Abstract

A passively Q-switched 214.8-nm Nd:YAG/Cr4+:YAG microchip laser system for the detection of NO was designed, constructed, and tested. The system uses the fifth harmonic of the 1.074-µm transition in Nd:YAG to detect NO by laser-induced fluorescence. A significant challenge was the development of an environmentally stable coating to provide the necessary discrimination between the 1.074-µm laser line and the stronger transition at 1.064 µm. The exact position of the fifth-harmonic frequency was determined by use of NO fluorescence excitation spectra to be 46556 ± 1.5 cm-1. With a pulse energy of approximately 50 nJ of fifth-harmonic light, we observed a detection sensitivity for NO of approximately 15 parts per billion by volume in a simple, compact optical system.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. E. Kolb, “Instrumentation for chemical species measurements in the troposphere and stratosphere,” Rev. Geophys. Suppl. 29, 25–36 (1991).
  2. H. I. Schiff, “Ground based measurements of atmospheric gases by spectroscopic methods,” Ber. Bunsenges. Phys. Chem. 96, 296–306 (1992).
    [CrossRef]
  3. J. Bublitz, M. Dickenhausen, M. Grätz, S. Todt, W. Schade, “Fiber-optic laser-induced fluorescence probe for the detection of environmental pollutants,” Appl. Opt. 34, 3223–3233 (1995).
    [CrossRef] [PubMed]
  4. C. Schulz, V. Sick, J. Heinze, W. Stricker, “Laser-induced-fluorescence detection of nitric oxide in high-pressure flames with A–X (0,2) excitation,” Appl. Opt. 36, 3227–3232 (1997).
    [CrossRef] [PubMed]
  5. A. V. Mokhov, H. B. Levinsky, C. E. van der Meij, “Temperature dependence of laser-induced fluorescence of nitric oxide in laminar premixed atmospheric-pressure flames,” Appl. Opt. 36, 3233–3243 (1997).
    [CrossRef] [PubMed]
  6. B. E. Battles, R. K. Hanson, “Laser-induced fluorescence measurements of NO and OH mole fraction in fuel-lean, high pressure (1–10 atm) methane flames: fluorescence modeling and experimental validation,” J. Quant. Spectrosc. Radiat. Transfer 54, 521–537 (1995).
    [CrossRef]
  7. S. Sandholm, S. Smyth, R. Bai, J. Bradshaw, “Recent and future improvements in two-photon laser-induced fluorescence NO measurement capabilities,” J. Geophys. Res. 102, 28,651–28,661 (1997).
    [CrossRef]
  8. J. Wormhoudt, J. H. Shorter, J. B. McManus, P. L. Kebabian, M. S. Zahniser, W. M. Davis, E. R. Cespedes, C. E. Kolb, “Tunable infrared laser detection of pyrolysis products of explosives in soils,” Appl. Opt. 35, 3992–3997 (1996).
    [CrossRef] [PubMed]
  9. J. J. Zayhowski, C. Dill, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett. 19, 1427–1429 (1994).
    [CrossRef] [PubMed]
  10. J. J. Zayhowski, “Microchip lasers create light in small places,” Laser Focus World 32, 73–78 (1996).
  11. J. J. Zayhowski, “Ultraviolet generation with passively Q-switched microchip lasers,” Opt. Lett. 21, 588–590 (1996); erratum, 21, 1618 (1996).
  12. J. J. Zayhowski, “Passively Q-switched microchip lasers and applications,” Rev. Laser Eng. 26, 841–846 (1998).
    [CrossRef]
  13. J. J. Zayhowski, C. Dill, C. Cook, J. L. Daneu, “Mid- and high-power passively Q-switched microchip lasers,” in Advanced Solid-State Lasers, M. M. Fejer, U. Keller, H. Injeyan, eds. Vol. 26 in OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 178–186.
  14. J. J. Zayhowski, “Passively Q-switched microchip lasers find real-world applications,” Laser Focus World 35, 129–136 (1999).
  15. J. J. Zayhowski, “Passively Q-switched Nd:YAG microchip lasers and applications,” J. Alloys and Compd. 303–304, 393–400 (2000).
  16. J. J. Zayhowski, “Microchip optical parametric oscillators,” IEEE Photon. Technol. Lett. 9, 925–927 (1997).
    [CrossRef]
  17. J. J. Zayhowski, “Periodically poled lithium niobate optical parametric amplifiers pumped by high-power passively Q-switched microchip lasers,” Opt. Lett. 22, 169–171 (1997).
    [CrossRef] [PubMed]
  18. H. G. Danielmeyer, “Progress in Nd:YAG Lasers,” in Lasers, A. K. Levine, A. J. DeMaria, eds. (Marcel Dekker, New York, 1976), Vol. 4.
  19. A. A. Kaminskii, Laser Crystals, Their Physics and Properties, 2nd ed. (Springer-Verlag, Berlin, 1990), p. 242.
  20. J. J. Zayhowski, C. C. Cook, J. Wormhoudt, J. H. Shorter, “Passively Q-switched 214.8-nm Nd:YAG/Cr4+:YAG microchip-laser system for the detection of NO,” in Advanced Solid State Lasers, H. Injeyan, U. Keller, C. Marshall, eds., Vol. 34 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000).
  21. J. Wormhoudt, J. H. Shorter, J. J. Zayhowski, “Diode-pumped Nd:YAG/Cr4+:YAG microchip-laser system at 214.8 nm for the detection of NO,” (Aerodyne Research, Billerica, Mass., 1999).
  22. R. Engleman, P. E. Rouse, H. M. Peek, V. D. Balamonte, “Beta and gamma band systems of nitric oxide,” (Los Alamos Scientific Laboratory, Los Alamos, N.M., 1970).
  23. L. Gerö, R. Schmid, “Dissociation energy of the NO molecule,” Proc. Phys. Soc. London 60, 533–540 (1948).
    [CrossRef]
  24. L. G. Dodge, M. B. Colket, M. F. Zabielski, J. Dusek, D. J. Seery, Nitric Oxide Measurement Study: Optical Calibration, (Defense Technical Information Center, Fort Belvoir, Va., 1979), Pub. ADA109869.
  25. L. T. Earls, “Intensities in 2Π - 2Σ transitions in diatomic molecules,” Phys. Rev. 48, 423–424 (1935).
    [CrossRef]
  26. A. Y. Chang, M. D. DiRosa, R. K. Hanson, “Temperature dependence of collision broadening and shift in the NO A ← X (0,0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
    [CrossRef]
  27. J. H. Shorter, J. Wormhoudt, C. E. Kolb, J. J. Zayhowski, B. Johnson, N. Newbury, “Diode-pumped solid state laser based sensors for cone penetrometer applications,” (Aerodyne Research, Billerica, Mass., 1997).
  28. J. H. Shorter, J. Wormhoudt, C. E. Kolb, J. J. Zayhowski, B. Johnson, N. Newbury, “Diode-pumped solid state laser based sensors for cone penetrometer applications,” (Aerodyne Research, Billerica, Mass., 1997).
  29. C. Fong, W. Brune, “A laser induced fluorescence instrument for measuring tropospheric NO2,” Rev. Sci. Instrum. 68, 4353–4362 (1997).
    [CrossRef]
  30. P. S. Stevens, J. H. Mather, W. H. Brune, “Measurement of tropospheric OH and HO2 by laser-induced fluorescence at low pressure,” J. Geophys. Res. 99, 3543–3557 (1994).
    [CrossRef]
  31. P. S. Stevens, J. H. Mather, W. H. Brune, F. Eisele, D. Tanner, A. Jefferson, C. Cantrell, R. Shetter, S. Sewall, A. Fried, B. Henry, E. Williams, K. Baumann, P. Goldan, W. Kuster, “HO2/OH and RO2/HO2 ratios during the Tropospheric OH Photochemistry Experiment: measurement and theory,” J. Geophys. Res. 102, 6379–6391 (1997).
    [CrossRef]
  32. In response to a reviewer’s question, we undertook a preliminary investigation into the possibility that the shorter wavelength of the 214.8-nm laser might lead to greater interferences than, for example, the commonly used 225-nm laser line. We found that the major components of vehicle exhausts are saturated hydrocarbons that do not absorb either wavelength. The principal aromatic components such as benzene and toluene turn out to have similar absorption cross sections at 214.8 and 225 nm, with an expected large increase in cross section only coming at still shorter wavelengths. We estimate the absorption at 214.8 nm by these species in a typical automobile exhaust over a path suitable for laser-induced fluorescence to be in the range of one to two tenths of a percent. The point must be kept in mind, however, that high spectral resolution may not guarantee selectivity in a spectral region where some absorption bands do not have line structure.

2000 (1)

J. J. Zayhowski, “Passively Q-switched Nd:YAG microchip lasers and applications,” J. Alloys and Compd. 303–304, 393–400 (2000).

1999 (1)

J. J. Zayhowski, “Passively Q-switched microchip lasers find real-world applications,” Laser Focus World 35, 129–136 (1999).

1998 (1)

J. J. Zayhowski, “Passively Q-switched microchip lasers and applications,” Rev. Laser Eng. 26, 841–846 (1998).
[CrossRef]

1997 (7)

J. J. Zayhowski, “Microchip optical parametric oscillators,” IEEE Photon. Technol. Lett. 9, 925–927 (1997).
[CrossRef]

J. J. Zayhowski, “Periodically poled lithium niobate optical parametric amplifiers pumped by high-power passively Q-switched microchip lasers,” Opt. Lett. 22, 169–171 (1997).
[CrossRef] [PubMed]

C. Schulz, V. Sick, J. Heinze, W. Stricker, “Laser-induced-fluorescence detection of nitric oxide in high-pressure flames with A–X (0,2) excitation,” Appl. Opt. 36, 3227–3232 (1997).
[CrossRef] [PubMed]

A. V. Mokhov, H. B. Levinsky, C. E. van der Meij, “Temperature dependence of laser-induced fluorescence of nitric oxide in laminar premixed atmospheric-pressure flames,” Appl. Opt. 36, 3233–3243 (1997).
[CrossRef] [PubMed]

S. Sandholm, S. Smyth, R. Bai, J. Bradshaw, “Recent and future improvements in two-photon laser-induced fluorescence NO measurement capabilities,” J. Geophys. Res. 102, 28,651–28,661 (1997).
[CrossRef]

C. Fong, W. Brune, “A laser induced fluorescence instrument for measuring tropospheric NO2,” Rev. Sci. Instrum. 68, 4353–4362 (1997).
[CrossRef]

P. S. Stevens, J. H. Mather, W. H. Brune, F. Eisele, D. Tanner, A. Jefferson, C. Cantrell, R. Shetter, S. Sewall, A. Fried, B. Henry, E. Williams, K. Baumann, P. Goldan, W. Kuster, “HO2/OH and RO2/HO2 ratios during the Tropospheric OH Photochemistry Experiment: measurement and theory,” J. Geophys. Res. 102, 6379–6391 (1997).
[CrossRef]

1996 (3)

1995 (2)

B. E. Battles, R. K. Hanson, “Laser-induced fluorescence measurements of NO and OH mole fraction in fuel-lean, high pressure (1–10 atm) methane flames: fluorescence modeling and experimental validation,” J. Quant. Spectrosc. Radiat. Transfer 54, 521–537 (1995).
[CrossRef]

J. Bublitz, M. Dickenhausen, M. Grätz, S. Todt, W. Schade, “Fiber-optic laser-induced fluorescence probe for the detection of environmental pollutants,” Appl. Opt. 34, 3223–3233 (1995).
[CrossRef] [PubMed]

1994 (2)

J. J. Zayhowski, C. Dill, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett. 19, 1427–1429 (1994).
[CrossRef] [PubMed]

P. S. Stevens, J. H. Mather, W. H. Brune, “Measurement of tropospheric OH and HO2 by laser-induced fluorescence at low pressure,” J. Geophys. Res. 99, 3543–3557 (1994).
[CrossRef]

1992 (2)

H. I. Schiff, “Ground based measurements of atmospheric gases by spectroscopic methods,” Ber. Bunsenges. Phys. Chem. 96, 296–306 (1992).
[CrossRef]

A. Y. Chang, M. D. DiRosa, R. K. Hanson, “Temperature dependence of collision broadening and shift in the NO A ← X (0,0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
[CrossRef]

1991 (1)

C. E. Kolb, “Instrumentation for chemical species measurements in the troposphere and stratosphere,” Rev. Geophys. Suppl. 29, 25–36 (1991).

1948 (1)

L. Gerö, R. Schmid, “Dissociation energy of the NO molecule,” Proc. Phys. Soc. London 60, 533–540 (1948).
[CrossRef]

1935 (1)

L. T. Earls, “Intensities in 2Π - 2Σ transitions in diatomic molecules,” Phys. Rev. 48, 423–424 (1935).
[CrossRef]

Bai, R.

S. Sandholm, S. Smyth, R. Bai, J. Bradshaw, “Recent and future improvements in two-photon laser-induced fluorescence NO measurement capabilities,” J. Geophys. Res. 102, 28,651–28,661 (1997).
[CrossRef]

Balamonte, V. D.

R. Engleman, P. E. Rouse, H. M. Peek, V. D. Balamonte, “Beta and gamma band systems of nitric oxide,” (Los Alamos Scientific Laboratory, Los Alamos, N.M., 1970).

Battles, B. E.

B. E. Battles, R. K. Hanson, “Laser-induced fluorescence measurements of NO and OH mole fraction in fuel-lean, high pressure (1–10 atm) methane flames: fluorescence modeling and experimental validation,” J. Quant. Spectrosc. Radiat. Transfer 54, 521–537 (1995).
[CrossRef]

Baumann, K.

P. S. Stevens, J. H. Mather, W. H. Brune, F. Eisele, D. Tanner, A. Jefferson, C. Cantrell, R. Shetter, S. Sewall, A. Fried, B. Henry, E. Williams, K. Baumann, P. Goldan, W. Kuster, “HO2/OH and RO2/HO2 ratios during the Tropospheric OH Photochemistry Experiment: measurement and theory,” J. Geophys. Res. 102, 6379–6391 (1997).
[CrossRef]

Bradshaw, J.

S. Sandholm, S. Smyth, R. Bai, J. Bradshaw, “Recent and future improvements in two-photon laser-induced fluorescence NO measurement capabilities,” J. Geophys. Res. 102, 28,651–28,661 (1997).
[CrossRef]

Brune, W.

C. Fong, W. Brune, “A laser induced fluorescence instrument for measuring tropospheric NO2,” Rev. Sci. Instrum. 68, 4353–4362 (1997).
[CrossRef]

Brune, W. H.

P. S. Stevens, J. H. Mather, W. H. Brune, F. Eisele, D. Tanner, A. Jefferson, C. Cantrell, R. Shetter, S. Sewall, A. Fried, B. Henry, E. Williams, K. Baumann, P. Goldan, W. Kuster, “HO2/OH and RO2/HO2 ratios during the Tropospheric OH Photochemistry Experiment: measurement and theory,” J. Geophys. Res. 102, 6379–6391 (1997).
[CrossRef]

P. S. Stevens, J. H. Mather, W. H. Brune, “Measurement of tropospheric OH and HO2 by laser-induced fluorescence at low pressure,” J. Geophys. Res. 99, 3543–3557 (1994).
[CrossRef]

Bublitz, J.

Cantrell, C.

P. S. Stevens, J. H. Mather, W. H. Brune, F. Eisele, D. Tanner, A. Jefferson, C. Cantrell, R. Shetter, S. Sewall, A. Fried, B. Henry, E. Williams, K. Baumann, P. Goldan, W. Kuster, “HO2/OH and RO2/HO2 ratios during the Tropospheric OH Photochemistry Experiment: measurement and theory,” J. Geophys. Res. 102, 6379–6391 (1997).
[CrossRef]

Cespedes, E. R.

Chang, A. Y.

A. Y. Chang, M. D. DiRosa, R. K. Hanson, “Temperature dependence of collision broadening and shift in the NO A ← X (0,0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
[CrossRef]

Colket, M. B.

L. G. Dodge, M. B. Colket, M. F. Zabielski, J. Dusek, D. J. Seery, Nitric Oxide Measurement Study: Optical Calibration, (Defense Technical Information Center, Fort Belvoir, Va., 1979), Pub. ADA109869.

Cook, C.

J. J. Zayhowski, C. Dill, C. Cook, J. L. Daneu, “Mid- and high-power passively Q-switched microchip lasers,” in Advanced Solid-State Lasers, M. M. Fejer, U. Keller, H. Injeyan, eds. Vol. 26 in OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 178–186.

Cook, C. C.

J. J. Zayhowski, C. C. Cook, J. Wormhoudt, J. H. Shorter, “Passively Q-switched 214.8-nm Nd:YAG/Cr4+:YAG microchip-laser system for the detection of NO,” in Advanced Solid State Lasers, H. Injeyan, U. Keller, C. Marshall, eds., Vol. 34 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000).

Daneu, J. L.

J. J. Zayhowski, C. Dill, C. Cook, J. L. Daneu, “Mid- and high-power passively Q-switched microchip lasers,” in Advanced Solid-State Lasers, M. M. Fejer, U. Keller, H. Injeyan, eds. Vol. 26 in OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 178–186.

Danielmeyer, H. G.

H. G. Danielmeyer, “Progress in Nd:YAG Lasers,” in Lasers, A. K. Levine, A. J. DeMaria, eds. (Marcel Dekker, New York, 1976), Vol. 4.

Davis, W. M.

Dickenhausen, M.

Dill, C.

J. J. Zayhowski, C. Dill, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett. 19, 1427–1429 (1994).
[CrossRef] [PubMed]

J. J. Zayhowski, C. Dill, C. Cook, J. L. Daneu, “Mid- and high-power passively Q-switched microchip lasers,” in Advanced Solid-State Lasers, M. M. Fejer, U. Keller, H. Injeyan, eds. Vol. 26 in OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 178–186.

DiRosa, M. D.

A. Y. Chang, M. D. DiRosa, R. K. Hanson, “Temperature dependence of collision broadening and shift in the NO A ← X (0,0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
[CrossRef]

Dodge, L. G.

L. G. Dodge, M. B. Colket, M. F. Zabielski, J. Dusek, D. J. Seery, Nitric Oxide Measurement Study: Optical Calibration, (Defense Technical Information Center, Fort Belvoir, Va., 1979), Pub. ADA109869.

Dusek, J.

L. G. Dodge, M. B. Colket, M. F. Zabielski, J. Dusek, D. J. Seery, Nitric Oxide Measurement Study: Optical Calibration, (Defense Technical Information Center, Fort Belvoir, Va., 1979), Pub. ADA109869.

Earls, L. T.

L. T. Earls, “Intensities in 2Π - 2Σ transitions in diatomic molecules,” Phys. Rev. 48, 423–424 (1935).
[CrossRef]

Eisele, F.

P. S. Stevens, J. H. Mather, W. H. Brune, F. Eisele, D. Tanner, A. Jefferson, C. Cantrell, R. Shetter, S. Sewall, A. Fried, B. Henry, E. Williams, K. Baumann, P. Goldan, W. Kuster, “HO2/OH and RO2/HO2 ratios during the Tropospheric OH Photochemistry Experiment: measurement and theory,” J. Geophys. Res. 102, 6379–6391 (1997).
[CrossRef]

Engleman, R.

R. Engleman, P. E. Rouse, H. M. Peek, V. D. Balamonte, “Beta and gamma band systems of nitric oxide,” (Los Alamos Scientific Laboratory, Los Alamos, N.M., 1970).

Fong, C.

C. Fong, W. Brune, “A laser induced fluorescence instrument for measuring tropospheric NO2,” Rev. Sci. Instrum. 68, 4353–4362 (1997).
[CrossRef]

Fried, A.

P. S. Stevens, J. H. Mather, W. H. Brune, F. Eisele, D. Tanner, A. Jefferson, C. Cantrell, R. Shetter, S. Sewall, A. Fried, B. Henry, E. Williams, K. Baumann, P. Goldan, W. Kuster, “HO2/OH and RO2/HO2 ratios during the Tropospheric OH Photochemistry Experiment: measurement and theory,” J. Geophys. Res. 102, 6379–6391 (1997).
[CrossRef]

Gerö, L.

L. Gerö, R. Schmid, “Dissociation energy of the NO molecule,” Proc. Phys. Soc. London 60, 533–540 (1948).
[CrossRef]

Goldan, P.

P. S. Stevens, J. H. Mather, W. H. Brune, F. Eisele, D. Tanner, A. Jefferson, C. Cantrell, R. Shetter, S. Sewall, A. Fried, B. Henry, E. Williams, K. Baumann, P. Goldan, W. Kuster, “HO2/OH and RO2/HO2 ratios during the Tropospheric OH Photochemistry Experiment: measurement and theory,” J. Geophys. Res. 102, 6379–6391 (1997).
[CrossRef]

Grätz, M.

Hanson, R. K.

B. E. Battles, R. K. Hanson, “Laser-induced fluorescence measurements of NO and OH mole fraction in fuel-lean, high pressure (1–10 atm) methane flames: fluorescence modeling and experimental validation,” J. Quant. Spectrosc. Radiat. Transfer 54, 521–537 (1995).
[CrossRef]

A. Y. Chang, M. D. DiRosa, R. K. Hanson, “Temperature dependence of collision broadening and shift in the NO A ← X (0,0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
[CrossRef]

Heinze, J.

Henry, B.

P. S. Stevens, J. H. Mather, W. H. Brune, F. Eisele, D. Tanner, A. Jefferson, C. Cantrell, R. Shetter, S. Sewall, A. Fried, B. Henry, E. Williams, K. Baumann, P. Goldan, W. Kuster, “HO2/OH and RO2/HO2 ratios during the Tropospheric OH Photochemistry Experiment: measurement and theory,” J. Geophys. Res. 102, 6379–6391 (1997).
[CrossRef]

Jefferson, A.

P. S. Stevens, J. H. Mather, W. H. Brune, F. Eisele, D. Tanner, A. Jefferson, C. Cantrell, R. Shetter, S. Sewall, A. Fried, B. Henry, E. Williams, K. Baumann, P. Goldan, W. Kuster, “HO2/OH and RO2/HO2 ratios during the Tropospheric OH Photochemistry Experiment: measurement and theory,” J. Geophys. Res. 102, 6379–6391 (1997).
[CrossRef]

Johnson, B.

J. H. Shorter, J. Wormhoudt, C. E. Kolb, J. J. Zayhowski, B. Johnson, N. Newbury, “Diode-pumped solid state laser based sensors for cone penetrometer applications,” (Aerodyne Research, Billerica, Mass., 1997).

J. H. Shorter, J. Wormhoudt, C. E. Kolb, J. J. Zayhowski, B. Johnson, N. Newbury, “Diode-pumped solid state laser based sensors for cone penetrometer applications,” (Aerodyne Research, Billerica, Mass., 1997).

Kaminskii, A. A.

A. A. Kaminskii, Laser Crystals, Their Physics and Properties, 2nd ed. (Springer-Verlag, Berlin, 1990), p. 242.

Kebabian, P. L.

Kolb, C. E.

J. Wormhoudt, J. H. Shorter, J. B. McManus, P. L. Kebabian, M. S. Zahniser, W. M. Davis, E. R. Cespedes, C. E. Kolb, “Tunable infrared laser detection of pyrolysis products of explosives in soils,” Appl. Opt. 35, 3992–3997 (1996).
[CrossRef] [PubMed]

C. E. Kolb, “Instrumentation for chemical species measurements in the troposphere and stratosphere,” Rev. Geophys. Suppl. 29, 25–36 (1991).

J. H. Shorter, J. Wormhoudt, C. E. Kolb, J. J. Zayhowski, B. Johnson, N. Newbury, “Diode-pumped solid state laser based sensors for cone penetrometer applications,” (Aerodyne Research, Billerica, Mass., 1997).

J. H. Shorter, J. Wormhoudt, C. E. Kolb, J. J. Zayhowski, B. Johnson, N. Newbury, “Diode-pumped solid state laser based sensors for cone penetrometer applications,” (Aerodyne Research, Billerica, Mass., 1997).

Kuster, W.

P. S. Stevens, J. H. Mather, W. H. Brune, F. Eisele, D. Tanner, A. Jefferson, C. Cantrell, R. Shetter, S. Sewall, A. Fried, B. Henry, E. Williams, K. Baumann, P. Goldan, W. Kuster, “HO2/OH and RO2/HO2 ratios during the Tropospheric OH Photochemistry Experiment: measurement and theory,” J. Geophys. Res. 102, 6379–6391 (1997).
[CrossRef]

Levinsky, H. B.

Mather, J. H.

P. S. Stevens, J. H. Mather, W. H. Brune, F. Eisele, D. Tanner, A. Jefferson, C. Cantrell, R. Shetter, S. Sewall, A. Fried, B. Henry, E. Williams, K. Baumann, P. Goldan, W. Kuster, “HO2/OH and RO2/HO2 ratios during the Tropospheric OH Photochemistry Experiment: measurement and theory,” J. Geophys. Res. 102, 6379–6391 (1997).
[CrossRef]

P. S. Stevens, J. H. Mather, W. H. Brune, “Measurement of tropospheric OH and HO2 by laser-induced fluorescence at low pressure,” J. Geophys. Res. 99, 3543–3557 (1994).
[CrossRef]

McManus, J. B.

Mokhov, A. V.

Newbury, N.

J. H. Shorter, J. Wormhoudt, C. E. Kolb, J. J. Zayhowski, B. Johnson, N. Newbury, “Diode-pumped solid state laser based sensors for cone penetrometer applications,” (Aerodyne Research, Billerica, Mass., 1997).

J. H. Shorter, J. Wormhoudt, C. E. Kolb, J. J. Zayhowski, B. Johnson, N. Newbury, “Diode-pumped solid state laser based sensors for cone penetrometer applications,” (Aerodyne Research, Billerica, Mass., 1997).

Peek, H. M.

R. Engleman, P. E. Rouse, H. M. Peek, V. D. Balamonte, “Beta and gamma band systems of nitric oxide,” (Los Alamos Scientific Laboratory, Los Alamos, N.M., 1970).

Rouse, P. E.

R. Engleman, P. E. Rouse, H. M. Peek, V. D. Balamonte, “Beta and gamma band systems of nitric oxide,” (Los Alamos Scientific Laboratory, Los Alamos, N.M., 1970).

Sandholm, S.

S. Sandholm, S. Smyth, R. Bai, J. Bradshaw, “Recent and future improvements in two-photon laser-induced fluorescence NO measurement capabilities,” J. Geophys. Res. 102, 28,651–28,661 (1997).
[CrossRef]

Schade, W.

Schiff, H. I.

H. I. Schiff, “Ground based measurements of atmospheric gases by spectroscopic methods,” Ber. Bunsenges. Phys. Chem. 96, 296–306 (1992).
[CrossRef]

Schmid, R.

L. Gerö, R. Schmid, “Dissociation energy of the NO molecule,” Proc. Phys. Soc. London 60, 533–540 (1948).
[CrossRef]

Schulz, C.

Seery, D. J.

L. G. Dodge, M. B. Colket, M. F. Zabielski, J. Dusek, D. J. Seery, Nitric Oxide Measurement Study: Optical Calibration, (Defense Technical Information Center, Fort Belvoir, Va., 1979), Pub. ADA109869.

Sewall, S.

P. S. Stevens, J. H. Mather, W. H. Brune, F. Eisele, D. Tanner, A. Jefferson, C. Cantrell, R. Shetter, S. Sewall, A. Fried, B. Henry, E. Williams, K. Baumann, P. Goldan, W. Kuster, “HO2/OH and RO2/HO2 ratios during the Tropospheric OH Photochemistry Experiment: measurement and theory,” J. Geophys. Res. 102, 6379–6391 (1997).
[CrossRef]

Shetter, R.

P. S. Stevens, J. H. Mather, W. H. Brune, F. Eisele, D. Tanner, A. Jefferson, C. Cantrell, R. Shetter, S. Sewall, A. Fried, B. Henry, E. Williams, K. Baumann, P. Goldan, W. Kuster, “HO2/OH and RO2/HO2 ratios during the Tropospheric OH Photochemistry Experiment: measurement and theory,” J. Geophys. Res. 102, 6379–6391 (1997).
[CrossRef]

Shorter, J. H.

J. Wormhoudt, J. H. Shorter, J. B. McManus, P. L. Kebabian, M. S. Zahniser, W. M. Davis, E. R. Cespedes, C. E. Kolb, “Tunable infrared laser detection of pyrolysis products of explosives in soils,” Appl. Opt. 35, 3992–3997 (1996).
[CrossRef] [PubMed]

J. H. Shorter, J. Wormhoudt, C. E. Kolb, J. J. Zayhowski, B. Johnson, N. Newbury, “Diode-pumped solid state laser based sensors for cone penetrometer applications,” (Aerodyne Research, Billerica, Mass., 1997).

J. H. Shorter, J. Wormhoudt, C. E. Kolb, J. J. Zayhowski, B. Johnson, N. Newbury, “Diode-pumped solid state laser based sensors for cone penetrometer applications,” (Aerodyne Research, Billerica, Mass., 1997).

J. Wormhoudt, J. H. Shorter, J. J. Zayhowski, “Diode-pumped Nd:YAG/Cr4+:YAG microchip-laser system at 214.8 nm for the detection of NO,” (Aerodyne Research, Billerica, Mass., 1999).

J. J. Zayhowski, C. C. Cook, J. Wormhoudt, J. H. Shorter, “Passively Q-switched 214.8-nm Nd:YAG/Cr4+:YAG microchip-laser system for the detection of NO,” in Advanced Solid State Lasers, H. Injeyan, U. Keller, C. Marshall, eds., Vol. 34 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000).

Sick, V.

Smyth, S.

S. Sandholm, S. Smyth, R. Bai, J. Bradshaw, “Recent and future improvements in two-photon laser-induced fluorescence NO measurement capabilities,” J. Geophys. Res. 102, 28,651–28,661 (1997).
[CrossRef]

Stevens, P. S.

P. S. Stevens, J. H. Mather, W. H. Brune, F. Eisele, D. Tanner, A. Jefferson, C. Cantrell, R. Shetter, S. Sewall, A. Fried, B. Henry, E. Williams, K. Baumann, P. Goldan, W. Kuster, “HO2/OH and RO2/HO2 ratios during the Tropospheric OH Photochemistry Experiment: measurement and theory,” J. Geophys. Res. 102, 6379–6391 (1997).
[CrossRef]

P. S. Stevens, J. H. Mather, W. H. Brune, “Measurement of tropospheric OH and HO2 by laser-induced fluorescence at low pressure,” J. Geophys. Res. 99, 3543–3557 (1994).
[CrossRef]

Stricker, W.

Tanner, D.

P. S. Stevens, J. H. Mather, W. H. Brune, F. Eisele, D. Tanner, A. Jefferson, C. Cantrell, R. Shetter, S. Sewall, A. Fried, B. Henry, E. Williams, K. Baumann, P. Goldan, W. Kuster, “HO2/OH and RO2/HO2 ratios during the Tropospheric OH Photochemistry Experiment: measurement and theory,” J. Geophys. Res. 102, 6379–6391 (1997).
[CrossRef]

Todt, S.

van der Meij, C. E.

Williams, E.

P. S. Stevens, J. H. Mather, W. H. Brune, F. Eisele, D. Tanner, A. Jefferson, C. Cantrell, R. Shetter, S. Sewall, A. Fried, B. Henry, E. Williams, K. Baumann, P. Goldan, W. Kuster, “HO2/OH and RO2/HO2 ratios during the Tropospheric OH Photochemistry Experiment: measurement and theory,” J. Geophys. Res. 102, 6379–6391 (1997).
[CrossRef]

Wormhoudt, J.

J. Wormhoudt, J. H. Shorter, J. B. McManus, P. L. Kebabian, M. S. Zahniser, W. M. Davis, E. R. Cespedes, C. E. Kolb, “Tunable infrared laser detection of pyrolysis products of explosives in soils,” Appl. Opt. 35, 3992–3997 (1996).
[CrossRef] [PubMed]

J. Wormhoudt, J. H. Shorter, J. J. Zayhowski, “Diode-pumped Nd:YAG/Cr4+:YAG microchip-laser system at 214.8 nm for the detection of NO,” (Aerodyne Research, Billerica, Mass., 1999).

J. J. Zayhowski, C. C. Cook, J. Wormhoudt, J. H. Shorter, “Passively Q-switched 214.8-nm Nd:YAG/Cr4+:YAG microchip-laser system for the detection of NO,” in Advanced Solid State Lasers, H. Injeyan, U. Keller, C. Marshall, eds., Vol. 34 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000).

J. H. Shorter, J. Wormhoudt, C. E. Kolb, J. J. Zayhowski, B. Johnson, N. Newbury, “Diode-pumped solid state laser based sensors for cone penetrometer applications,” (Aerodyne Research, Billerica, Mass., 1997).

J. H. Shorter, J. Wormhoudt, C. E. Kolb, J. J. Zayhowski, B. Johnson, N. Newbury, “Diode-pumped solid state laser based sensors for cone penetrometer applications,” (Aerodyne Research, Billerica, Mass., 1997).

Zabielski, M. F.

L. G. Dodge, M. B. Colket, M. F. Zabielski, J. Dusek, D. J. Seery, Nitric Oxide Measurement Study: Optical Calibration, (Defense Technical Information Center, Fort Belvoir, Va., 1979), Pub. ADA109869.

Zahniser, M. S.

Zayhowski, J. J.

J. J. Zayhowski, “Passively Q-switched Nd:YAG microchip lasers and applications,” J. Alloys and Compd. 303–304, 393–400 (2000).

J. J. Zayhowski, “Passively Q-switched microchip lasers find real-world applications,” Laser Focus World 35, 129–136 (1999).

J. J. Zayhowski, “Passively Q-switched microchip lasers and applications,” Rev. Laser Eng. 26, 841–846 (1998).
[CrossRef]

J. J. Zayhowski, “Microchip optical parametric oscillators,” IEEE Photon. Technol. Lett. 9, 925–927 (1997).
[CrossRef]

J. J. Zayhowski, “Periodically poled lithium niobate optical parametric amplifiers pumped by high-power passively Q-switched microchip lasers,” Opt. Lett. 22, 169–171 (1997).
[CrossRef] [PubMed]

J. J. Zayhowski, “Microchip lasers create light in small places,” Laser Focus World 32, 73–78 (1996).

J. J. Zayhowski, “Ultraviolet generation with passively Q-switched microchip lasers,” Opt. Lett. 21, 588–590 (1996); erratum, 21, 1618 (1996).

J. J. Zayhowski, C. Dill, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett. 19, 1427–1429 (1994).
[CrossRef] [PubMed]

J. J. Zayhowski, C. Dill, C. Cook, J. L. Daneu, “Mid- and high-power passively Q-switched microchip lasers,” in Advanced Solid-State Lasers, M. M. Fejer, U. Keller, H. Injeyan, eds. Vol. 26 in OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 178–186.

J. J. Zayhowski, C. C. Cook, J. Wormhoudt, J. H. Shorter, “Passively Q-switched 214.8-nm Nd:YAG/Cr4+:YAG microchip-laser system for the detection of NO,” in Advanced Solid State Lasers, H. Injeyan, U. Keller, C. Marshall, eds., Vol. 34 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000).

J. Wormhoudt, J. H. Shorter, J. J. Zayhowski, “Diode-pumped Nd:YAG/Cr4+:YAG microchip-laser system at 214.8 nm for the detection of NO,” (Aerodyne Research, Billerica, Mass., 1999).

J. H. Shorter, J. Wormhoudt, C. E. Kolb, J. J. Zayhowski, B. Johnson, N. Newbury, “Diode-pumped solid state laser based sensors for cone penetrometer applications,” (Aerodyne Research, Billerica, Mass., 1997).

J. H. Shorter, J. Wormhoudt, C. E. Kolb, J. J. Zayhowski, B. Johnson, N. Newbury, “Diode-pumped solid state laser based sensors for cone penetrometer applications,” (Aerodyne Research, Billerica, Mass., 1997).

Appl. Opt. (4)

Ber. Bunsenges. Phys. Chem. (1)

H. I. Schiff, “Ground based measurements of atmospheric gases by spectroscopic methods,” Ber. Bunsenges. Phys. Chem. 96, 296–306 (1992).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. J. Zayhowski, “Microchip optical parametric oscillators,” IEEE Photon. Technol. Lett. 9, 925–927 (1997).
[CrossRef]

J. Alloys and Compd. (1)

J. J. Zayhowski, “Passively Q-switched Nd:YAG microchip lasers and applications,” J. Alloys and Compd. 303–304, 393–400 (2000).

J. Geophys. Res. (3)

S. Sandholm, S. Smyth, R. Bai, J. Bradshaw, “Recent and future improvements in two-photon laser-induced fluorescence NO measurement capabilities,” J. Geophys. Res. 102, 28,651–28,661 (1997).
[CrossRef]

P. S. Stevens, J. H. Mather, W. H. Brune, “Measurement of tropospheric OH and HO2 by laser-induced fluorescence at low pressure,” J. Geophys. Res. 99, 3543–3557 (1994).
[CrossRef]

P. S. Stevens, J. H. Mather, W. H. Brune, F. Eisele, D. Tanner, A. Jefferson, C. Cantrell, R. Shetter, S. Sewall, A. Fried, B. Henry, E. Williams, K. Baumann, P. Goldan, W. Kuster, “HO2/OH and RO2/HO2 ratios during the Tropospheric OH Photochemistry Experiment: measurement and theory,” J. Geophys. Res. 102, 6379–6391 (1997).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (2)

A. Y. Chang, M. D. DiRosa, R. K. Hanson, “Temperature dependence of collision broadening and shift in the NO A ← X (0,0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
[CrossRef]

B. E. Battles, R. K. Hanson, “Laser-induced fluorescence measurements of NO and OH mole fraction in fuel-lean, high pressure (1–10 atm) methane flames: fluorescence modeling and experimental validation,” J. Quant. Spectrosc. Radiat. Transfer 54, 521–537 (1995).
[CrossRef]

Laser Focus World (2)

J. J. Zayhowski, “Microchip lasers create light in small places,” Laser Focus World 32, 73–78 (1996).

J. J. Zayhowski, “Passively Q-switched microchip lasers find real-world applications,” Laser Focus World 35, 129–136 (1999).

Opt. Lett. (3)

Phys. Rev. (1)

L. T. Earls, “Intensities in 2Π - 2Σ transitions in diatomic molecules,” Phys. Rev. 48, 423–424 (1935).
[CrossRef]

Proc. Phys. Soc. London (1)

L. Gerö, R. Schmid, “Dissociation energy of the NO molecule,” Proc. Phys. Soc. London 60, 533–540 (1948).
[CrossRef]

Rev. Geophys. Suppl. (1)

C. E. Kolb, “Instrumentation for chemical species measurements in the troposphere and stratosphere,” Rev. Geophys. Suppl. 29, 25–36 (1991).

Rev. Laser Eng. (1)

J. J. Zayhowski, “Passively Q-switched microchip lasers and applications,” Rev. Laser Eng. 26, 841–846 (1998).
[CrossRef]

Rev. Sci. Instrum. (1)

C. Fong, W. Brune, “A laser induced fluorescence instrument for measuring tropospheric NO2,” Rev. Sci. Instrum. 68, 4353–4362 (1997).
[CrossRef]

Other (10)

In response to a reviewer’s question, we undertook a preliminary investigation into the possibility that the shorter wavelength of the 214.8-nm laser might lead to greater interferences than, for example, the commonly used 225-nm laser line. We found that the major components of vehicle exhausts are saturated hydrocarbons that do not absorb either wavelength. The principal aromatic components such as benzene and toluene turn out to have similar absorption cross sections at 214.8 and 225 nm, with an expected large increase in cross section only coming at still shorter wavelengths. We estimate the absorption at 214.8 nm by these species in a typical automobile exhaust over a path suitable for laser-induced fluorescence to be in the range of one to two tenths of a percent. The point must be kept in mind, however, that high spectral resolution may not guarantee selectivity in a spectral region where some absorption bands do not have line structure.

L. G. Dodge, M. B. Colket, M. F. Zabielski, J. Dusek, D. J. Seery, Nitric Oxide Measurement Study: Optical Calibration, (Defense Technical Information Center, Fort Belvoir, Va., 1979), Pub. ADA109869.

J. H. Shorter, J. Wormhoudt, C. E. Kolb, J. J. Zayhowski, B. Johnson, N. Newbury, “Diode-pumped solid state laser based sensors for cone penetrometer applications,” (Aerodyne Research, Billerica, Mass., 1997).

J. H. Shorter, J. Wormhoudt, C. E. Kolb, J. J. Zayhowski, B. Johnson, N. Newbury, “Diode-pumped solid state laser based sensors for cone penetrometer applications,” (Aerodyne Research, Billerica, Mass., 1997).

J. J. Zayhowski, C. Dill, C. Cook, J. L. Daneu, “Mid- and high-power passively Q-switched microchip lasers,” in Advanced Solid-State Lasers, M. M. Fejer, U. Keller, H. Injeyan, eds. Vol. 26 in OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 178–186.

H. G. Danielmeyer, “Progress in Nd:YAG Lasers,” in Lasers, A. K. Levine, A. J. DeMaria, eds. (Marcel Dekker, New York, 1976), Vol. 4.

A. A. Kaminskii, Laser Crystals, Their Physics and Properties, 2nd ed. (Springer-Verlag, Berlin, 1990), p. 242.

J. J. Zayhowski, C. C. Cook, J. Wormhoudt, J. H. Shorter, “Passively Q-switched 214.8-nm Nd:YAG/Cr4+:YAG microchip-laser system for the detection of NO,” in Advanced Solid State Lasers, H. Injeyan, U. Keller, C. Marshall, eds., Vol. 34 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000).

J. Wormhoudt, J. H. Shorter, J. J. Zayhowski, “Diode-pumped Nd:YAG/Cr4+:YAG microchip-laser system at 214.8 nm for the detection of NO,” (Aerodyne Research, Billerica, Mass., 1999).

R. Engleman, P. E. Rouse, H. M. Peek, V. D. Balamonte, “Beta and gamma band systems of nitric oxide,” (Los Alamos Scientific Laboratory, Los Alamos, N.M., 1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of 1.074-µm passively Q-switched microchip laser.

Fig. 2
Fig. 2

Theoretical reflectivity of the laser output coupler.

Fig. 3
Fig. 3

Schematic of the optical head of the fifth-harmonic 214.8-nm microchip laser source.

Fig. 4
Fig. 4

Photograph of the optical head of the fifth-harmonic 214.8-nm microchip laser source.

Fig. 5
Fig. 5

Schematic diagram of the apparatus used in NO fluorescence observations.

Fig. 6
Fig. 6

Observed NO fluorescence excitation spectrum at 122 Torr and at NO concentration of 0.62 ppmv (open circles and dashed curve) and model prediction.

Fig. 7
Fig. 7

Observed NO fluorescence excitation spectrum at 740 Torr and at NO concentration of 4.2 ppmv (dashed curve) and model prediction.

Fig. 8
Fig. 8

Plot of fluorescence signal with changing NO concentration at 730 Torr.

Fig. 9
Fig. 9

Fluorescence signal trace as NO concentration was changed from 0 to 0.247 ppmv.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S=ne/nnJ/nSJqvv/τ/8πcν2.
S=2.3×10-6ne/nnJ/nSJ/ν2.

Metrics