Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Effective utilization of quantum-cascade distributed-feedback lasers in absorption spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

A variable duty cycle quasi-cw frequency scanning technique was applied to reduce thermal effects resulting from the high heat dissipation of type I quantum-cascade lasers. This technique was combined with a 100-m path-length multipass cell and a zero-air background-subtraction technique to enhance detection sensitivity to a parts-in-109 (ppb) concentration level for spectroscopic trace-gas detection of CH4, N2O, H2O, and C2H5OH in ambient air at 7.9 µm. A new technique for analysis of dense high-resolution absorption spectra was applied to detection of ethanol in ambient air, yielding a 125-ppb detection limit.

© 2000 Optical Society of America

Full Article  |  PDF Article
More Like This
Trace-gas detection in ambient air with a thermoelectrically cooled, pulsed quantum-cascade distributed feedback laser

Anatoliy A. Kosterev, Frank K. Tittel, Claire Gmachl, Federico Capasso, Deborah L. Sivco, James N. Baillargeon, Albert L. Hutchinson, and Alfred Y. Cho
Appl. Opt. 39(36) 6866-6872 (2000)

Difference-frequency-based tunable absorption spectrometer for detection of atmospheric formaldehyde

David G. Lancaster, Alan Fried, Bryan Wert, Bruce Henry, and Frank K. Tittel
Appl. Opt. 39(24) 4436-4443 (2000)

Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser

K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho
Opt. Lett. 23(3) 219-221 (1998)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved