Abstract

The implementation and application of a portable fiber-coupled trace-gas sensor for the detection of several trace gases, including CO2, CH4, and H2CO, are reported. This particular sensor is based on a cw fiber-amplified near-infrared (distributed Bragg reflector) diode laser and an external cavity diode laser that are frequency converted in a periodically poled lithium niobate crystal to the mid-IR spectroscopic fingerprint region (3.3–4.4 µm). A continuous absorption spectrum of CH4 and H2CO from 3.37 to 3.70 µm with a spectral resolution of 40 MHz (∼0.0013 cm-1) demonstrated the spectral performance that can be achieved by means of automated wavelength tuning and phase matching with stepper motor control. Autonomous long-term detection of ambient CO2 and CH4 over a 3- and 7-day period was also demonstrated.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Midac Corporation, 17911 Fitch Ave., Irvine, Calif. 92614; http://www.midac.com .
  2. A. Fried, B. Henry, B. Wert, S. Sewell, J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B 67, 317–330 (1998).
    [CrossRef]
  3. D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, J. L. Jiménez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67, 433–441 (1998).
    [CrossRef]
  4. P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta Part A 54, 197–236 (1998).
    [CrossRef]
  5. F. Capasso, C. Gmachl, D. L. Sivco, A. Y. Cho, “Quantum cascade lasers,” Phys. World 12, 27–33 (1999).
  6. B. L. Upschulte, D. M. Sonnenfroh, M. G. Allen, “Measurements of CO, CO2, OH, and H2O in room temperature and combustion gases by use of a broadly current-tuned multisection InGaAsP diode laser,” Appl. Opt. 38, 1506–1512 (1999).
    [CrossRef]
  7. D. Richter, D. G. Lancaster, R. F. Curl, W. Neu, F. K. Tittel, “Compact mid-infrared trace gas sensor based on difference frequency generation of two diode lasers in periodically poled LiNbO3,” Appl. Phys. B 67, 347–350 (1998).
    [CrossRef]
  8. D. G. Lancaster, D. Richter, F. K. Tittel, “Portable fiber coupled diode laser based sensor for multiple trace gas detection,” Appl. Phys. B 69, 459–465 (1999).
    [CrossRef]
  9. M. Seiter, M. W. Sigrist, “On-line multicomponent trace-gas analysis with a broadly tunable pulsed difference frequency laser spectrometer,” Appl. Opt. 38, 4691–4698 (1999).
    [CrossRef]
  10. J. B. McManus, P. L. Kebabian, M. S. Zahniser, “Astigmatic mirror multipass absorption cells for long-path-length spectroscopy,” Appl. Opt. 34, 3336–3348 (1995).
    [CrossRef] [PubMed]
  11. R. J. Lang, D. G. Mehuys, D. F. Welch, “External cavity, continuously tunable wavelength source,” U.S. patent, 5,771,252 (23June1998).
  12. J. P. Koplow, L. Goldberg, D. A. V. Kliner, “Compact 1-W Yb-doped double-cladding fiber amplifier using V-groove side pumping,” IEEE Photon. Technol. Lett. 10, 793–795 (1998).
    [CrossRef]
  13. L. Goldberg, B. Cole, E. Snitzer, “V-groove side pumped 1.5 µm fibre amplifier,” Electron. Lett. 33, 2127–2129 (1997).
    [CrossRef]
  14. K. W. Aniolek, T. J. Kulp, B. A. Richman, S. E. Bisson, P. E. Powers, R. L. Schmitt, “Trace gas detection in the mid-IR with a compact PPLN-based cavity ring-down spectrometer,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Processing Monitoring II, A. Fried, ed., Proc. SPIE3758, 62–73 (1999).
    [CrossRef]
  15. P. E. Powers, T. J. Kulp, S. E. Bisson, “Continuous tuning of continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design,” Opt. Lett. 23, 159–161 (1998).
    [CrossRef]
  16. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997).
    [CrossRef]
  17. National Oceanic and Atmospheric Administration (NOAA), Climate Monitoring and Diagnostics Laboratory (CMDL), Carbon Cycle Group, http://www.cmdl.noaa.gov/ccgg .
  18. D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel, J. Limpert, “Compact CH4 sensor based on difference frequency mixing of diode lasers in quasi-phase matched LiNbO3,” Opt. Commun. 175, 461–468 (2000).
    [CrossRef]
  19. L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
    [CrossRef] [PubMed]
  20. D. G. Lancaster, A. Fried, B. Wert, B. Henry, F. K. Tittel, “Difference-frequency-based tunable absorption spectrometer for detection of atmospheric formaldehyde,” Appl. Opt. 39, 4436–4443 (2000).
    [CrossRef]
  21. L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, B. Gerard, E. Lallier, “Quasi-phase matched frequency conversion in all-epitaxial, orientation patterned 200-µm-thick GaAs films,” (Center for Nonlinear Optical Materials, Stanford University, Stanford, Calif., 1999), pp. 37–41.

2000 (2)

D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel, J. Limpert, “Compact CH4 sensor based on difference frequency mixing of diode lasers in quasi-phase matched LiNbO3,” Opt. Commun. 175, 461–468 (2000).
[CrossRef]

D. G. Lancaster, A. Fried, B. Wert, B. Henry, F. K. Tittel, “Difference-frequency-based tunable absorption spectrometer for detection of atmospheric formaldehyde,” Appl. Opt. 39, 4436–4443 (2000).
[CrossRef]

1999 (4)

1998 (6)

D. Richter, D. G. Lancaster, R. F. Curl, W. Neu, F. K. Tittel, “Compact mid-infrared trace gas sensor based on difference frequency generation of two diode lasers in periodically poled LiNbO3,” Appl. Phys. B 67, 347–350 (1998).
[CrossRef]

A. Fried, B. Henry, B. Wert, S. Sewell, J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B 67, 317–330 (1998).
[CrossRef]

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, J. L. Jiménez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67, 433–441 (1998).
[CrossRef]

P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta Part A 54, 197–236 (1998).
[CrossRef]

J. P. Koplow, L. Goldberg, D. A. V. Kliner, “Compact 1-W Yb-doped double-cladding fiber amplifier using V-groove side pumping,” IEEE Photon. Technol. Lett. 10, 793–795 (1998).
[CrossRef]

P. E. Powers, T. J. Kulp, S. E. Bisson, “Continuous tuning of continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design,” Opt. Lett. 23, 159–161 (1998).
[CrossRef]

1997 (2)

D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997).
[CrossRef]

L. Goldberg, B. Cole, E. Snitzer, “V-groove side pumped 1.5 µm fibre amplifier,” Electron. Lett. 33, 2127–2129 (1997).
[CrossRef]

1995 (1)

1987 (1)

Allen, M. G.

Aniolek, K. W.

K. W. Aniolek, T. J. Kulp, B. A. Richman, S. E. Bisson, P. E. Powers, R. L. Schmitt, “Trace gas detection in the mid-IR with a compact PPLN-based cavity ring-down spectrometer,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Processing Monitoring II, A. Fried, ed., Proc. SPIE3758, 62–73 (1999).
[CrossRef]

Barbe, A.

Bisson, S. E.

P. E. Powers, T. J. Kulp, S. E. Bisson, “Continuous tuning of continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design,” Opt. Lett. 23, 159–161 (1998).
[CrossRef]

K. W. Aniolek, T. J. Kulp, B. A. Richman, S. E. Bisson, P. E. Powers, R. L. Schmitt, “Trace gas detection in the mid-IR with a compact PPLN-based cavity ring-down spectrometer,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Processing Monitoring II, A. Fried, ed., Proc. SPIE3758, 62–73 (1999).
[CrossRef]

Brown, L. R.

Camy-Peyret, C.

Capasso, F.

F. Capasso, C. Gmachl, D. L. Sivco, A. Y. Cho, “Quantum cascade lasers,” Phys. World 12, 27–33 (1999).

Cho, A. Y.

F. Capasso, C. Gmachl, D. L. Sivco, A. Y. Cho, “Quantum cascade lasers,” Phys. World 12, 27–33 (1999).

Cole, B.

L. Goldberg, B. Cole, E. Snitzer, “V-groove side pumped 1.5 µm fibre amplifier,” Electron. Lett. 33, 2127–2129 (1997).
[CrossRef]

Curl, R. F.

D. Richter, D. G. Lancaster, R. F. Curl, W. Neu, F. K. Tittel, “Compact mid-infrared trace gas sensor based on difference frequency generation of two diode lasers in periodically poled LiNbO3,” Appl. Phys. B 67, 347–350 (1998).
[CrossRef]

Drummond, J. R.

A. Fried, B. Henry, B. Wert, S. Sewell, J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B 67, 317–330 (1998).
[CrossRef]

Ebert, C. B.

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, B. Gerard, E. Lallier, “Quasi-phase matched frequency conversion in all-epitaxial, orientation patterned 200-µm-thick GaAs films,” (Center for Nonlinear Optical Materials, Stanford University, Stanford, Calif., 1999), pp. 37–41.

Eyres, L. A.

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, B. Gerard, E. Lallier, “Quasi-phase matched frequency conversion in all-epitaxial, orientation patterned 200-µm-thick GaAs films,” (Center for Nonlinear Optical Materials, Stanford University, Stanford, Calif., 1999), pp. 37–41.

Fejer, M. M.

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, B. Gerard, E. Lallier, “Quasi-phase matched frequency conversion in all-epitaxial, orientation patterned 200-µm-thick GaAs films,” (Center for Nonlinear Optical Materials, Stanford University, Stanford, Calif., 1999), pp. 37–41.

Flaud, J.-M.

Fried, A.

D. G. Lancaster, A. Fried, B. Wert, B. Henry, F. K. Tittel, “Difference-frequency-based tunable absorption spectrometer for detection of atmospheric formaldehyde,” Appl. Opt. 39, 4436–4443 (2000).
[CrossRef]

A. Fried, B. Henry, B. Wert, S. Sewell, J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B 67, 317–330 (1998).
[CrossRef]

Gamache, R. R.

Gerard, B.

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, B. Gerard, E. Lallier, “Quasi-phase matched frequency conversion in all-epitaxial, orientation patterned 200-µm-thick GaAs films,” (Center for Nonlinear Optical Materials, Stanford University, Stanford, Calif., 1999), pp. 37–41.

Gmachl, C.

F. Capasso, C. Gmachl, D. L. Sivco, A. Y. Cho, “Quantum cascade lasers,” Phys. World 12, 27–33 (1999).

Goldberg, L.

J. P. Koplow, L. Goldberg, D. A. V. Kliner, “Compact 1-W Yb-doped double-cladding fiber amplifier using V-groove side pumping,” IEEE Photon. Technol. Lett. 10, 793–795 (1998).
[CrossRef]

L. Goldberg, B. Cole, E. Snitzer, “V-groove side pumped 1.5 µm fibre amplifier,” Electron. Lett. 33, 2127–2129 (1997).
[CrossRef]

Goldman, A.

Harris, J. S.

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, B. Gerard, E. Lallier, “Quasi-phase matched frequency conversion in all-epitaxial, orientation patterned 200-µm-thick GaAs films,” (Center for Nonlinear Optical Materials, Stanford University, Stanford, Calif., 1999), pp. 37–41.

Henry, B.

D. G. Lancaster, A. Fried, B. Wert, B. Henry, F. K. Tittel, “Difference-frequency-based tunable absorption spectrometer for detection of atmospheric formaldehyde,” Appl. Opt. 39, 4436–4443 (2000).
[CrossRef]

A. Fried, B. Henry, B. Wert, S. Sewell, J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B 67, 317–330 (1998).
[CrossRef]

Husson, N.

Jiménez, J. L.

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, J. L. Jiménez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67, 433–441 (1998).
[CrossRef]

Jundt, D. H.

Kebabian, P. L.

Kliner, D. A. V.

J. P. Koplow, L. Goldberg, D. A. V. Kliner, “Compact 1-W Yb-doped double-cladding fiber amplifier using V-groove side pumping,” IEEE Photon. Technol. Lett. 10, 793–795 (1998).
[CrossRef]

Kolb, C. E.

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, J. L. Jiménez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67, 433–441 (1998).
[CrossRef]

Koplow, J. P.

J. P. Koplow, L. Goldberg, D. A. V. Kliner, “Compact 1-W Yb-doped double-cladding fiber amplifier using V-groove side pumping,” IEEE Photon. Technol. Lett. 10, 793–795 (1998).
[CrossRef]

Kulp, T. J.

P. E. Powers, T. J. Kulp, S. E. Bisson, “Continuous tuning of continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design,” Opt. Lett. 23, 159–161 (1998).
[CrossRef]

K. W. Aniolek, T. J. Kulp, B. A. Richman, S. E. Bisson, P. E. Powers, R. L. Schmitt, “Trace gas detection in the mid-IR with a compact PPLN-based cavity ring-down spectrometer,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Processing Monitoring II, A. Fried, ed., Proc. SPIE3758, 62–73 (1999).
[CrossRef]

Lallier, E.

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, B. Gerard, E. Lallier, “Quasi-phase matched frequency conversion in all-epitaxial, orientation patterned 200-µm-thick GaAs films,” (Center for Nonlinear Optical Materials, Stanford University, Stanford, Calif., 1999), pp. 37–41.

Lancaster, D. G.

D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel, J. Limpert, “Compact CH4 sensor based on difference frequency mixing of diode lasers in quasi-phase matched LiNbO3,” Opt. Commun. 175, 461–468 (2000).
[CrossRef]

D. G. Lancaster, A. Fried, B. Wert, B. Henry, F. K. Tittel, “Difference-frequency-based tunable absorption spectrometer for detection of atmospheric formaldehyde,” Appl. Opt. 39, 4436–4443 (2000).
[CrossRef]

D. G. Lancaster, D. Richter, F. K. Tittel, “Portable fiber coupled diode laser based sensor for multiple trace gas detection,” Appl. Phys. B 69, 459–465 (1999).
[CrossRef]

D. Richter, D. G. Lancaster, R. F. Curl, W. Neu, F. K. Tittel, “Compact mid-infrared trace gas sensor based on difference frequency generation of two diode lasers in periodically poled LiNbO3,” Appl. Phys. B 67, 347–350 (1998).
[CrossRef]

Lang, R. J.

R. J. Lang, D. G. Mehuys, D. F. Welch, “External cavity, continuously tunable wavelength source,” U.S. patent, 5,771,252 (23June1998).

Limpert, J.

D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel, J. Limpert, “Compact CH4 sensor based on difference frequency mixing of diode lasers in quasi-phase matched LiNbO3,” Opt. Commun. 175, 461–468 (2000).
[CrossRef]

McManus, J. B.

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, J. L. Jiménez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67, 433–441 (1998).
[CrossRef]

J. B. McManus, P. L. Kebabian, M. S. Zahniser, “Astigmatic mirror multipass absorption cells for long-path-length spectroscopy,” Appl. Opt. 34, 3336–3348 (1995).
[CrossRef] [PubMed]

Mehuys, D. G.

R. J. Lang, D. G. Mehuys, D. F. Welch, “External cavity, continuously tunable wavelength source,” U.S. patent, 5,771,252 (23June1998).

Nelson, D. D.

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, J. L. Jiménez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67, 433–441 (1998).
[CrossRef]

Neu, W.

D. Richter, D. G. Lancaster, R. F. Curl, W. Neu, F. K. Tittel, “Compact mid-infrared trace gas sensor based on difference frequency generation of two diode lasers in periodically poled LiNbO3,” Appl. Phys. B 67, 347–350 (1998).
[CrossRef]

Pickett, H. M.

Pinguet, T. J.

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, B. Gerard, E. Lallier, “Quasi-phase matched frequency conversion in all-epitaxial, orientation patterned 200-µm-thick GaAs films,” (Center for Nonlinear Optical Materials, Stanford University, Stanford, Calif., 1999), pp. 37–41.

Powers, P. E.

P. E. Powers, T. J. Kulp, S. E. Bisson, “Continuous tuning of continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design,” Opt. Lett. 23, 159–161 (1998).
[CrossRef]

K. W. Aniolek, T. J. Kulp, B. A. Richman, S. E. Bisson, P. E. Powers, R. L. Schmitt, “Trace gas detection in the mid-IR with a compact PPLN-based cavity ring-down spectrometer,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Processing Monitoring II, A. Fried, ed., Proc. SPIE3758, 62–73 (1999).
[CrossRef]

Poynter, R. L.

Richman, B. A.

K. W. Aniolek, T. J. Kulp, B. A. Richman, S. E. Bisson, P. E. Powers, R. L. Schmitt, “Trace gas detection in the mid-IR with a compact PPLN-based cavity ring-down spectrometer,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Processing Monitoring II, A. Fried, ed., Proc. SPIE3758, 62–73 (1999).
[CrossRef]

Richter, D.

D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel, J. Limpert, “Compact CH4 sensor based on difference frequency mixing of diode lasers in quasi-phase matched LiNbO3,” Opt. Commun. 175, 461–468 (2000).
[CrossRef]

D. G. Lancaster, D. Richter, F. K. Tittel, “Portable fiber coupled diode laser based sensor for multiple trace gas detection,” Appl. Phys. B 69, 459–465 (1999).
[CrossRef]

D. Richter, D. G. Lancaster, R. F. Curl, W. Neu, F. K. Tittel, “Compact mid-infrared trace gas sensor based on difference frequency generation of two diode lasers in periodically poled LiNbO3,” Appl. Phys. B 67, 347–350 (1998).
[CrossRef]

Rinsland, C. P.

Rothman, L. S.

Schmitt, R. L.

K. W. Aniolek, T. J. Kulp, B. A. Richman, S. E. Bisson, P. E. Powers, R. L. Schmitt, “Trace gas detection in the mid-IR with a compact PPLN-based cavity ring-down spectrometer,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Processing Monitoring II, A. Fried, ed., Proc. SPIE3758, 62–73 (1999).
[CrossRef]

Seiter, M.

Sewell, S.

A. Fried, B. Henry, B. Wert, S. Sewell, J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B 67, 317–330 (1998).
[CrossRef]

Sigrist, M. W.

Sivco, D. L.

F. Capasso, C. Gmachl, D. L. Sivco, A. Y. Cho, “Quantum cascade lasers,” Phys. World 12, 27–33 (1999).

Smith, M. A. H.

Snitzer, E.

L. Goldberg, B. Cole, E. Snitzer, “V-groove side pumped 1.5 µm fibre amplifier,” Electron. Lett. 33, 2127–2129 (1997).
[CrossRef]

Sonnenfroh, D. M.

Tittel, F. K.

D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel, J. Limpert, “Compact CH4 sensor based on difference frequency mixing of diode lasers in quasi-phase matched LiNbO3,” Opt. Commun. 175, 461–468 (2000).
[CrossRef]

D. G. Lancaster, A. Fried, B. Wert, B. Henry, F. K. Tittel, “Difference-frequency-based tunable absorption spectrometer for detection of atmospheric formaldehyde,” Appl. Opt. 39, 4436–4443 (2000).
[CrossRef]

D. G. Lancaster, D. Richter, F. K. Tittel, “Portable fiber coupled diode laser based sensor for multiple trace gas detection,” Appl. Phys. B 69, 459–465 (1999).
[CrossRef]

D. Richter, D. G. Lancaster, R. F. Curl, W. Neu, F. K. Tittel, “Compact mid-infrared trace gas sensor based on difference frequency generation of two diode lasers in periodically poled LiNbO3,” Appl. Phys. B 67, 347–350 (1998).
[CrossRef]

Toth, R. A.

Tourreau, P. J.

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, B. Gerard, E. Lallier, “Quasi-phase matched frequency conversion in all-epitaxial, orientation patterned 200-µm-thick GaAs films,” (Center for Nonlinear Optical Materials, Stanford University, Stanford, Calif., 1999), pp. 37–41.

Upschulte, B. L.

Weidner, R.

D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel, J. Limpert, “Compact CH4 sensor based on difference frequency mixing of diode lasers in quasi-phase matched LiNbO3,” Opt. Commun. 175, 461–468 (2000).
[CrossRef]

Welch, D. F.

R. J. Lang, D. G. Mehuys, D. F. Welch, “External cavity, continuously tunable wavelength source,” U.S. patent, 5,771,252 (23June1998).

Werle, P.

P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta Part A 54, 197–236 (1998).
[CrossRef]

Wert, B.

D. G. Lancaster, A. Fried, B. Wert, B. Henry, F. K. Tittel, “Difference-frequency-based tunable absorption spectrometer for detection of atmospheric formaldehyde,” Appl. Opt. 39, 4436–4443 (2000).
[CrossRef]

A. Fried, B. Henry, B. Wert, S. Sewell, J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B 67, 317–330 (1998).
[CrossRef]

Zahniser, M. S.

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, J. L. Jiménez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67, 433–441 (1998).
[CrossRef]

J. B. McManus, P. L. Kebabian, M. S. Zahniser, “Astigmatic mirror multipass absorption cells for long-path-length spectroscopy,” Appl. Opt. 34, 3336–3348 (1995).
[CrossRef] [PubMed]

Appl. Opt. (5)

Appl. Phys. B (4)

A. Fried, B. Henry, B. Wert, S. Sewell, J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B 67, 317–330 (1998).
[CrossRef]

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, J. L. Jiménez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67, 433–441 (1998).
[CrossRef]

D. Richter, D. G. Lancaster, R. F. Curl, W. Neu, F. K. Tittel, “Compact mid-infrared trace gas sensor based on difference frequency generation of two diode lasers in periodically poled LiNbO3,” Appl. Phys. B 67, 347–350 (1998).
[CrossRef]

D. G. Lancaster, D. Richter, F. K. Tittel, “Portable fiber coupled diode laser based sensor for multiple trace gas detection,” Appl. Phys. B 69, 459–465 (1999).
[CrossRef]

Electron. Lett. (1)

L. Goldberg, B. Cole, E. Snitzer, “V-groove side pumped 1.5 µm fibre amplifier,” Electron. Lett. 33, 2127–2129 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. P. Koplow, L. Goldberg, D. A. V. Kliner, “Compact 1-W Yb-doped double-cladding fiber amplifier using V-groove side pumping,” IEEE Photon. Technol. Lett. 10, 793–795 (1998).
[CrossRef]

Opt. Commun. (1)

D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel, J. Limpert, “Compact CH4 sensor based on difference frequency mixing of diode lasers in quasi-phase matched LiNbO3,” Opt. Commun. 175, 461–468 (2000).
[CrossRef]

Opt. Lett. (2)

Phys. World (1)

F. Capasso, C. Gmachl, D. L. Sivco, A. Y. Cho, “Quantum cascade lasers,” Phys. World 12, 27–33 (1999).

Spectrochim. Acta Part A (1)

P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta Part A 54, 197–236 (1998).
[CrossRef]

Other (5)

Midac Corporation, 17911 Fitch Ave., Irvine, Calif. 92614; http://www.midac.com .

K. W. Aniolek, T. J. Kulp, B. A. Richman, S. E. Bisson, P. E. Powers, R. L. Schmitt, “Trace gas detection in the mid-IR with a compact PPLN-based cavity ring-down spectrometer,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Processing Monitoring II, A. Fried, ed., Proc. SPIE3758, 62–73 (1999).
[CrossRef]

National Oceanic and Atmospheric Administration (NOAA), Climate Monitoring and Diagnostics Laboratory (CMDL), Carbon Cycle Group, http://www.cmdl.noaa.gov/ccgg .

R. J. Lang, D. G. Mehuys, D. F. Welch, “External cavity, continuously tunable wavelength source,” U.S. patent, 5,771,252 (23June1998).

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, B. Gerard, E. Lallier, “Quasi-phase matched frequency conversion in all-epitaxial, orientation patterned 200-µm-thick GaAs films,” (Center for Nonlinear Optical Materials, Stanford University, Stanford, Calif., 1999), pp. 37–41.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of an automated DFG multicomponent gas sensor. M1, M2, and M3 are stepper motors for the ECDL, PPLN crystal stage, and reference gas assembly, respectively. WDM, wavelength division multiplexer; DL, diode laser; CTRL, control.

Fig. 2
Fig. 2

Diagram of the electronic control and data-acquisition system for the DFG-based multicomponent gas sensor. DAQ, data acquisition; TEC, thermoelectric cooler.

Fig. 3
Fig. 3

ECDL frequency tuning characteristic with stepper motor control.

Fig. 4
Fig. 4

Continuous quasi-phase matching with a fan-out grating-type PPLN crystal.

Fig. 5
Fig. 5

Measured absorption spectra of formaldehyde and methane over 270 cm-1 centered at 2850 cm-1. Estimated total pressure was 50 Torr (8% CH4 and 0.65% H2CO); absorption path length was 5 cm.

Fig. 6
Fig. 6

Comparison of the relative frequency drift for a stepper-motor-controlled and free-running ECDL operation as a function of time.

Fig. 7
Fig. 7

Ambient CO2 laboratory sampling over a 42-h time period.

Fig. 8
Fig. 8

Continuous detection of ambient CH4 for a 7-day period.

Fig. 9
Fig. 9

Intercomparison of long-term CH4 concentration measurements by two independent DFG-based gas sensors indicating both CH4 concentrations and deviation in parts per billion.

Metrics