Abstract

An optical frequency comb generator, based on a simple electro-optic modulator in an optical resonator, can produce high-repetition-rate picosecond pulses. Unlike conventional picosecond lasers, the properties of these pulses are greatly affected by detuning the optical cavity and by dispersion caused by the electro-optic crystal. Picosecond pulses were studied in a physical device by numerical simulation and intensity autocorrelation measurements. The pulse width and pulse-to-pulse spacing were greatly affected by detuning the input laser frequency and the resonance of the optical resonator, and the numerical simulations showed that dispersion causes temporal ripples that are antisymmetric between pulse pairs.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Udem, J. Reichert, R. Holzwarth, T. W. Hänsch, “Accurate measurement of large optical frequency differences with a mode-locked laser,” Opt. Lett. 24, 881–883 (1999).
    [CrossRef]
  2. G. M. Macfarlane, A. S. Bell, E. Riis, A. I. Ferguson, “Optical comb generator as an efficient short-pulse source,” Opt. Lett. 21, 534–536 (1996).
    [CrossRef] [PubMed]
  3. H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
    [CrossRef]
  4. S. Arahira, Y. Matsui, T. Kunii, S. Oshiba, Y. Ogawa, “Transform-limited optical short-pulse generation at high repetition rate over 40 GHz from a monolithic passive mode-locked DBR laser diode,” IEEE Photon. Technol. Lett. 5, 1362–1365 (1993).
    [CrossRef]
  5. K. Imai, M. Kourogi, M. Ohtsu, “30-THz span optical frequency comb generation by self-phase modulation in an optical fiber,” IEEE J. Quantum Electron. 34, 54–60 (1998).
    [CrossRef]
  6. M. Kourogi, K. Nakagawa, M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993).
    [CrossRef]
  7. M. Kourogi, B. Widiyatomoko, Y. Takeuchi, M. Ohtsu, “Limit of optical-frequency comb generation due to material dispersion,” IEEE J. Quantum Electron. 31, 2120–2125 (1995).
    [CrossRef]
  8. U. Sterr, B. Lipphardt, A. Wolf, H. R. Telle, “A novel stabilization method for an optical frequency comb generator,” IEEE Trans. Instrum. Meas. 48, 574–577 (1999).
    [CrossRef]
  9. T. Kobayashi, T. Sueta, Y. Cho, Y. Matsuo, “High-repetition rate optical pulse generator using a Fabry–Perot electro-optic modulator,” Appl. Phys. Lett. 21, 341–343 (1972).
    [CrossRef]
  10. M. Kourogi, “Optical frequency comb generators and their applications,” in Frequency Control of Semiconductor Lasers, M. Ohtsu, ed. (Wiley, New York, 1996), pp. 95–135.
  11. K. L. Sala, A. K. Wallace, G. E. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. QE-16, 990–996 (1980).
    [CrossRef]
  12. L. R. Brothers, N. C. Wong, “Dispersion compensation for terahertz optical frequency comb generation,” Opt. Lett. 22, 1015–1017 (1997).
    [CrossRef] [PubMed]

1999 (3)

T. Udem, J. Reichert, R. Holzwarth, T. W. Hänsch, “Accurate measurement of large optical frequency differences with a mode-locked laser,” Opt. Lett. 24, 881–883 (1999).
[CrossRef]

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[CrossRef]

U. Sterr, B. Lipphardt, A. Wolf, H. R. Telle, “A novel stabilization method for an optical frequency comb generator,” IEEE Trans. Instrum. Meas. 48, 574–577 (1999).
[CrossRef]

1998 (1)

K. Imai, M. Kourogi, M. Ohtsu, “30-THz span optical frequency comb generation by self-phase modulation in an optical fiber,” IEEE J. Quantum Electron. 34, 54–60 (1998).
[CrossRef]

1997 (1)

1996 (1)

1995 (1)

M. Kourogi, B. Widiyatomoko, Y. Takeuchi, M. Ohtsu, “Limit of optical-frequency comb generation due to material dispersion,” IEEE J. Quantum Electron. 31, 2120–2125 (1995).
[CrossRef]

1993 (2)

S. Arahira, Y. Matsui, T. Kunii, S. Oshiba, Y. Ogawa, “Transform-limited optical short-pulse generation at high repetition rate over 40 GHz from a monolithic passive mode-locked DBR laser diode,” IEEE Photon. Technol. Lett. 5, 1362–1365 (1993).
[CrossRef]

M. Kourogi, K. Nakagawa, M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993).
[CrossRef]

1980 (1)

K. L. Sala, A. K. Wallace, G. E. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. QE-16, 990–996 (1980).
[CrossRef]

1972 (1)

T. Kobayashi, T. Sueta, Y. Cho, Y. Matsuo, “High-repetition rate optical pulse generator using a Fabry–Perot electro-optic modulator,” Appl. Phys. Lett. 21, 341–343 (1972).
[CrossRef]

Arahira, S.

S. Arahira, Y. Matsui, T. Kunii, S. Oshiba, Y. Ogawa, “Transform-limited optical short-pulse generation at high repetition rate over 40 GHz from a monolithic passive mode-locked DBR laser diode,” IEEE Photon. Technol. Lett. 5, 1362–1365 (1993).
[CrossRef]

Bell, A. S.

Brothers, L. R.

Cho, Y.

T. Kobayashi, T. Sueta, Y. Cho, Y. Matsuo, “High-repetition rate optical pulse generator using a Fabry–Perot electro-optic modulator,” Appl. Phys. Lett. 21, 341–343 (1972).
[CrossRef]

Dunlop, A. E.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[CrossRef]

Ferguson, A. I.

Hall, G. E.

K. L. Sala, A. K. Wallace, G. E. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. QE-16, 990–996 (1980).
[CrossRef]

Hänsch, T. W.

Holzwarth, R.

Imai, K.

K. Imai, M. Kourogi, M. Ohtsu, “30-THz span optical frequency comb generation by self-phase modulation in an optical fiber,” IEEE J. Quantum Electron. 34, 54–60 (1998).
[CrossRef]

Keller, U.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[CrossRef]

Kobayashi, T.

T. Kobayashi, T. Sueta, Y. Cho, Y. Matsuo, “High-repetition rate optical pulse generator using a Fabry–Perot electro-optic modulator,” Appl. Phys. Lett. 21, 341–343 (1972).
[CrossRef]

Kourogi, M.

K. Imai, M. Kourogi, M. Ohtsu, “30-THz span optical frequency comb generation by self-phase modulation in an optical fiber,” IEEE J. Quantum Electron. 34, 54–60 (1998).
[CrossRef]

M. Kourogi, B. Widiyatomoko, Y. Takeuchi, M. Ohtsu, “Limit of optical-frequency comb generation due to material dispersion,” IEEE J. Quantum Electron. 31, 2120–2125 (1995).
[CrossRef]

M. Kourogi, K. Nakagawa, M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993).
[CrossRef]

M. Kourogi, “Optical frequency comb generators and their applications,” in Frequency Control of Semiconductor Lasers, M. Ohtsu, ed. (Wiley, New York, 1996), pp. 95–135.

Kunii, T.

S. Arahira, Y. Matsui, T. Kunii, S. Oshiba, Y. Ogawa, “Transform-limited optical short-pulse generation at high repetition rate over 40 GHz from a monolithic passive mode-locked DBR laser diode,” IEEE Photon. Technol. Lett. 5, 1362–1365 (1993).
[CrossRef]

Lipphardt, B.

U. Sterr, B. Lipphardt, A. Wolf, H. R. Telle, “A novel stabilization method for an optical frequency comb generator,” IEEE Trans. Instrum. Meas. 48, 574–577 (1999).
[CrossRef]

Macfarlane, G. M.

Matsui, Y.

S. Arahira, Y. Matsui, T. Kunii, S. Oshiba, Y. Ogawa, “Transform-limited optical short-pulse generation at high repetition rate over 40 GHz from a monolithic passive mode-locked DBR laser diode,” IEEE Photon. Technol. Lett. 5, 1362–1365 (1993).
[CrossRef]

Matsuo, Y.

T. Kobayashi, T. Sueta, Y. Cho, Y. Matsuo, “High-repetition rate optical pulse generator using a Fabry–Perot electro-optic modulator,” Appl. Phys. Lett. 21, 341–343 (1972).
[CrossRef]

Nakagawa, K.

M. Kourogi, K. Nakagawa, M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993).
[CrossRef]

Ogawa, Y.

S. Arahira, Y. Matsui, T. Kunii, S. Oshiba, Y. Ogawa, “Transform-limited optical short-pulse generation at high repetition rate over 40 GHz from a monolithic passive mode-locked DBR laser diode,” IEEE Photon. Technol. Lett. 5, 1362–1365 (1993).
[CrossRef]

Ohtsu, M.

K. Imai, M. Kourogi, M. Ohtsu, “30-THz span optical frequency comb generation by self-phase modulation in an optical fiber,” IEEE J. Quantum Electron. 34, 54–60 (1998).
[CrossRef]

M. Kourogi, B. Widiyatomoko, Y. Takeuchi, M. Ohtsu, “Limit of optical-frequency comb generation due to material dispersion,” IEEE J. Quantum Electron. 31, 2120–2125 (1995).
[CrossRef]

M. Kourogi, K. Nakagawa, M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993).
[CrossRef]

Oshiba, S.

S. Arahira, Y. Matsui, T. Kunii, S. Oshiba, Y. Ogawa, “Transform-limited optical short-pulse generation at high repetition rate over 40 GHz from a monolithic passive mode-locked DBR laser diode,” IEEE Photon. Technol. Lett. 5, 1362–1365 (1993).
[CrossRef]

Reichert, J.

Riis, E.

Sala, K. L.

K. L. Sala, A. K. Wallace, G. E. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. QE-16, 990–996 (1980).
[CrossRef]

Steinmeyer, G.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[CrossRef]

Stenger, J.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[CrossRef]

Sterr, U.

U. Sterr, B. Lipphardt, A. Wolf, H. R. Telle, “A novel stabilization method for an optical frequency comb generator,” IEEE Trans. Instrum. Meas. 48, 574–577 (1999).
[CrossRef]

Sueta, T.

T. Kobayashi, T. Sueta, Y. Cho, Y. Matsuo, “High-repetition rate optical pulse generator using a Fabry–Perot electro-optic modulator,” Appl. Phys. Lett. 21, 341–343 (1972).
[CrossRef]

Sutter, D. H.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[CrossRef]

Takeuchi, Y.

M. Kourogi, B. Widiyatomoko, Y. Takeuchi, M. Ohtsu, “Limit of optical-frequency comb generation due to material dispersion,” IEEE J. Quantum Electron. 31, 2120–2125 (1995).
[CrossRef]

Telle, H. R.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[CrossRef]

U. Sterr, B. Lipphardt, A. Wolf, H. R. Telle, “A novel stabilization method for an optical frequency comb generator,” IEEE Trans. Instrum. Meas. 48, 574–577 (1999).
[CrossRef]

Udem, T.

Wallace, A. K.

K. L. Sala, A. K. Wallace, G. E. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. QE-16, 990–996 (1980).
[CrossRef]

Widiyatomoko, B.

M. Kourogi, B. Widiyatomoko, Y. Takeuchi, M. Ohtsu, “Limit of optical-frequency comb generation due to material dispersion,” IEEE J. Quantum Electron. 31, 2120–2125 (1995).
[CrossRef]

Wolf, A.

U. Sterr, B. Lipphardt, A. Wolf, H. R. Telle, “A novel stabilization method for an optical frequency comb generator,” IEEE Trans. Instrum. Meas. 48, 574–577 (1999).
[CrossRef]

Wong, N. C.

Appl. Phys. B (1)

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

T. Kobayashi, T. Sueta, Y. Cho, Y. Matsuo, “High-repetition rate optical pulse generator using a Fabry–Perot electro-optic modulator,” Appl. Phys. Lett. 21, 341–343 (1972).
[CrossRef]

IEEE J. Quantum Electron. (4)

K. Imai, M. Kourogi, M. Ohtsu, “30-THz span optical frequency comb generation by self-phase modulation in an optical fiber,” IEEE J. Quantum Electron. 34, 54–60 (1998).
[CrossRef]

M. Kourogi, K. Nakagawa, M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993).
[CrossRef]

M. Kourogi, B. Widiyatomoko, Y. Takeuchi, M. Ohtsu, “Limit of optical-frequency comb generation due to material dispersion,” IEEE J. Quantum Electron. 31, 2120–2125 (1995).
[CrossRef]

K. L. Sala, A. K. Wallace, G. E. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. QE-16, 990–996 (1980).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. Arahira, Y. Matsui, T. Kunii, S. Oshiba, Y. Ogawa, “Transform-limited optical short-pulse generation at high repetition rate over 40 GHz from a monolithic passive mode-locked DBR laser diode,” IEEE Photon. Technol. Lett. 5, 1362–1365 (1993).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

U. Sterr, B. Lipphardt, A. Wolf, H. R. Telle, “A novel stabilization method for an optical frequency comb generator,” IEEE Trans. Instrum. Meas. 48, 574–577 (1999).
[CrossRef]

Opt. Lett. (3)

Other (1)

M. Kourogi, “Optical frequency comb generators and their applications,” in Frequency Control of Semiconductor Lasers, M. Ohtsu, ed. (Wiley, New York, 1996), pp. 95–135.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Diagram of the autocorrelator that we used for the OFCG experiment: ECLD, extended cavity laser diode; LD, laser diode; PMT, photomultiplier tube.

Fig. 2
Fig. 2

Measured OFCG sidebands, showing that the OFCG spectrum becomes narrower as β′ is detuned. The solid curves show the modeled spectrum.

Fig. 3
Fig. 3

Modeled OFCG spectra showing the dependence on β′ detuning and the sharp cutoff that is due to dispersion limits. The difference between β′ > 0 and β′ < 0 can be seen only at the low-energy wings of the spectra.

Fig. 4
Fig. 4

Measured intensity autocorrelation functions, showing that the pulse width and intensity increase as β′ is detuned. The solid curves show the modeled intensity autocorrelation functions.

Fig. 5
Fig. 5

Modeled time structure of the OFCG pulses, showing that pulse spacing becomes uneven as β′ is detuned.

Fig. 6
Fig. 6

Modeled time structure for the OFCG pulses if β > π/2. A new pair of pulses begins to form on the other half of the modulation cycle as β′ approaches π/2.

Fig. 7
Fig. 7

Modeled time structure for the OFCG pulses assuming different GVD in EOM crystal. The phase shift caused by the dispersion produces temporal ripples and broadens the pulses.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Pk=P0 exp-π|k|βF.
Δf=2-β+βM1/2π,
D=λ0c2nλ2λ=λ0,
2πLoptνrest/c+2ϕmt=0 mod 2π,
Pav  1-β/β-1.
Et=kEk exp2πjν0+kνmt,
Ek=r1r2 exp2jϕkq Jq2βEk-q+t1Ekin,
ϕk=β+k πΔνmFSR+k22GVD Lc2πνm2
E=E+Ein.
τp=12βFνm.
0=β-β sin2πνmt-Nπ.
δt=δν02βνmFSR cos2πνmt.

Metrics