Abstract

We describe a method to estimate the thermal conductivity of the substrate, the dielectric layer, and the magneto-optic (MO) layer of MO recording media. The method relies on the disappearance of the polar Kerr rotation above the Curie temperature of the MO layer. We obtain the thermal conductivities by taking into account the differences in the heat diffusion behavior under different sized focused spots. The results are reliable to better than 5% accuracy.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Awano, N. Ohta, “Magnetooptical recording technology toward 100 Gb/in2,” IEEE J. Sel. Top. Quantum Electron. 4, 815–820 (1998).
    [CrossRef]
  2. D. G. Cahill, H. E. Fishcher, T. Klitsner, E. T. Swartz, T. D. Pohl, “Thermal conductivity of thin film: measurements and understanding,” J. Vac. Sci. Technol. A 7, 1259–1266 (1989).
    [CrossRef]
  3. Y. Agari, A. Veda, S. Nagai, “Measurement of thermal diffusivity and specific heat capacity of polymers by laser flash method,” J. Polym. Sci. Part B: Polym. Phys. 33, 33–42 (1995).
    [CrossRef]
  4. Z. L. Wu, M. Thomsen, P. K. Kuo, Y. S. Lu, C. Stolz, M. Kozlowski, “Overview of photothermal characterization of optical thin film coatings,” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 465–481 (1996).
    [CrossRef]
  5. R. Forster, E. Gmelin, “Thermal conductivity and diffusivity measurements in the sub-µm and sub-µs scale on centimeter area samples using a microthermocouple,” Rev. Sci. Instrum. 67, 4246–4255 (1996).
    [CrossRef]
  6. S. Covorkov, W. Ruderman, “A new method for measuring thermal conductivity of thin films,” Rev. Sci. Instrum. 68, 3828–3834 (1997).
    [CrossRef]
  7. W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
    [CrossRef]
  8. Y. C. Hsieh, M. Mansuripur, J. Volkmer, A. Brewen, “Measurement of the thermal coefficients of nonreversible phase-change optical recording films,” Appl. Opt. 36, 866–872 (1997).
    [CrossRef] [PubMed]
  9. C. Peng, M. Mansuripur, “Measurement of the thermal conductivity of erasable phase-change optical recording,” Appl. Opt. 39, 2347–2352 (2000).
    [CrossRef]
  10. H. Nakagawa, S. Nakamura, M. Takahashi, A. Arimoto, “Estimating the thermal conductivity of magneto-optical recording media,” Appl. Opt. 32, 4559–4562 (1992).
    [CrossRef]
  11. M. Mansuripur, J. K. Erwin, W. Bletscher, P. Khulbe, K. Sadeghi, X. Xun, A. Gupta, S. B. Mendes, “Static tester for characterization of phase-change, dye-polymer, and magneto-optical media of optical data storage,” Appl. Opt. 38, 7095–7104 (1999).
    [CrossRef]
  12. M. Mansuripur, G. A. N. Connell, J. W. Goodman, “Laser-induced local heating of multilayers,” Appl. Opt. 21, 1106–1114 (1982).
    [CrossRef] [PubMed]

2000 (1)

1999 (2)

W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

M. Mansuripur, J. K. Erwin, W. Bletscher, P. Khulbe, K. Sadeghi, X. Xun, A. Gupta, S. B. Mendes, “Static tester for characterization of phase-change, dye-polymer, and magneto-optical media of optical data storage,” Appl. Opt. 38, 7095–7104 (1999).
[CrossRef]

1998 (1)

H. Awano, N. Ohta, “Magnetooptical recording technology toward 100 Gb/in2,” IEEE J. Sel. Top. Quantum Electron. 4, 815–820 (1998).
[CrossRef]

1997 (2)

1996 (1)

R. Forster, E. Gmelin, “Thermal conductivity and diffusivity measurements in the sub-µm and sub-µs scale on centimeter area samples using a microthermocouple,” Rev. Sci. Instrum. 67, 4246–4255 (1996).
[CrossRef]

1995 (1)

Y. Agari, A. Veda, S. Nagai, “Measurement of thermal diffusivity and specific heat capacity of polymers by laser flash method,” J. Polym. Sci. Part B: Polym. Phys. 33, 33–42 (1995).
[CrossRef]

1992 (1)

H. Nakagawa, S. Nakamura, M. Takahashi, A. Arimoto, “Estimating the thermal conductivity of magneto-optical recording media,” Appl. Opt. 32, 4559–4562 (1992).
[CrossRef]

1989 (1)

D. G. Cahill, H. E. Fishcher, T. Klitsner, E. T. Swartz, T. D. Pohl, “Thermal conductivity of thin film: measurements and understanding,” J. Vac. Sci. Technol. A 7, 1259–1266 (1989).
[CrossRef]

1982 (1)

Agari, Y.

Y. Agari, A. Veda, S. Nagai, “Measurement of thermal diffusivity and specific heat capacity of polymers by laser flash method,” J. Polym. Sci. Part B: Polym. Phys. 33, 33–42 (1995).
[CrossRef]

Arimoto, A.

H. Nakagawa, S. Nakamura, M. Takahashi, A. Arimoto, “Estimating the thermal conductivity of magneto-optical recording media,” Appl. Opt. 32, 4559–4562 (1992).
[CrossRef]

Awano, H.

H. Awano, N. Ohta, “Magnetooptical recording technology toward 100 Gb/in2,” IEEE J. Sel. Top. Quantum Electron. 4, 815–820 (1998).
[CrossRef]

Bletscher, W.

Brewen, A.

Cahill, D. G.

D. G. Cahill, H. E. Fishcher, T. Klitsner, E. T. Swartz, T. D. Pohl, “Thermal conductivity of thin film: measurements and understanding,” J. Vac. Sci. Technol. A 7, 1259–1266 (1989).
[CrossRef]

Capinski, W. S.

W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

Cardona, M.

W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

Connell, G. A. N.

Covorkov, S.

S. Covorkov, W. Ruderman, “A new method for measuring thermal conductivity of thin films,” Rev. Sci. Instrum. 68, 3828–3834 (1997).
[CrossRef]

Erwin, J. K.

Fishcher, H. E.

D. G. Cahill, H. E. Fishcher, T. Klitsner, E. T. Swartz, T. D. Pohl, “Thermal conductivity of thin film: measurements and understanding,” J. Vac. Sci. Technol. A 7, 1259–1266 (1989).
[CrossRef]

Forster, R.

R. Forster, E. Gmelin, “Thermal conductivity and diffusivity measurements in the sub-µm and sub-µs scale on centimeter area samples using a microthermocouple,” Rev. Sci. Instrum. 67, 4246–4255 (1996).
[CrossRef]

Gmelin, E.

R. Forster, E. Gmelin, “Thermal conductivity and diffusivity measurements in the sub-µm and sub-µs scale on centimeter area samples using a microthermocouple,” Rev. Sci. Instrum. 67, 4246–4255 (1996).
[CrossRef]

Goodman, J. W.

Gupta, A.

Hsieh, Y. C.

Katzer, D. S.

W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

Khulbe, P.

Klitsner, T.

D. G. Cahill, H. E. Fishcher, T. Klitsner, E. T. Swartz, T. D. Pohl, “Thermal conductivity of thin film: measurements and understanding,” J. Vac. Sci. Technol. A 7, 1259–1266 (1989).
[CrossRef]

Kozlowski, M.

Z. L. Wu, M. Thomsen, P. K. Kuo, Y. S. Lu, C. Stolz, M. Kozlowski, “Overview of photothermal characterization of optical thin film coatings,” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 465–481 (1996).
[CrossRef]

Kuo, P. K.

Z. L. Wu, M. Thomsen, P. K. Kuo, Y. S. Lu, C. Stolz, M. Kozlowski, “Overview of photothermal characterization of optical thin film coatings,” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 465–481 (1996).
[CrossRef]

Lu, Y. S.

Z. L. Wu, M. Thomsen, P. K. Kuo, Y. S. Lu, C. Stolz, M. Kozlowski, “Overview of photothermal characterization of optical thin film coatings,” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 465–481 (1996).
[CrossRef]

Mansuripur, M.

Maris, H. J.

W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

Mendes, S. B.

Nagai, S.

Y. Agari, A. Veda, S. Nagai, “Measurement of thermal diffusivity and specific heat capacity of polymers by laser flash method,” J. Polym. Sci. Part B: Polym. Phys. 33, 33–42 (1995).
[CrossRef]

Nakagawa, H.

H. Nakagawa, S. Nakamura, M. Takahashi, A. Arimoto, “Estimating the thermal conductivity of magneto-optical recording media,” Appl. Opt. 32, 4559–4562 (1992).
[CrossRef]

Nakamura, S.

H. Nakagawa, S. Nakamura, M. Takahashi, A. Arimoto, “Estimating the thermal conductivity of magneto-optical recording media,” Appl. Opt. 32, 4559–4562 (1992).
[CrossRef]

Ohta, N.

H. Awano, N. Ohta, “Magnetooptical recording technology toward 100 Gb/in2,” IEEE J. Sel. Top. Quantum Electron. 4, 815–820 (1998).
[CrossRef]

Peng, C.

Ploog, K.

W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

Pohl, T. D.

D. G. Cahill, H. E. Fishcher, T. Klitsner, E. T. Swartz, T. D. Pohl, “Thermal conductivity of thin film: measurements and understanding,” J. Vac. Sci. Technol. A 7, 1259–1266 (1989).
[CrossRef]

Ruderman, W.

S. Covorkov, W. Ruderman, “A new method for measuring thermal conductivity of thin films,” Rev. Sci. Instrum. 68, 3828–3834 (1997).
[CrossRef]

Ruf, T.

W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

Sadeghi, K.

Stolz, C.

Z. L. Wu, M. Thomsen, P. K. Kuo, Y. S. Lu, C. Stolz, M. Kozlowski, “Overview of photothermal characterization of optical thin film coatings,” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 465–481 (1996).
[CrossRef]

Swartz, E. T.

D. G. Cahill, H. E. Fishcher, T. Klitsner, E. T. Swartz, T. D. Pohl, “Thermal conductivity of thin film: measurements and understanding,” J. Vac. Sci. Technol. A 7, 1259–1266 (1989).
[CrossRef]

Takahashi, M.

H. Nakagawa, S. Nakamura, M. Takahashi, A. Arimoto, “Estimating the thermal conductivity of magneto-optical recording media,” Appl. Opt. 32, 4559–4562 (1992).
[CrossRef]

Thomsen, M.

Z. L. Wu, M. Thomsen, P. K. Kuo, Y. S. Lu, C. Stolz, M. Kozlowski, “Overview of photothermal characterization of optical thin film coatings,” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 465–481 (1996).
[CrossRef]

Veda, A.

Y. Agari, A. Veda, S. Nagai, “Measurement of thermal diffusivity and specific heat capacity of polymers by laser flash method,” J. Polym. Sci. Part B: Polym. Phys. 33, 33–42 (1995).
[CrossRef]

Volkmer, J.

Wu, Z. L.

Z. L. Wu, M. Thomsen, P. K. Kuo, Y. S. Lu, C. Stolz, M. Kozlowski, “Overview of photothermal characterization of optical thin film coatings,” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 465–481 (1996).
[CrossRef]

Xun, X.

Appl. Opt. (5)

IEEE J. Sel. Top. Quantum Electron. (1)

H. Awano, N. Ohta, “Magnetooptical recording technology toward 100 Gb/in2,” IEEE J. Sel. Top. Quantum Electron. 4, 815–820 (1998).
[CrossRef]

J. Polym. Sci. Part B: Polym. Phys. (1)

Y. Agari, A. Veda, S. Nagai, “Measurement of thermal diffusivity and specific heat capacity of polymers by laser flash method,” J. Polym. Sci. Part B: Polym. Phys. 33, 33–42 (1995).
[CrossRef]

J. Vac. Sci. Technol. A (1)

D. G. Cahill, H. E. Fishcher, T. Klitsner, E. T. Swartz, T. D. Pohl, “Thermal conductivity of thin film: measurements and understanding,” J. Vac. Sci. Technol. A 7, 1259–1266 (1989).
[CrossRef]

Phys. Rev. B (1)

W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

Rev. Sci. Instrum. (2)

R. Forster, E. Gmelin, “Thermal conductivity and diffusivity measurements in the sub-µm and sub-µs scale on centimeter area samples using a microthermocouple,” Rev. Sci. Instrum. 67, 4246–4255 (1996).
[CrossRef]

S. Covorkov, W. Ruderman, “A new method for measuring thermal conductivity of thin films,” Rev. Sci. Instrum. 68, 3828–3834 (1997).
[CrossRef]

Other (1)

Z. L. Wu, M. Thomsen, P. K. Kuo, Y. S. Lu, C. Stolz, M. Kozlowski, “Overview of photothermal characterization of optical thin film coatings,” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 465–481 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup (not to scale). The hot stage can change the temperature from room temperature to as much as 150 °C. A magnet is placed beneath the sample to supply as much as ±3 kOe of magnetic field.

Fig. 2
Fig. 2

(a) Calculated differential signal ΔS; (b) normalized Kerr signal ΔS/(S 1 + S 2); (c) derivative of ΔS with respect to the laser power P, dΔS/dP. At the critical power P = P C the temperature in the MO film at the center of the focused spot reaches the Curie temperature T C . In (a) and (b) the bending at P = P C is smooth. In (c) a dramatically turning point indicates P = P C .

Fig. 3
Fig. 3

Experimental data of (a) ΔS, (b) ΔS/(S 1 + S 2), and (c) dΔS/dP on sample S a at 0.6 NA at room temperature. Experimental data are fitted with the theoretical model to show their consistency. A minimum point in (c) shows P C = 2.32 mW.

Fig. 4
Fig. 4

S/dP under three different NA objectives measured on sample S a at room temperature. When NA is small, the central temperature is low, leading to large P C .

Fig. 5
Fig. 5

S/dP measured on sample S a at three hot stage (ambient) temperatures under 0.6 NA. The minimum in each curve corresponds to P C , which is large with a small ambient temperature.

Fig. 6
Fig. 6

(a) Experimental data of P C versus the hot stage temperature under three objectives on sample S a . Three fitting curves cross at the Curie temperature T C = 275 °C. (b) Same as (a) on sample S C .

Fig. 7
Fig. 7

Dependence of K Sub on K TbFeCo at NA’s of 0.6, 0.4, and 0.25 for sample S a . In the simulation, P C = 2.32 mW is used for 0.6 NA, P C = 3.0 mW for 0.4 NA, and P C = 5.49 mW for 0.25 NA. T C - T a = 249.8 °C is used for all NA’s.

Fig. 8
Fig. 8

Dependence of K Sub on K SiN at NA’s of 0.6 and 0.4 for sample S b . In the simulation, P C = 2.16 mW is used for 0.6 NA and P C = 2.9 mW for 0.4 NA. T C - T a = 249.8 °C is used for both NA’s.

Fig. 9
Fig. 9

Dependence of K TbFeCo on K SiN at NA’s of 0.6, 0.4, and 0.25 for sample S C . In the simulation, P C = 2.3 mW is used for 0.6 NA, P C = 3.04 mW for 0.4 NA, P C = 5.4 mW for 0.25 NA. T C - T a = 249.8 °C is used for all NA’s.

Tables (4)

Tables Icon

Table 1 Multilayer Structure of the Samples

Tables Icon

Table 2 Refractive Indices at 643 nm

Tables Icon

Table 3 Measured Values of the FWHM Focused Spot at the Focal Plane of the Objective Lens at λ = 643 nm

Tables Icon

Table 4 Estimated Values of the Thermal Conductivity K for the MO Recording Mediaa

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ΔS=2S1+S21r020 θkrexp-r/r02rdr,
S1+S2=RP,
ΔS=2θk0RP1-rT2rT2+r02PPCPPC2θk0R1-rT2rT2+r02PP/PC-rT2/r02PPC.
ΔSS1+S2=2θk01-rT2rT2+r02PPCPPC2θk01-rT2rT2+r02P/PC-rT2/r02PPC,
dΔSdP=2θk0R1-2rT2rT2+r02PPCPPC2θk0R1-rT2rT2+r021-rT2r02P/PC-rT2/r02PPC.

Metrics