossRef]

S. J. Conard, R. H. Barkhouser (Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218), S. D. Friedman, J. W. Kruk, H. W. Moos, R. G. Ohl, D. J. Sahnow, are preparing a manuscript to be called “The Far Ultraviolet Spectroscopic Explorer optical system: lessons learned.”

R. G. Ohl, R. H. Barkhouser, M. J. Kennedy, S. D. Friedman, “Assembly and test-induced distortions of the FUSE mirrors—lessons learned,” in Space Telescopes and Instruments V, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE3356, 854–865 (1998).
[CrossRef]

Osantowski, J. F.

J. F. Osantowski, R. A. M. Keski-Kuha, H. Herzig, A. R. Toft, J. S. Gum, C. M. Fleetwood, “Optical coating technology for the EUV,” Adv. Space Res. 11, 185–201 (1991).
[CrossRef]

R. A. M. Keski-Kuha, J. F. Osantowski, H. Herzig, J. S. Gum, A. R. Toft, “Normal incidence reflectance of ion beam deposited SiC films in the EUV,” Appl. Opt. 27, 2815–2816 (1988).
[CrossRef] [PubMed]

W. R. Hunter, J. F. Osantowski, G. Hass, “Reflectance of aluminum overcoated with MgF2 and LiF in the wavelength region from 1600 Å to 300 Å at various angles of incidence,” Appl. Opt. 10, 540–544 (1971).
[CrossRef] [PubMed]

T. T. Saha, D. A. Thomas, J. F. Osantowski, “OSAC analysis of the Far Ultraviolet Spectroscopic Explorer (FUSE) telescope,” in Grazing Incidence Optics, J. F. Osantowski, L. P. Van Speybroeck, eds., Proc. SPIE640, 79–84 (1986).
[CrossRef]

R. J. Noll, P. Glenn, J. F. Osantowski, “Optical surface analysis code (OSAC),” in Scattering in Optical Materials II, S. Musikant, ed., Proc. SPIE62, 78–82 (1983).
[CrossRef]

Radon, J.

J. Radon, “Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten,” Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math.–Phy. Klasse 69, 262–277 (1917).

Redman, K. W.

S. J. Conard, K. W. Redman, R. H. Barkhouser, J. A. Johnson, “Optical alignment of the Far Ultraviolet Spectroscopic Explorer,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy X, O. H. Siegmund, K. A. Flanagan, eds., Proc. SPIE3765, 618–629 (1999).
[CrossRef]

Rowland, S. W.

S. W. Rowland, “Computer implementation of image reconstruction formulas,” in Image Reconstruction from Projections—Implementation and Applications, Vol. 32 of Topics in Applied Physics, G. T. Herman, ed. (Springer-Verlag, New York, 1979), pp. 9–79.
[CrossRef]

Saha, T. T.

T. T. Saha, D. B. Leviton, P. Glenn, “Performance of ion-figured silicon carbide SUMER telescope mirror in the vacuum ultraviolet,” Appl. Opt. 35, 1742–1750 (1996).
[CrossRef] [PubMed]

T. T. Saha, D. A. Thomas, J. F. Osantowski, “OSAC analysis of the Far Ultraviolet Spectroscopic Explorer (FUSE) telescope,” in Grazing Incidence Optics, J. F. Osantowski, L. P. Van Speybroeck, eds., Proc. SPIE640, 79–84 (1986).
[CrossRef]

R. G. Ohl, S. D. Friedman, T. T. Saha, R. H. Barkhouser, H. W. Moos, “Optical testing of the Far Ultraviolet Spectroscopic Explorer primary mirrors and predicted on-orbit performance,” in EUV, X-Ray and Gamma-Ray Instrumentation for Astronomy X, O. H. Siegmund, K. A. Flanagan, eds., Proc. SPIE3765, 482–494 (1999).
[CrossRef]

Sahnow, D. J.

S. J. Conard, R. H. Barkhouser (Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218), S. D. Friedman, J. W. Kruk, H. W. Moos, R. G. Ohl, D. J. Sahnow, are preparing a manuscript to be called “The Far Ultraviolet Spectroscopic Explorer optical system: lessons learned.”

D. J. Sahnow et al., “On-orbit performance of the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite,” Astrophys. J. (in press).

A. N. Cha, D. J. Sahnow, H. W. Moos, “Processing and interpretation of pre-flight FUSE spectra,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy X, O. H. Siegmund, K. A. Flanagan, eds., Proc. SPIE3765, 495–505 (1999).
[CrossRef]

D. J. Sahnow, S. D. Friedman, H. W. Moos, J. C. Green, O. H. Siegmund, “Preliminary performance estimates for the Far Ultraviolet Spectroscopic Explorer (FUSE),” in Space Telescopes and Instruments V, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE3356, 552–560 (1998).
[CrossRef]

Schmitt, D.-R.

Siegmund, O. H.

D. J. Sahnow, S. D. Friedman, H. W. Moos, J. C. Green, O. H. Siegmund, “Preliminary performance estimates for the Far Ultraviolet Spectroscopic Explorer (FUSE),” in Space Telescopes and Instruments V, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE3356, 552–560 (1998).
[CrossRef]

Slomba, A.

A. Slomba, R. Babish, P. Glenn, “Mirror surface metrology and polishing for AXAF/TMA,” in X-Ray Instrumentation in Astronomy, J. L. Culhane, ed., Proc. SPIE597, 40–54 (1985).
[CrossRef]

Stover, J. C.

J. C. Stover, Optical Scattering, Measurement and Analysis, Vol. PM24 of SPIE Monograph Series (SPIE Press, Bellingham, Wash., 1995).

Thomas, D. A.

T. T. Saha, D. A. Thomas, J. F. Osantowski, “OSAC analysis of the Far Ultraviolet Spectroscopic Explorer (FUSE) telescope,” in Grazing Incidence Optics, J. F. Osantowski, L. P. Van Speybroeck, eds., Proc. SPIE640, 79–84 (1986).
[CrossRef]

Toft, A. R.

J. F. Osantowski, R. A. M. Keski-Kuha, H. Herzig, A. R. Toft, J. S. Gum, C. M. Fleetwood, “Optical coating technology for the EUV,” Adv. Space Res. 11, 185–201 (1991).
[CrossRef]

R. A. M. Keski-Kuha, J. F. Osantowski, H. Herzig, J. S. Gum, A. R. Toft, “Normal incidence reflectance of ion beam deposited SiC films in the EUV,” Appl. Opt. 27, 2815–2816 (1988).
[CrossRef] [PubMed]

Van Speybroeck, L. P.

M. D. Freeman, J. P. Hughes, L. P. Van Speybroeck, J. W. Bilbro, M. C. Weisskopf, “Image analysis of the AXAF VETA-I x-ray mirror,” in Multilayer and Grazing Incidence X-Ray/EUV Optics for Astronomy and Projection Lithography, R. B. Hoover, A. B. Walker, eds., Proc. SPIE1742, 136–151 (1992).
[CrossRef]

Weisskopf, M. C.

M. D. Freeman, J. P. Hughes, L. P. Van Speybroeck, J. W. Bilbro, M. C. Weisskopf, “Image analysis of the AXAF VETA-I x-ray mirror,” in Multilayer and Grazing Incidence X-Ray/EUV Optics for Astronomy and Projection Lithography, R. B. Hoover, A. B. Walker, eds., Proc. SPIE1742, 136–151 (1992).
[CrossRef]

Adv. Space Res. (1)

J. F. Osantowski, R. A. M. Keski-Kuha, H. Herzig, A. R. Toft, J. S. Gum, C. M. Fleetwood, “Optical coating technology for the EUV,” Adv. Space Res. 11, 185–201 (1991).
[CrossRef]

Appl. Opt. (5)

Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math.–Phy. Klasse (1)

J. Radon, “Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten,” Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math.–Phy. Klasse 69, 262–277 (1917).

Opt. Eng. (1)

P. Glenn, “Space telescope performance prediction using the optical surface analysis code (OSAC),” Opt. Eng. 25, 1026–1033 (1986).
[CrossRef]

Other (31)

T. T. Saha, D. A. Thomas, J. F. Osantowski, “OSAC analysis of the Far Ultraviolet Spectroscopic Explorer (FUSE) telescope,” in Grazing Incidence Optics, J. F. Osantowski, L. P. Van Speybroeck, eds., Proc. SPIE640, 79–84 (1986).
[CrossRef]

M. D. Freeman, J. P. Hughes, L. P. Van Speybroeck, J. W. Bilbro, M. C. Weisskopf, “Image analysis of the AXAF VETA-I x-ray mirror,” in Multilayer and Grazing Incidence X-Ray/EUV Optics for Astronomy and Projection Lithography, R. B. Hoover, A. B. Walker, eds., Proc. SPIE1742, 136–151 (1992).
[CrossRef]

S. W. Rowland, “Computer implementation of image reconstruction formulas,” in Image Reconstruction from Projections—Implementation and Applications, Vol. 32 of Topics in Applied Physics, G. T. Herman, ed. (Springer-Verlag, New York, 1979), pp. 9–79.
[CrossRef]

R. N. Bracewell, Two-Dimensional Imaging (Prentice-Hall, Englewood Cliffs, N.J., 1995), pp. 505–544.

A. Slomba, R. Babish, P. Glenn, “Mirror surface metrology and polishing for AXAF/TMA,” in X-Ray Instrumentation in Astronomy, J. L. Culhane, ed., Proc. SPIE597, 40–54 (1985).
[CrossRef]

T. T. Saha, ed., Optical Surface Analysis Code (OSAC), User’s Manual (NASA Goddard Space Flight Center, Greenbelt, Md., 1993), pp. 5-74–5-76.

S. J. Conard, K. W. Redman, R. H. Barkhouser, J. A. Johnson, “Optical alignment of the Far Ultraviolet Spectroscopic Explorer,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy X, O. H. Siegmund, K. A. Flanagan, eds., Proc. SPIE3765, 618–629 (1999).
[CrossRef]

A. N. Cha, D. J. Sahnow, H. W. Moos, “Processing and interpretation of pre-flight FUSE spectra,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy X, O. H. Siegmund, K. A. Flanagan, eds., Proc. SPIE3765, 495–505 (1999).
[CrossRef]

S. J. Conard, R. H. Barkhouser (Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218), S. D. Friedman, J. W. Kruk, H. W. Moos, R. G. Ohl, D. J. Sahnow, are preparing a manuscript to be called “The Far Ultraviolet Spectroscopic Explorer optical system: lessons learned.”

A ray trace calculation assuming a perfectly parabolic mirror with this offset from nominal focus yields a rms spot radius of 0.56 µm.

WYKO Model 400 interferometer, Veeco Corporation (formerly WYKO Corporation), 2650 East Elvira Road, Tucson, Ariz. 85706.

WYKO Model TOPO 3-D interferometer, Veeco Corporation (formerly WYKO Corporation), 2650 East Elvira Road, Tucson, Ariz. 85706.

Nu-Tek Precision Optical Corporation, 1202 Technology Drive, Suites L-P, Aberdeen, Md. 21001.

H. W. Moos et al., “Overview of the Far Ultraviolet Spectroscopic Explorer mission,” Astrophys. J. (in press).

D. J. Sahnow, S. D. Friedman, H. W. Moos, J. C. Green, O. H. Siegmund, “Preliminary performance estimates for the Far Ultraviolet Spectroscopic Explorer (FUSE),” in Space Telescopes and Instruments V, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE3356, 552–560 (1998).
[CrossRef]

D. J. Sahnow et al., “On-orbit performance of the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite,” Astrophys. J. (in press).

M. J. Kennedy, S. D. Friedman, R. H. Barkhouser, J. Hampton, P. Nikulla, “Design of the Far Ultraviolet Spectroscopic Explorer mirror assemblies,” in Space Telescopes and Instruments IV, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE2807, 172–183 (1996).
[CrossRef]

R. A. M. Keski-Kuha, J. I. Larruquert, J. S. Gum, C. M. Fleetwood, “Optical coatings and materials for ultraviolet space astronomy,” in Ultraviolet-Optical Space Astronomy Beyond HST, J. A. Morse, J. M. Shull, A. L. Kinney, eds., Astronomical Society of the Pacific Conference Series164, 406–419 (1999).

FUSE Instrument and Science Operations Team, “FUSE instrument requirements document,” (Johns Hopkins University, Baltimore, Md., 1996).

Silicon Valley Group, Inc., Tinsley Division, Tinsley Laboratories, 3900 Lakeside Drive, Richmond, Calif. 94806.

R. G. Ohl, R. H. Barkhouser, M. J. Kennedy, S. D. Friedman, “Assembly and test-induced distortions of the FUSE mirrors—lessons learned,” in Space Telescopes and Instruments V, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE3356, 854–865 (1998).
[CrossRef]

R. J. Noll, P. Glenn, J. F. Osantowski, “Optical surface analysis code (OSAC),” in Scattering in Optical Materials II, S. Musikant, ed., Proc. SPIE62, 78–82 (1983).
[CrossRef]

R. G. Ohl, S. D. Friedman, T. T. Saha, R. H. Barkhouser, H. W. Moos, “Optical testing of the Far Ultraviolet Spectroscopic Explorer primary mirrors and predicted on-orbit performance,” in EUV, X-Ray and Gamma-Ray Instrumentation for Astronomy X, O. H. Siegmund, K. A. Flanagan, eds., Proc. SPIE3765, 482–494 (1999).
[CrossRef]

J. E. Harvey, A. Kotha, “Scattering effects from residual optical fabrication errors,” in International Conference on Optical Fabrication and Testing, T. Kasai, ed., Proc. SPIE2576, 155–174 (1995).
[CrossRef]

J. C. Stover, Optical Scattering, Measurement and Analysis, Vol. PM24 of SPIE Monograph Series (SPIE Press, Bellingham, Wash., 1995).

J. M. Bennett, L. Mattson, Introduction to Surface Roughness and Scattering, 2nd ed. (Optical Society of America, Washington, D.C., 1999), pp. 62–86.

P. Glenn, “Metrology data processor (metdat),” (NASA Goddard Space Flight Center, Greenbelt, Md., 1994).

J. E. Harvey, “Final report for FUSE telescope performance predictions,” (Johns Hopkins University, Baltimore, Md., 1996).

R. H. Barkhouser, R. G. Ohl, “Interferometric alignment and figure testing of large (0.5 m) off-axis parabolic mirrors in a challenging cleanroom environment,” in Optical Manufacturing and Testing III, H. P. Stahl, ed., Proc. SPIE3782, 601–614 (1999).
[CrossRef]

P. Glenn, “Lambda-over-thousand metrology results for steep spheres using a curvature profiling technique,” in Advanced Optical Manufacturing and Testing II, V. J. Doherty, ed., Proc. SPIE1531, 54–61 (1991).
[CrossRef]

R. A. M. Keski-Kuha, NASA Goddard Space Flight Center, Greenbelt, Md. (personal communication, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Figure error common to the five FUSE mirrors. The height of the dominant Y-shaped distortion is approximately 0.08λ (λ = 632.8 nm). The mirror vertex is near the lower right edge of the aperture shown.

Fig. 2
Fig. 2

Azimuthally averaged PSD of the mirror surface error for the spare and LiF2 flight mirrors (excluding microroughness error). Figure error PSD’s are shown for the spare before delivery and after assembly. Because the mirrors have a similar figure error, the postassembly figure error PSD for the spare is also shown on the LiF2 plot. The two-component fit for the scattering calculation for each mirror is displayed as well. The model PSD for the spare is a good fit for the two SiC-coated flight mirrors, and the fit for the LiF2 is representative of both LiF-coated flight mirrors. Note the peak at log f ≃ -1.05 for LiF2. For the spare, the figure measurement that was made postassembly at Tinsley suffered from a high spatial frequency artifact, and the associated PSD (long dashed curves) is unreliable for log f > -1.5. The upper horizontal axis is labeled for the diameter to which light at λ = 100 nm is scattered in first order by surface errors with a given spatial frequency, according to approximation (3).

Fig. 3
Fig. 3

Schematic of the image test setup for the spare in the clean-room facility at JHU (not to scale).

Fig. 4
Fig. 4

LSF in x and y for two double-pass image tests (triangles). Note the concentrated core and broader shoulder, which is more evident in x. Synthetic LSF’s generated from the corresponding OSAC output are also shown (solid curves). The error bars represent the 1σ deviation expected from Poisson statistics. The detector focus position and system alignment were different for each test (Table 4), so the shoulder appears more prominent at λ = 253.7 nm than at λ = 184.9 nm. The KE step size for the λ = 184.9-nm test was larger than that for the λ = 253.7-nm test, smoothing the derived LSF.

Fig. 5
Fig. 5

(a) Linear gray-scale image of the reconstructed return spot for the λ = 253.7-nm image test (86 µm × 86 µm field; n = 12). (b) Contour plot of the reconstructed return spot for the λ = 184.9-nm image test (91 µm × 91 µm field; n = 8). The difference between adjacent surface brightness contours is constant.

Fig. 6
Fig. 6

EE curves for each laboratory image test. Statistical errors are smaller than the plotting symbols. The data are of poor quality beyond 50 µm. For the λ = 435.8-nm test, the most misaligned case—an OSAC prediction including the misalignment but assuming a perfect mirror surface—is also shown (dotted curve). The effect of figure error is well detected behind the given amount of misalignment (Table 4). Independently normalized pinhole EE measurements for λ = 184.9 nm are also shown.

Fig. 7
Fig. 7

Modeled single-pass EE for the spare and the LiF2 as a function of FUV wavelength. The curves for the two mirrors are similar in the core, where figure error is dominant, and differ in the wings, where scatter is important.

Fig. 8
Fig. 8

PSF for the spare in single pass at λ = 100 nm. Note the compact core and broader shoulder consisting of several low peaks (∼1.6 arc sec × 1.6 arc sec field). The faint wings associated with scatter are not apparent on this linear scale.

Tables (5)

Tables Icon

Table 1 Flight Mirror rms Surface Error

Tables Icon

Table 2 Image Test Flat Mirror Surface Error (Figure 3)

Tables Icon

Table 3 Input Parameters for the PSD Models [Eq. (2)] Used in the OSAC Scatter Calculation

Tables Icon

Table 4 Image Test Focus and Alignment

Tables Icon

Table 5 Modeled On-Orbit Slit Transmission at λ = 100 nma

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

PSDf  |Fsq, p|2,
PSDf=σ2b-2f0b-2/2πf02+f2b/2,
rλf,
rms=2π ab f PSDfdf1/2.
Sr=l=0 dll+11/2Rl0r+l=0,m=12l+11/2Rlmr×elm cosmθ+flm sinmθ,
KEDx, z0=0x-+ ρx, y, z0dydx,
LSFx, z0=-dKEDx, z0dx=-+ ρx, y, z0dy.
ρx, y, z0=i=1n Bi(F-1wFLSFxi, z0),
EEd=2r, z0=0r02π ρr, ϕ, z0r dϕdr,

Metrics