Abstract

A simple and accurate method for measuring the front facet modal reflectivity of a Fabry–Perot laser diode is presented. In this method, optical feedback from an external mirror of known reflectivity, R ext, is used to alter the laser diode threshold current. The effect of the external mirror and front facet reflectivities on the threshold current then allows for a measurement of the front facet modal reflectivity of the laser diode and is theoretically and experimentally studied. This method was used to measure a facet reflectivity of R 2 = 0.0151(+0.0018/-0.0032) [R 2 = 0.00592(+0.00085/-0.00123)] for a commercially antireflection-coated facet of a laser diode with a center wavelength of 795 nm (935 nm). The results of the reflectivity measurements based on the threshold current as a function of the external mirror reflectivity are compared with the results of the reflectivity measurements based on modulation depth of the optical spectrum [IEEE J. Quantum Electron. QE-19, 493 (1983)].

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. F. Sharfin, A. Mooradian, C. M. Harding, R. G. Waters, “Lateral-mode selectivity in an external-cavity diode laser with residual facet reflectivity,” IEEE J. Quantum Electron. 23, 1756–1763 (1990).
    [CrossRef]
  2. B. Boggs, C. Greiner, T. Wang, H. Lin, T. W. Mossberg, “Simple high-coherence rapidly tunable external-cavity diode laser,” Opt. Lett. 23, 1906–1908 (1998).
    [CrossRef]
  3. D. M. Kane, A. P. Willis, “External cavity diode lasers with different devices and collimating optics,” Appl. Opt. 34, 4316–4325 (1995).
    [CrossRef] [PubMed]
  4. S. A. Merrit, C. Dauga, S. Fox, I. F. Wu, M. Dagenais, “Measurement of the facet modal reflectivity spectrum in high quality semiconductor traveling wave amplifiers,” J. Lightwave Technol. 13, 430–433 (1995).
    [CrossRef]
  5. B. Jaskorzyaska, J. Nilsson, L. Thylen, “Modal reflectivity of untapered, tilted-facet, and antireflection-coated diode-laser amplifiers,” J. Opt. Soc. Am. B 8, 484–493 (1991).
    [CrossRef]
  6. J. N. Walpole, “Semiconductor amplifiers and lasers with tapered gain regions,” Opt. Quantum Technol. 28, 623–645 (1996).
    [CrossRef]
  7. J. Landreau, H. Nakajima, “In situ reflectivity monitoring of antireflection coatings on semiconductor laser facets through facet loss induced forward voltage changes,” Appl. Phys. Lett. 56, 2376–2378 (1990).
    [CrossRef]
  8. I. F. Wu, I. Riant, J. M. Verdiell, M. Dagenais, “Real-time in situ monitoring of antireflection coatings for semiconductor laser amplifiers by ellipsometry,” IEEE Photon. Technol. Lett. 4, 991–993 (1992).
    [CrossRef]
  9. H. Ganesha Shanbhogue, C. L. Nagendra, M. N. Annapurna, S. Ajith Kumar, G. K. M. Thutupalli, “Multilayer antireflection coatings for the visible and near-infrared regions,” Appl. Opt. 36, 6339–6351 (1997).
    [CrossRef]
  10. C. A. Berseth, A. Schonberg, O. Dehaese, K. Leifer, A. Rudra, E. Kapon, “Experimental method for high-accuracy reflectivity-spectrum measurements,” Appl. Opt. 37, 6671–6676 (1998).
    [CrossRef]
  11. R. H. Clarke, “Theoretical performance of an antireflection coating for a diode laser amplifier,” Int. J. Electron. 53, 495–499 (1983).
    [CrossRef]
  12. I. P. Kaminow, G. Eisenstein, L. W. Stulz, “Measurement of the modal reflectivity of an antireflection coated superluminescent diode,” IEEE J. Quantum Electron. QE-19, 493–495 (1983).
    [CrossRef]
  13. M. R. Daza, A. Tarun, K. Fujita, C. Saloma, “Temporal coherence behavior of a semiconductor laser under strong optical feedback,” Opt. Commun. 161, 123–131 (1999).
    [CrossRef]
  14. G. P. Agrawal, ed., Semiconductor Lasers, Past, Present, and Future, AIP Series in Theoretical and Applied Optics (American Institute of Physics, Woodbury, N.Y., 1995).
  15. L. F. Stokes, “Accurate measurement of reflectivity over wavelength of a laser diode antireflection coating using an external cavity laser,” J. Lightwave Technol. 11, 1162–1167 (1993).
    [CrossRef]
  16. P. Hariharan, Optical Interferometry (Academic, Orlando, Fla., 1985), pp. 12, 43.
  17. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, New York, 1995), Chap. 18.
    [CrossRef]

1999 (1)

M. R. Daza, A. Tarun, K. Fujita, C. Saloma, “Temporal coherence behavior of a semiconductor laser under strong optical feedback,” Opt. Commun. 161, 123–131 (1999).
[CrossRef]

1998 (2)

1997 (1)

1996 (1)

J. N. Walpole, “Semiconductor amplifiers and lasers with tapered gain regions,” Opt. Quantum Technol. 28, 623–645 (1996).
[CrossRef]

1995 (2)

D. M. Kane, A. P. Willis, “External cavity diode lasers with different devices and collimating optics,” Appl. Opt. 34, 4316–4325 (1995).
[CrossRef] [PubMed]

S. A. Merrit, C. Dauga, S. Fox, I. F. Wu, M. Dagenais, “Measurement of the facet modal reflectivity spectrum in high quality semiconductor traveling wave amplifiers,” J. Lightwave Technol. 13, 430–433 (1995).
[CrossRef]

1993 (1)

L. F. Stokes, “Accurate measurement of reflectivity over wavelength of a laser diode antireflection coating using an external cavity laser,” J. Lightwave Technol. 11, 1162–1167 (1993).
[CrossRef]

1992 (1)

I. F. Wu, I. Riant, J. M. Verdiell, M. Dagenais, “Real-time in situ monitoring of antireflection coatings for semiconductor laser amplifiers by ellipsometry,” IEEE Photon. Technol. Lett. 4, 991–993 (1992).
[CrossRef]

1991 (1)

1990 (2)

W. F. Sharfin, A. Mooradian, C. M. Harding, R. G. Waters, “Lateral-mode selectivity in an external-cavity diode laser with residual facet reflectivity,” IEEE J. Quantum Electron. 23, 1756–1763 (1990).
[CrossRef]

J. Landreau, H. Nakajima, “In situ reflectivity monitoring of antireflection coatings on semiconductor laser facets through facet loss induced forward voltage changes,” Appl. Phys. Lett. 56, 2376–2378 (1990).
[CrossRef]

1983 (2)

R. H. Clarke, “Theoretical performance of an antireflection coating for a diode laser amplifier,” Int. J. Electron. 53, 495–499 (1983).
[CrossRef]

I. P. Kaminow, G. Eisenstein, L. W. Stulz, “Measurement of the modal reflectivity of an antireflection coated superluminescent diode,” IEEE J. Quantum Electron. QE-19, 493–495 (1983).
[CrossRef]

Ajith Kumar, S.

Annapurna, M. N.

Berseth, C. A.

Boggs, B.

Clarke, R. H.

R. H. Clarke, “Theoretical performance of an antireflection coating for a diode laser amplifier,” Int. J. Electron. 53, 495–499 (1983).
[CrossRef]

Dagenais, M.

S. A. Merrit, C. Dauga, S. Fox, I. F. Wu, M. Dagenais, “Measurement of the facet modal reflectivity spectrum in high quality semiconductor traveling wave amplifiers,” J. Lightwave Technol. 13, 430–433 (1995).
[CrossRef]

I. F. Wu, I. Riant, J. M. Verdiell, M. Dagenais, “Real-time in situ monitoring of antireflection coatings for semiconductor laser amplifiers by ellipsometry,” IEEE Photon. Technol. Lett. 4, 991–993 (1992).
[CrossRef]

Dauga, C.

S. A. Merrit, C. Dauga, S. Fox, I. F. Wu, M. Dagenais, “Measurement of the facet modal reflectivity spectrum in high quality semiconductor traveling wave amplifiers,” J. Lightwave Technol. 13, 430–433 (1995).
[CrossRef]

Daza, M. R.

M. R. Daza, A. Tarun, K. Fujita, C. Saloma, “Temporal coherence behavior of a semiconductor laser under strong optical feedback,” Opt. Commun. 161, 123–131 (1999).
[CrossRef]

Dehaese, O.

Eisenstein, G.

I. P. Kaminow, G. Eisenstein, L. W. Stulz, “Measurement of the modal reflectivity of an antireflection coated superluminescent diode,” IEEE J. Quantum Electron. QE-19, 493–495 (1983).
[CrossRef]

Fox, S.

S. A. Merrit, C. Dauga, S. Fox, I. F. Wu, M. Dagenais, “Measurement of the facet modal reflectivity spectrum in high quality semiconductor traveling wave amplifiers,” J. Lightwave Technol. 13, 430–433 (1995).
[CrossRef]

Fujita, K.

M. R. Daza, A. Tarun, K. Fujita, C. Saloma, “Temporal coherence behavior of a semiconductor laser under strong optical feedback,” Opt. Commun. 161, 123–131 (1999).
[CrossRef]

Ganesha Shanbhogue, H.

Greiner, C.

Harding, C. M.

W. F. Sharfin, A. Mooradian, C. M. Harding, R. G. Waters, “Lateral-mode selectivity in an external-cavity diode laser with residual facet reflectivity,” IEEE J. Quantum Electron. 23, 1756–1763 (1990).
[CrossRef]

Hariharan, P.

P. Hariharan, Optical Interferometry (Academic, Orlando, Fla., 1985), pp. 12, 43.

Jaskorzyaska, B.

Kaminow, I. P.

I. P. Kaminow, G. Eisenstein, L. W. Stulz, “Measurement of the modal reflectivity of an antireflection coated superluminescent diode,” IEEE J. Quantum Electron. QE-19, 493–495 (1983).
[CrossRef]

Kane, D. M.

Kapon, E.

Landreau, J.

J. Landreau, H. Nakajima, “In situ reflectivity monitoring of antireflection coatings on semiconductor laser facets through facet loss induced forward voltage changes,” Appl. Phys. Lett. 56, 2376–2378 (1990).
[CrossRef]

Leifer, K.

Lin, H.

Mandel, L.

L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, New York, 1995), Chap. 18.
[CrossRef]

Merrit, S. A.

S. A. Merrit, C. Dauga, S. Fox, I. F. Wu, M. Dagenais, “Measurement of the facet modal reflectivity spectrum in high quality semiconductor traveling wave amplifiers,” J. Lightwave Technol. 13, 430–433 (1995).
[CrossRef]

Mooradian, A.

W. F. Sharfin, A. Mooradian, C. M. Harding, R. G. Waters, “Lateral-mode selectivity in an external-cavity diode laser with residual facet reflectivity,” IEEE J. Quantum Electron. 23, 1756–1763 (1990).
[CrossRef]

Mossberg, T. W.

Nagendra, C. L.

Nakajima, H.

J. Landreau, H. Nakajima, “In situ reflectivity monitoring of antireflection coatings on semiconductor laser facets through facet loss induced forward voltage changes,” Appl. Phys. Lett. 56, 2376–2378 (1990).
[CrossRef]

Nilsson, J.

Riant, I.

I. F. Wu, I. Riant, J. M. Verdiell, M. Dagenais, “Real-time in situ monitoring of antireflection coatings for semiconductor laser amplifiers by ellipsometry,” IEEE Photon. Technol. Lett. 4, 991–993 (1992).
[CrossRef]

Rudra, A.

Saloma, C.

M. R. Daza, A. Tarun, K. Fujita, C. Saloma, “Temporal coherence behavior of a semiconductor laser under strong optical feedback,” Opt. Commun. 161, 123–131 (1999).
[CrossRef]

Schonberg, A.

Sharfin, W. F.

W. F. Sharfin, A. Mooradian, C. M. Harding, R. G. Waters, “Lateral-mode selectivity in an external-cavity diode laser with residual facet reflectivity,” IEEE J. Quantum Electron. 23, 1756–1763 (1990).
[CrossRef]

Stokes, L. F.

L. F. Stokes, “Accurate measurement of reflectivity over wavelength of a laser diode antireflection coating using an external cavity laser,” J. Lightwave Technol. 11, 1162–1167 (1993).
[CrossRef]

Stulz, L. W.

I. P. Kaminow, G. Eisenstein, L. W. Stulz, “Measurement of the modal reflectivity of an antireflection coated superluminescent diode,” IEEE J. Quantum Electron. QE-19, 493–495 (1983).
[CrossRef]

Tarun, A.

M. R. Daza, A. Tarun, K. Fujita, C. Saloma, “Temporal coherence behavior of a semiconductor laser under strong optical feedback,” Opt. Commun. 161, 123–131 (1999).
[CrossRef]

Thutupalli, G. K. M.

Thylen, L.

Verdiell, J. M.

I. F. Wu, I. Riant, J. M. Verdiell, M. Dagenais, “Real-time in situ monitoring of antireflection coatings for semiconductor laser amplifiers by ellipsometry,” IEEE Photon. Technol. Lett. 4, 991–993 (1992).
[CrossRef]

Walpole, J. N.

J. N. Walpole, “Semiconductor amplifiers and lasers with tapered gain regions,” Opt. Quantum Technol. 28, 623–645 (1996).
[CrossRef]

Wang, T.

Waters, R. G.

W. F. Sharfin, A. Mooradian, C. M. Harding, R. G. Waters, “Lateral-mode selectivity in an external-cavity diode laser with residual facet reflectivity,” IEEE J. Quantum Electron. 23, 1756–1763 (1990).
[CrossRef]

Willis, A. P.

Wolf, E.

L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, New York, 1995), Chap. 18.
[CrossRef]

Wu, I. F.

S. A. Merrit, C. Dauga, S. Fox, I. F. Wu, M. Dagenais, “Measurement of the facet modal reflectivity spectrum in high quality semiconductor traveling wave amplifiers,” J. Lightwave Technol. 13, 430–433 (1995).
[CrossRef]

I. F. Wu, I. Riant, J. M. Verdiell, M. Dagenais, “Real-time in situ monitoring of antireflection coatings for semiconductor laser amplifiers by ellipsometry,” IEEE Photon. Technol. Lett. 4, 991–993 (1992).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

J. Landreau, H. Nakajima, “In situ reflectivity monitoring of antireflection coatings on semiconductor laser facets through facet loss induced forward voltage changes,” Appl. Phys. Lett. 56, 2376–2378 (1990).
[CrossRef]

IEEE J. Quantum Electron. (2)

W. F. Sharfin, A. Mooradian, C. M. Harding, R. G. Waters, “Lateral-mode selectivity in an external-cavity diode laser with residual facet reflectivity,” IEEE J. Quantum Electron. 23, 1756–1763 (1990).
[CrossRef]

I. P. Kaminow, G. Eisenstein, L. W. Stulz, “Measurement of the modal reflectivity of an antireflection coated superluminescent diode,” IEEE J. Quantum Electron. QE-19, 493–495 (1983).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

I. F. Wu, I. Riant, J. M. Verdiell, M. Dagenais, “Real-time in situ monitoring of antireflection coatings for semiconductor laser amplifiers by ellipsometry,” IEEE Photon. Technol. Lett. 4, 991–993 (1992).
[CrossRef]

Int. J. Electron. (1)

R. H. Clarke, “Theoretical performance of an antireflection coating for a diode laser amplifier,” Int. J. Electron. 53, 495–499 (1983).
[CrossRef]

J. Lightwave Technol. (2)

L. F. Stokes, “Accurate measurement of reflectivity over wavelength of a laser diode antireflection coating using an external cavity laser,” J. Lightwave Technol. 11, 1162–1167 (1993).
[CrossRef]

S. A. Merrit, C. Dauga, S. Fox, I. F. Wu, M. Dagenais, “Measurement of the facet modal reflectivity spectrum in high quality semiconductor traveling wave amplifiers,” J. Lightwave Technol. 13, 430–433 (1995).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

M. R. Daza, A. Tarun, K. Fujita, C. Saloma, “Temporal coherence behavior of a semiconductor laser under strong optical feedback,” Opt. Commun. 161, 123–131 (1999).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum Technol. (1)

J. N. Walpole, “Semiconductor amplifiers and lasers with tapered gain regions,” Opt. Quantum Technol. 28, 623–645 (1996).
[CrossRef]

Other (3)

G. P. Agrawal, ed., Semiconductor Lasers, Past, Present, and Future, AIP Series in Theoretical and Applied Optics (American Institute of Physics, Woodbury, N.Y., 1995).

P. Hariharan, Optical Interferometry (Academic, Orlando, Fla., 1985), pp. 12, 43.

L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, New York, 1995), Chap. 18.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the setup to measure the reflectivity of the front facet of the laser diode. Light is directed back into the diode from a reflection from the front facet of the diode laser which has a reflectivity of R 2 and from a reflection from an external mirror with a reflection of R ext.

Fig. 2
Fig. 2

Schematic of the experimental setup used to measure the front facet reflectivity of the laser diode.

Fig. 3
Fig. 3

Plot of the relative output power as a function of injection current for several different external mirror reflectivities for the 795-nm laser. The external mirror reflectivities ranged from a high of R ext = 0.215 to a low of R ext = 0.

Fig. 4
Fig. 4

Plot of the threshold current as a function of the external mirror reflectivity. The solid triangles (circles) are experimental measurements and the solid (dashed) curve is a NLLSF to the data for the 795-nm (935-nm) laser diode. These fits are used to obtain values for the constants g and the diode front facet reflectivity R 2.

Fig. 5
Fig. 5

Plot of the optical spectrum of the 795-nm (935-nm) laser diode. Δλ = 0 corresponds to a wavelength of 795-nm (935-nm). The modulation depth was also used to estimate the front facet reflectivity R 2.

Fig. 6
Fig. 6

(a) Plot of ln[I th/I th(ref)] as a function of ln[R ext(ref)/R ext] for the 795-nm diode laser. The solid triangles represent the experimental points, the solid curve represents the NLLSF, the dotted–dashed curve is a plot of Eq. (3) by our using the results of the modulation depth measurement of the reflectivity, and g = 0.322 found from the linear fit to the data (dotted curve) when R 2R m . (b) The same as (a) but for the 935-nm laser diode. Here circles represent the experimental data and g = 0.231.

Fig. 7
Fig. 7

Plot of the front facet reflectivity R 2 as a function of the degree of coherence μ. For μ = 1 the laser is completely coherent. This sets a lower limit on the front facet reflectivity. To obtain an accurate measure of the front facet reflectivity by use of the modulation depth, the coherence properties of the diode need to be considered.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Jth=J0ηexpα+1Lln1R1R2ΓβJ0,
Reff=R2+1-R22Rext.
lnIthIthref=1ΓβJ0LlnR2+1-R22RextrefR2+1-R22Rext.
Ith=Ithrefexpg lnR2+1-R22RextrefR2.
Ith=Ithrefexpg lnRextrefR2.
lnIthIthref=g lnRextrefRext.
Rext=CL1TL12TBS2TVA2RmirrorCreturn,
mpartmcoherent=μ,
mpart=mcoherentμ=2|a|1+|a|2μ,
R2=a2Rl2R1,

Metrics