Abstract

We report on a comparative evaluation of efficient room-temperature solid-state lasers based on Ti:sapphire and LiF:F2 + operating in the 900–1100-nm range. LiF:F2 + lasers are shown to operate with substantially lower threshold, broader tuning, and higher output pulse energies. The shorter fluorescence lifetime in LiF:F2 + leads to higher peak output powers and a considerable reduction in buildup-time fluctuations. The main limitations on LiF:F2 + laser operation are identified as amplified spontaneous emission (ASE) and long-term thermal degradation of the color centers. ASE restricts the tuning range, slope efficiency, and bandwidth of the LiF:F2 + laser for high pump intensity, but broader tuning is achieved with longer pump pulses. The beam quality of the LiF:F2 + laser is comparable with that of the Ti:sapphire laser.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Gellermann, “Color center lasers,” J. Phys. Chem. Solids 52, 249–297 (1991).
    [CrossRef]
  2. P. F. Moulton, “Tunable solid-state lasers,” Proc. IEEE 80, 348–364 (1992).
    [CrossRef]
  3. Special issue on laser radar, Proc. IEEE 84, (1996).
  4. Yu. L. Gusev, S. I. Marennikov, V. P. Chebotaev, “Laser effect in the spectrum region 0.88–1.2 µm using F2+ and F2- color centers in LiF,” Sov. Tech. Phys. Lett. 3, 124 (1977).
  5. V. V. Ter-Mikirtychev, T. Tsuboi, “Stable room temperature tunable color center lasers and passive Q-switchers,” Prog. Quantum. Electron. 20, 219–268 (1996).
    [CrossRef]
  6. V. V. Ter-Mikirtychev, “Efficient room-temperature tunable color center lasers and passive Q-switches based on LiF:F2- crystals,” Opt. Commun. 119, 109–112 (1995).
    [CrossRef]
  7. V. V. Ter-Mikirtychev, “Aggregate color centers influence on the dynamics of LiF(F2 → F2+) laser operation and the mechanism of color centers photoconversion,” J. Phys. Chem. Solids 58, 365–373 (1997).
    [CrossRef]
  8. T. T. Basiev, S. B. Mirov, Room Temperature Tunable Color Center Lasers, Vol. 16 of Laser Science and Technology Book Series, V. S. Letokhov, C. V. Shank, Y. R. Shen, H. Walther, eds. (Harwood, Switzerland, 1994).
  9. K. L. Schepler, “Laser performance and temperature-dependent spectroscopy of titanium-doped crystals,” in Digest of Meeting on Tunable Solid State Lasers, A. B. Budgor, L. Esterowitz, L. G. DeShazer, eds. (Optical Society of America, Washington, D.C., 1986), pp. 235–239.
    [CrossRef]
  10. A. J. W. Brown, K. W. Kangas, C. H. Fisher, “High brightness, narrow-band, Ti:Al2O3 oscillator,” in Advanced Solid-State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 132–135.
  11. P. Estable, E. Mottay, F. Salin, “High-energy gain-guided Ti:Al2O3 oscillator,” Opt. Lett. 18, 711–713 (1993).
    [CrossRef] [PubMed]
  12. I. T. McKinnie, A. L. Oien, D. M. Warrington, P. N. Tonga, L. A. W. Gloster, T. A. King, “Ti3+ ion concentration and Ti:sapphire laser performance,” IEEE J. Quantum Electron. 33, 1221–1230 (1997).
    [CrossRef]
  13. G. Rines, P. F. Moulton, “Performance of gain-switched Ti:Al2O3 unstable-resonator lasers,” Opt. Lett. 15, 434–436 (1990).
    [CrossRef] [PubMed]
  14. J. M. Eggleston, L. G. DeShazer, K. W. Kangas, “Characteristics of laser pumped Ti:sapphire oscillators,” IEEE J. Quantum Electron. 24, 1009–1015 (1988).
    [CrossRef]
  15. V. V. Ter-Mikirtychev, “Stable room-temperature LiF:F2+* tunable color-center laser for the 830–1060-nm spectral range pumped by second-harmonic radiation from a neodymium laser,” Appl. Opt. 34, 6114–6117 (1995).
    [CrossRef] [PubMed]
  16. V. V. Ter-Mikirtychev, “Diode-pumped LiF:F2+* color center laser tunable in 880–995 nm region at room temperature,” IEEE Photon. Technol. Lett. 10, 1395–1397 (1998).
    [CrossRef]
  17. V. Ter-Mikirtychev, “Stable, efficient room-temperature LiF:F2+* laser, tunable in the 820–1200 nm region, pumped by a YAG:Nd3+ laser with an injection seeded solid-state wavelength converter,” Opt. Laser Technol. 30, 229–233 (1998).
    [CrossRef]

1998 (2)

V. V. Ter-Mikirtychev, “Diode-pumped LiF:F2+* color center laser tunable in 880–995 nm region at room temperature,” IEEE Photon. Technol. Lett. 10, 1395–1397 (1998).
[CrossRef]

V. Ter-Mikirtychev, “Stable, efficient room-temperature LiF:F2+* laser, tunable in the 820–1200 nm region, pumped by a YAG:Nd3+ laser with an injection seeded solid-state wavelength converter,” Opt. Laser Technol. 30, 229–233 (1998).
[CrossRef]

1997 (2)

I. T. McKinnie, A. L. Oien, D. M. Warrington, P. N. Tonga, L. A. W. Gloster, T. A. King, “Ti3+ ion concentration and Ti:sapphire laser performance,” IEEE J. Quantum Electron. 33, 1221–1230 (1997).
[CrossRef]

V. V. Ter-Mikirtychev, “Aggregate color centers influence on the dynamics of LiF(F2 → F2+) laser operation and the mechanism of color centers photoconversion,” J. Phys. Chem. Solids 58, 365–373 (1997).
[CrossRef]

1996 (2)

V. V. Ter-Mikirtychev, T. Tsuboi, “Stable room temperature tunable color center lasers and passive Q-switchers,” Prog. Quantum. Electron. 20, 219–268 (1996).
[CrossRef]

Special issue on laser radar, Proc. IEEE 84, (1996).

1995 (2)

V. V. Ter-Mikirtychev, “Efficient room-temperature tunable color center lasers and passive Q-switches based on LiF:F2- crystals,” Opt. Commun. 119, 109–112 (1995).
[CrossRef]

V. V. Ter-Mikirtychev, “Stable room-temperature LiF:F2+* tunable color-center laser for the 830–1060-nm spectral range pumped by second-harmonic radiation from a neodymium laser,” Appl. Opt. 34, 6114–6117 (1995).
[CrossRef] [PubMed]

1993 (1)

1992 (1)

P. F. Moulton, “Tunable solid-state lasers,” Proc. IEEE 80, 348–364 (1992).
[CrossRef]

1991 (1)

W. Gellermann, “Color center lasers,” J. Phys. Chem. Solids 52, 249–297 (1991).
[CrossRef]

1990 (1)

1988 (1)

J. M. Eggleston, L. G. DeShazer, K. W. Kangas, “Characteristics of laser pumped Ti:sapphire oscillators,” IEEE J. Quantum Electron. 24, 1009–1015 (1988).
[CrossRef]

1977 (1)

Yu. L. Gusev, S. I. Marennikov, V. P. Chebotaev, “Laser effect in the spectrum region 0.88–1.2 µm using F2+ and F2- color centers in LiF,” Sov. Tech. Phys. Lett. 3, 124 (1977).

Basiev, T. T.

T. T. Basiev, S. B. Mirov, Room Temperature Tunable Color Center Lasers, Vol. 16 of Laser Science and Technology Book Series, V. S. Letokhov, C. V. Shank, Y. R. Shen, H. Walther, eds. (Harwood, Switzerland, 1994).

Brown, A. J. W.

A. J. W. Brown, K. W. Kangas, C. H. Fisher, “High brightness, narrow-band, Ti:Al2O3 oscillator,” in Advanced Solid-State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 132–135.

Chebotaev, V. P.

Yu. L. Gusev, S. I. Marennikov, V. P. Chebotaev, “Laser effect in the spectrum region 0.88–1.2 µm using F2+ and F2- color centers in LiF,” Sov. Tech. Phys. Lett. 3, 124 (1977).

DeShazer, L. G.

J. M. Eggleston, L. G. DeShazer, K. W. Kangas, “Characteristics of laser pumped Ti:sapphire oscillators,” IEEE J. Quantum Electron. 24, 1009–1015 (1988).
[CrossRef]

Eggleston, J. M.

J. M. Eggleston, L. G. DeShazer, K. W. Kangas, “Characteristics of laser pumped Ti:sapphire oscillators,” IEEE J. Quantum Electron. 24, 1009–1015 (1988).
[CrossRef]

Estable, P.

Fisher, C. H.

A. J. W. Brown, K. W. Kangas, C. H. Fisher, “High brightness, narrow-band, Ti:Al2O3 oscillator,” in Advanced Solid-State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 132–135.

Gellermann, W.

W. Gellermann, “Color center lasers,” J. Phys. Chem. Solids 52, 249–297 (1991).
[CrossRef]

Gloster, L. A. W.

I. T. McKinnie, A. L. Oien, D. M. Warrington, P. N. Tonga, L. A. W. Gloster, T. A. King, “Ti3+ ion concentration and Ti:sapphire laser performance,” IEEE J. Quantum Electron. 33, 1221–1230 (1997).
[CrossRef]

Gusev, Yu. L.

Yu. L. Gusev, S. I. Marennikov, V. P. Chebotaev, “Laser effect in the spectrum region 0.88–1.2 µm using F2+ and F2- color centers in LiF,” Sov. Tech. Phys. Lett. 3, 124 (1977).

Kangas, K. W.

J. M. Eggleston, L. G. DeShazer, K. W. Kangas, “Characteristics of laser pumped Ti:sapphire oscillators,” IEEE J. Quantum Electron. 24, 1009–1015 (1988).
[CrossRef]

A. J. W. Brown, K. W. Kangas, C. H. Fisher, “High brightness, narrow-band, Ti:Al2O3 oscillator,” in Advanced Solid-State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 132–135.

King, T. A.

I. T. McKinnie, A. L. Oien, D. M. Warrington, P. N. Tonga, L. A. W. Gloster, T. A. King, “Ti3+ ion concentration and Ti:sapphire laser performance,” IEEE J. Quantum Electron. 33, 1221–1230 (1997).
[CrossRef]

Marennikov, S. I.

Yu. L. Gusev, S. I. Marennikov, V. P. Chebotaev, “Laser effect in the spectrum region 0.88–1.2 µm using F2+ and F2- color centers in LiF,” Sov. Tech. Phys. Lett. 3, 124 (1977).

McKinnie, I. T.

I. T. McKinnie, A. L. Oien, D. M. Warrington, P. N. Tonga, L. A. W. Gloster, T. A. King, “Ti3+ ion concentration and Ti:sapphire laser performance,” IEEE J. Quantum Electron. 33, 1221–1230 (1997).
[CrossRef]

Mirov, S. B.

T. T. Basiev, S. B. Mirov, Room Temperature Tunable Color Center Lasers, Vol. 16 of Laser Science and Technology Book Series, V. S. Letokhov, C. V. Shank, Y. R. Shen, H. Walther, eds. (Harwood, Switzerland, 1994).

Mottay, E.

Moulton, P. F.

Oien, A. L.

I. T. McKinnie, A. L. Oien, D. M. Warrington, P. N. Tonga, L. A. W. Gloster, T. A. King, “Ti3+ ion concentration and Ti:sapphire laser performance,” IEEE J. Quantum Electron. 33, 1221–1230 (1997).
[CrossRef]

Rines, G.

Salin, F.

Schepler, K. L.

K. L. Schepler, “Laser performance and temperature-dependent spectroscopy of titanium-doped crystals,” in Digest of Meeting on Tunable Solid State Lasers, A. B. Budgor, L. Esterowitz, L. G. DeShazer, eds. (Optical Society of America, Washington, D.C., 1986), pp. 235–239.
[CrossRef]

Ter-Mikirtychev, V.

V. Ter-Mikirtychev, “Stable, efficient room-temperature LiF:F2+* laser, tunable in the 820–1200 nm region, pumped by a YAG:Nd3+ laser with an injection seeded solid-state wavelength converter,” Opt. Laser Technol. 30, 229–233 (1998).
[CrossRef]

Ter-Mikirtychev, V. V.

V. V. Ter-Mikirtychev, “Diode-pumped LiF:F2+* color center laser tunable in 880–995 nm region at room temperature,” IEEE Photon. Technol. Lett. 10, 1395–1397 (1998).
[CrossRef]

V. V. Ter-Mikirtychev, “Aggregate color centers influence on the dynamics of LiF(F2 → F2+) laser operation and the mechanism of color centers photoconversion,” J. Phys. Chem. Solids 58, 365–373 (1997).
[CrossRef]

V. V. Ter-Mikirtychev, T. Tsuboi, “Stable room temperature tunable color center lasers and passive Q-switchers,” Prog. Quantum. Electron. 20, 219–268 (1996).
[CrossRef]

V. V. Ter-Mikirtychev, “Efficient room-temperature tunable color center lasers and passive Q-switches based on LiF:F2- crystals,” Opt. Commun. 119, 109–112 (1995).
[CrossRef]

V. V. Ter-Mikirtychev, “Stable room-temperature LiF:F2+* tunable color-center laser for the 830–1060-nm spectral range pumped by second-harmonic radiation from a neodymium laser,” Appl. Opt. 34, 6114–6117 (1995).
[CrossRef] [PubMed]

Tonga, P. N.

I. T. McKinnie, A. L. Oien, D. M. Warrington, P. N. Tonga, L. A. W. Gloster, T. A. King, “Ti3+ ion concentration and Ti:sapphire laser performance,” IEEE J. Quantum Electron. 33, 1221–1230 (1997).
[CrossRef]

Tsuboi, T.

V. V. Ter-Mikirtychev, T. Tsuboi, “Stable room temperature tunable color center lasers and passive Q-switchers,” Prog. Quantum. Electron. 20, 219–268 (1996).
[CrossRef]

Warrington, D. M.

I. T. McKinnie, A. L. Oien, D. M. Warrington, P. N. Tonga, L. A. W. Gloster, T. A. King, “Ti3+ ion concentration and Ti:sapphire laser performance,” IEEE J. Quantum Electron. 33, 1221–1230 (1997).
[CrossRef]

Appl. Opt. (1)

IEEE J. Quantum Electron. (2)

I. T. McKinnie, A. L. Oien, D. M. Warrington, P. N. Tonga, L. A. W. Gloster, T. A. King, “Ti3+ ion concentration and Ti:sapphire laser performance,” IEEE J. Quantum Electron. 33, 1221–1230 (1997).
[CrossRef]

J. M. Eggleston, L. G. DeShazer, K. W. Kangas, “Characteristics of laser pumped Ti:sapphire oscillators,” IEEE J. Quantum Electron. 24, 1009–1015 (1988).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

V. V. Ter-Mikirtychev, “Diode-pumped LiF:F2+* color center laser tunable in 880–995 nm region at room temperature,” IEEE Photon. Technol. Lett. 10, 1395–1397 (1998).
[CrossRef]

J. Phys. Chem. Solids (2)

W. Gellermann, “Color center lasers,” J. Phys. Chem. Solids 52, 249–297 (1991).
[CrossRef]

V. V. Ter-Mikirtychev, “Aggregate color centers influence on the dynamics of LiF(F2 → F2+) laser operation and the mechanism of color centers photoconversion,” J. Phys. Chem. Solids 58, 365–373 (1997).
[CrossRef]

Opt. Commun. (1)

V. V. Ter-Mikirtychev, “Efficient room-temperature tunable color center lasers and passive Q-switches based on LiF:F2- crystals,” Opt. Commun. 119, 109–112 (1995).
[CrossRef]

Opt. Laser Technol. (1)

V. Ter-Mikirtychev, “Stable, efficient room-temperature LiF:F2+* laser, tunable in the 820–1200 nm region, pumped by a YAG:Nd3+ laser with an injection seeded solid-state wavelength converter,” Opt. Laser Technol. 30, 229–233 (1998).
[CrossRef]

Opt. Lett. (2)

Proc. IEEE (2)

P. F. Moulton, “Tunable solid-state lasers,” Proc. IEEE 80, 348–364 (1992).
[CrossRef]

Special issue on laser radar, Proc. IEEE 84, (1996).

Prog. Quantum. Electron. (1)

V. V. Ter-Mikirtychev, T. Tsuboi, “Stable room temperature tunable color center lasers and passive Q-switchers,” Prog. Quantum. Electron. 20, 219–268 (1996).
[CrossRef]

Sov. Tech. Phys. Lett. (1)

Yu. L. Gusev, S. I. Marennikov, V. P. Chebotaev, “Laser effect in the spectrum region 0.88–1.2 µm using F2+ and F2- color centers in LiF,” Sov. Tech. Phys. Lett. 3, 124 (1977).

Other (3)

T. T. Basiev, S. B. Mirov, Room Temperature Tunable Color Center Lasers, Vol. 16 of Laser Science and Technology Book Series, V. S. Letokhov, C. V. Shank, Y. R. Shen, H. Walther, eds. (Harwood, Switzerland, 1994).

K. L. Schepler, “Laser performance and temperature-dependent spectroscopy of titanium-doped crystals,” in Digest of Meeting on Tunable Solid State Lasers, A. B. Budgor, L. Esterowitz, L. G. DeShazer, eds. (Optical Society of America, Washington, D.C., 1986), pp. 235–239.
[CrossRef]

A. J. W. Brown, K. W. Kangas, C. H. Fisher, “High brightness, narrow-band, Ti:Al2O3 oscillator,” in Advanced Solid-State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 132–135.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Output energy of the LiF:F2 + laser as a function of pump pulse energy for a range of output couplers. (b) Ratio of T/η versus T for calculation of loss in the LiF:F2 + crystal.

Fig. 2
Fig. 2

Laser output (a) and ASE (b) energy of the LiF:F2 + laser as a function of pump pulse energy. Results for a Ti:sapphire laser are shown for comparison in (a).

Fig. 3
Fig. 3

Output energy as a function of wavelength for the LiF:F2 + laser (○) with pump pulse duration of 5 ns (a) and 15 ns (b). Results for a Ti:sapphire laser (▽) are shown for comparison in (a).

Fig. 4
Fig. 4

Output pulse energy of the LiF:F2 + laser as a function of number of pump pulses, for a pump pulse energy of 25 mJ.

Tables (1)

Tables Icon

Table 1 Spectroscopic Properties of Two Varieties of the Color-Center Crystal LiF:F2 + and Ti:sapphirea

Metrics