Abstract

Enhanced correction of thermally induced birefringence in the presence of strong single-pass, azimuthally dependent bipolar focusing was achieved in single-rod laser oscillators by use of an adaptive optic rear mirror with image relay and aberration correction capabilities. Together with a Faraday rotator, the imaging variable radius mirror was successfully tested in stable and unstable Nd:Cr:GSGG power oscillators under variable pump power conditions from 0 to 800 W. Birefringence correction in the absence of ray retracing was achieved.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. P. Barnes, S. J. Scalise, “Distributed aperture effect in laser rods with negative lenses,” Appl. Opt. 17, 1537–1540 (1978).
    [CrossRef] [PubMed]
  2. D. C. Hanna, C. G. Sawyers, M. A. Yaratich, “Telescopic resonator for large volume TEM00-mode operation,” Opt. Quantum Electron. 13, 493–507 (1981).
    [CrossRef]
  3. I. Moshe, S. Jackel, R. Lallouz, “Working beyond the static limits of laser stability by use of adaptive and polarization-conjugation optics,” Appl. Opt. 37, 6415–6420 (1998).
    [CrossRef]
  4. I. Moshe, S. Jackel, R. Lallouz, “Dynamic correction of thermal focusing in Nd:YAG confocal unstable resonators by use of a variable radius mirror,” Appl. Opt. 37, 7044–7048 (1998).
    [CrossRef]
  5. W. Koechner, D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. QE-6, 557–566 (1970).
    [CrossRef]
  6. W. KoechnerSolid-State Laser Engineering, 4th ed. (Springer-Verlag, New York, 1996).
    [CrossRef]
  7. S. M. Jackel, I. Moshe, A. Kaufman, R. Lavi, R. Lallouz, “High-energy Nd:Cr:GSGG lasers based on phase and polarization conjugated multiple-pass amplifiers,” Opt. Eng. 36, 2031–2036 (1997).
    [CrossRef]
  8. Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, U. Wittrock, “A novel approach for compensation of birefringence in cylindrical laser Nd:YAG rods,” Opt. Quantum Electron. 28, 57–69 (1996).
    [CrossRef]
  9. N. Kugler, S. Dong, Q. Lü, H. Weber, “Investigation of the misalignment sensitivity of a birefringence-compensated two-rod Nd:YAG laser system,” Appl. Opt. 36, 9359–9366 (1997).
    [CrossRef]
  10. J. Sherman, “Thermal compensation of a cw-pumped Nd:YAG laser,” Appl. Opt. 37, 7789–7796 (1998).
    [CrossRef]
  11. S. A. Chetkin, G. V. Vdovin, “Deformable mirror correction of a thermal lens induced in the active rod of a solid state laser,” Opt. Commun. 100, 159–165 (1993).
    [CrossRef]
  12. N. Pavel, T. Dascalu, V. Lupei, “Variable reflectivity mirror unstable resonator with deformable mirror thermal compensation,” Opt. Commun. 123, 115–120 (1996).
    [CrossRef]
  13. C. Swift, E. Bliss, D. Lenz, R. Miller, “Deformable mirror for zigzag solid-state lasers,” Opt. Eng. 29, 1199–1203 (1990).
    [CrossRef]
  14. D. Sumida, M. S. Mangir, D. A. Rockwell, “Laser-related properties of Nd:Cr:GSGG,” J. Opt. Soc. Am. B 11, 2066–2078 (1994).
    [CrossRef]
  15. J. A. Caird, M. D. Shinn, T. A. Kirchoff, L. K. Smith, R. E. Wilder, “Measurements of losses and lasing efficiency in GSGG:Cr:Nd and YAG:Nd laser rods,” Appl. Opt. 25, 4294–4301 (1986).
    [CrossRef]
  16. D. S. Sumida, D. A. Rockwell, “Pumping efficiency and emission cross-section measurements of flashlamp-pumped chromium- and neodymium-doped scandium garnets using threshold lasing,” in Solid State Lasers III, G. J. Quarles, ed., Proc. SPIE1627, 273–280 (1992).
    [CrossRef]
  17. S. M. Jackel, A. Kaufman, R. Lallouz, “High-repetition-rate oscillators based on athermal glass rods and on birefringence correction techniques,” Opt. Eng. 33, 3008–3017 (1994).
    [CrossRef]

1998

1997

N. Kugler, S. Dong, Q. Lü, H. Weber, “Investigation of the misalignment sensitivity of a birefringence-compensated two-rod Nd:YAG laser system,” Appl. Opt. 36, 9359–9366 (1997).
[CrossRef]

S. M. Jackel, I. Moshe, A. Kaufman, R. Lavi, R. Lallouz, “High-energy Nd:Cr:GSGG lasers based on phase and polarization conjugated multiple-pass amplifiers,” Opt. Eng. 36, 2031–2036 (1997).
[CrossRef]

1996

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, U. Wittrock, “A novel approach for compensation of birefringence in cylindrical laser Nd:YAG rods,” Opt. Quantum Electron. 28, 57–69 (1996).
[CrossRef]

N. Pavel, T. Dascalu, V. Lupei, “Variable reflectivity mirror unstable resonator with deformable mirror thermal compensation,” Opt. Commun. 123, 115–120 (1996).
[CrossRef]

1994

S. M. Jackel, A. Kaufman, R. Lallouz, “High-repetition-rate oscillators based on athermal glass rods and on birefringence correction techniques,” Opt. Eng. 33, 3008–3017 (1994).
[CrossRef]

D. Sumida, M. S. Mangir, D. A. Rockwell, “Laser-related properties of Nd:Cr:GSGG,” J. Opt. Soc. Am. B 11, 2066–2078 (1994).
[CrossRef]

1993

S. A. Chetkin, G. V. Vdovin, “Deformable mirror correction of a thermal lens induced in the active rod of a solid state laser,” Opt. Commun. 100, 159–165 (1993).
[CrossRef]

1990

C. Swift, E. Bliss, D. Lenz, R. Miller, “Deformable mirror for zigzag solid-state lasers,” Opt. Eng. 29, 1199–1203 (1990).
[CrossRef]

1986

1981

D. C. Hanna, C. G. Sawyers, M. A. Yaratich, “Telescopic resonator for large volume TEM00-mode operation,” Opt. Quantum Electron. 13, 493–507 (1981).
[CrossRef]

1978

1970

W. Koechner, D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. QE-6, 557–566 (1970).
[CrossRef]

Barnes, S. P.

Bliss, E.

C. Swift, E. Bliss, D. Lenz, R. Miller, “Deformable mirror for zigzag solid-state lasers,” Opt. Eng. 29, 1199–1203 (1990).
[CrossRef]

Caird, J. A.

Chetkin, S. A.

S. A. Chetkin, G. V. Vdovin, “Deformable mirror correction of a thermal lens induced in the active rod of a solid state laser,” Opt. Commun. 100, 159–165 (1993).
[CrossRef]

Dascalu, T.

N. Pavel, T. Dascalu, V. Lupei, “Variable reflectivity mirror unstable resonator with deformable mirror thermal compensation,” Opt. Commun. 123, 115–120 (1996).
[CrossRef]

Dong, S.

N. Kugler, S. Dong, Q. Lü, H. Weber, “Investigation of the misalignment sensitivity of a birefringence-compensated two-rod Nd:YAG laser system,” Appl. Opt. 36, 9359–9366 (1997).
[CrossRef]

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, U. Wittrock, “A novel approach for compensation of birefringence in cylindrical laser Nd:YAG rods,” Opt. Quantum Electron. 28, 57–69 (1996).
[CrossRef]

Hanna, D. C.

D. C. Hanna, C. G. Sawyers, M. A. Yaratich, “Telescopic resonator for large volume TEM00-mode operation,” Opt. Quantum Electron. 13, 493–507 (1981).
[CrossRef]

Jackel, S.

Jackel, S. M.

S. M. Jackel, I. Moshe, A. Kaufman, R. Lavi, R. Lallouz, “High-energy Nd:Cr:GSGG lasers based on phase and polarization conjugated multiple-pass amplifiers,” Opt. Eng. 36, 2031–2036 (1997).
[CrossRef]

S. M. Jackel, A. Kaufman, R. Lallouz, “High-repetition-rate oscillators based on athermal glass rods and on birefringence correction techniques,” Opt. Eng. 33, 3008–3017 (1994).
[CrossRef]

Kaufman, A.

S. M. Jackel, I. Moshe, A. Kaufman, R. Lavi, R. Lallouz, “High-energy Nd:Cr:GSGG lasers based on phase and polarization conjugated multiple-pass amplifiers,” Opt. Eng. 36, 2031–2036 (1997).
[CrossRef]

S. M. Jackel, A. Kaufman, R. Lallouz, “High-repetition-rate oscillators based on athermal glass rods and on birefringence correction techniques,” Opt. Eng. 33, 3008–3017 (1994).
[CrossRef]

Kirchoff, T. A.

Koechner, W.

W. Koechner, D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. QE-6, 557–566 (1970).
[CrossRef]

W. KoechnerSolid-State Laser Engineering, 4th ed. (Springer-Verlag, New York, 1996).
[CrossRef]

Kugler, N.

N. Kugler, S. Dong, Q. Lü, H. Weber, “Investigation of the misalignment sensitivity of a birefringence-compensated two-rod Nd:YAG laser system,” Appl. Opt. 36, 9359–9366 (1997).
[CrossRef]

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, U. Wittrock, “A novel approach for compensation of birefringence in cylindrical laser Nd:YAG rods,” Opt. Quantum Electron. 28, 57–69 (1996).
[CrossRef]

Lallouz, R.

I. Moshe, S. Jackel, R. Lallouz, “Working beyond the static limits of laser stability by use of adaptive and polarization-conjugation optics,” Appl. Opt. 37, 6415–6420 (1998).
[CrossRef]

I. Moshe, S. Jackel, R. Lallouz, “Dynamic correction of thermal focusing in Nd:YAG confocal unstable resonators by use of a variable radius mirror,” Appl. Opt. 37, 7044–7048 (1998).
[CrossRef]

S. M. Jackel, I. Moshe, A. Kaufman, R. Lavi, R. Lallouz, “High-energy Nd:Cr:GSGG lasers based on phase and polarization conjugated multiple-pass amplifiers,” Opt. Eng. 36, 2031–2036 (1997).
[CrossRef]

S. M. Jackel, A. Kaufman, R. Lallouz, “High-repetition-rate oscillators based on athermal glass rods and on birefringence correction techniques,” Opt. Eng. 33, 3008–3017 (1994).
[CrossRef]

Lavi, R.

S. M. Jackel, I. Moshe, A. Kaufman, R. Lavi, R. Lallouz, “High-energy Nd:Cr:GSGG lasers based on phase and polarization conjugated multiple-pass amplifiers,” Opt. Eng. 36, 2031–2036 (1997).
[CrossRef]

Lenz, D.

C. Swift, E. Bliss, D. Lenz, R. Miller, “Deformable mirror for zigzag solid-state lasers,” Opt. Eng. 29, 1199–1203 (1990).
[CrossRef]

Lü, Q.

N. Kugler, S. Dong, Q. Lü, H. Weber, “Investigation of the misalignment sensitivity of a birefringence-compensated two-rod Nd:YAG laser system,” Appl. Opt. 36, 9359–9366 (1997).
[CrossRef]

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, U. Wittrock, “A novel approach for compensation of birefringence in cylindrical laser Nd:YAG rods,” Opt. Quantum Electron. 28, 57–69 (1996).
[CrossRef]

Lupei, V.

N. Pavel, T. Dascalu, V. Lupei, “Variable reflectivity mirror unstable resonator with deformable mirror thermal compensation,” Opt. Commun. 123, 115–120 (1996).
[CrossRef]

Mangir, M. S.

Miller, R.

C. Swift, E. Bliss, D. Lenz, R. Miller, “Deformable mirror for zigzag solid-state lasers,” Opt. Eng. 29, 1199–1203 (1990).
[CrossRef]

Moshe, I.

Müller, N.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, U. Wittrock, “A novel approach for compensation of birefringence in cylindrical laser Nd:YAG rods,” Opt. Quantum Electron. 28, 57–69 (1996).
[CrossRef]

Pavel, N.

N. Pavel, T. Dascalu, V. Lupei, “Variable reflectivity mirror unstable resonator with deformable mirror thermal compensation,” Opt. Commun. 123, 115–120 (1996).
[CrossRef]

Rice, D. K.

W. Koechner, D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. QE-6, 557–566 (1970).
[CrossRef]

Rockwell, D. A.

D. Sumida, M. S. Mangir, D. A. Rockwell, “Laser-related properties of Nd:Cr:GSGG,” J. Opt. Soc. Am. B 11, 2066–2078 (1994).
[CrossRef]

D. S. Sumida, D. A. Rockwell, “Pumping efficiency and emission cross-section measurements of flashlamp-pumped chromium- and neodymium-doped scandium garnets using threshold lasing,” in Solid State Lasers III, G. J. Quarles, ed., Proc. SPIE1627, 273–280 (1992).
[CrossRef]

Sawyers, C. G.

D. C. Hanna, C. G. Sawyers, M. A. Yaratich, “Telescopic resonator for large volume TEM00-mode operation,” Opt. Quantum Electron. 13, 493–507 (1981).
[CrossRef]

Scalise, S. J.

Sherman, J.

Shinn, M. D.

Smith, L. K.

Sumida, D.

Sumida, D. S.

D. S. Sumida, D. A. Rockwell, “Pumping efficiency and emission cross-section measurements of flashlamp-pumped chromium- and neodymium-doped scandium garnets using threshold lasing,” in Solid State Lasers III, G. J. Quarles, ed., Proc. SPIE1627, 273–280 (1992).
[CrossRef]

Swift, C.

C. Swift, E. Bliss, D. Lenz, R. Miller, “Deformable mirror for zigzag solid-state lasers,” Opt. Eng. 29, 1199–1203 (1990).
[CrossRef]

Vdovin, G. V.

S. A. Chetkin, G. V. Vdovin, “Deformable mirror correction of a thermal lens induced in the active rod of a solid state laser,” Opt. Commun. 100, 159–165 (1993).
[CrossRef]

Weber, H.

N. Kugler, S. Dong, Q. Lü, H. Weber, “Investigation of the misalignment sensitivity of a birefringence-compensated two-rod Nd:YAG laser system,” Appl. Opt. 36, 9359–9366 (1997).
[CrossRef]

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, U. Wittrock, “A novel approach for compensation of birefringence in cylindrical laser Nd:YAG rods,” Opt. Quantum Electron. 28, 57–69 (1996).
[CrossRef]

Wilder, R. E.

Wittrock, U.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, U. Wittrock, “A novel approach for compensation of birefringence in cylindrical laser Nd:YAG rods,” Opt. Quantum Electron. 28, 57–69 (1996).
[CrossRef]

Yaratich, M. A.

D. C. Hanna, C. G. Sawyers, M. A. Yaratich, “Telescopic resonator for large volume TEM00-mode operation,” Opt. Quantum Electron. 13, 493–507 (1981).
[CrossRef]

Appl. Opt.

IEEE J. Quantum Electron.

W. Koechner, D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. QE-6, 557–566 (1970).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

S. A. Chetkin, G. V. Vdovin, “Deformable mirror correction of a thermal lens induced in the active rod of a solid state laser,” Opt. Commun. 100, 159–165 (1993).
[CrossRef]

N. Pavel, T. Dascalu, V. Lupei, “Variable reflectivity mirror unstable resonator with deformable mirror thermal compensation,” Opt. Commun. 123, 115–120 (1996).
[CrossRef]

Opt. Eng.

C. Swift, E. Bliss, D. Lenz, R. Miller, “Deformable mirror for zigzag solid-state lasers,” Opt. Eng. 29, 1199–1203 (1990).
[CrossRef]

S. M. Jackel, A. Kaufman, R. Lallouz, “High-repetition-rate oscillators based on athermal glass rods and on birefringence correction techniques,” Opt. Eng. 33, 3008–3017 (1994).
[CrossRef]

S. M. Jackel, I. Moshe, A. Kaufman, R. Lavi, R. Lallouz, “High-energy Nd:Cr:GSGG lasers based on phase and polarization conjugated multiple-pass amplifiers,” Opt. Eng. 36, 2031–2036 (1997).
[CrossRef]

Opt. Quantum Electron.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, U. Wittrock, “A novel approach for compensation of birefringence in cylindrical laser Nd:YAG rods,” Opt. Quantum Electron. 28, 57–69 (1996).
[CrossRef]

D. C. Hanna, C. G. Sawyers, M. A. Yaratich, “Telescopic resonator for large volume TEM00-mode operation,” Opt. Quantum Electron. 13, 493–507 (1981).
[CrossRef]

Other

W. KoechnerSolid-State Laser Engineering, 4th ed. (Springer-Verlag, New York, 1996).
[CrossRef]

D. S. Sumida, D. A. Rockwell, “Pumping efficiency and emission cross-section measurements of flashlamp-pumped chromium- and neodymium-doped scandium garnets using threshold lasing,” in Solid State Lasers III, G. J. Quarles, ed., Proc. SPIE1627, 273–280 (1992).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Basic scheme of the IVRM. In the rod, Ray 1 encounters f 1 during the forward pass and f 2 during the backward pass. Ray 2 encounters f 2 during the forward pass and f 1 during the backward pass. The IVRM ensures retroreflection (height and angle) through the laser rod for the two different rays.

Fig. 2
Fig. 2

IVRM schematic.

Fig. 3
Fig. 3

Distance between the IVRM negative lens [f lens = (-)10 cm) and the mirror (R mirror = (-)20 cm), needed for retracing, as a function of electrical pump power. We used a 10-cm focal-length imaging lens and 5-diopter/kW thermal focusing for the 10 × 0.635-cm Nd:Cr:GSGG laser rod.

Fig. 4
Fig. 4

Radial polarization beam size divided by tangential polarization beam size after the beam double passed the laser rod and the FR when we used either a VRM or an IVRM.

Fig. 5
Fig. 5

Stable resonator scheme. The resonator was operated with either an IVRM or a VRM as the rear adaptive mirror.

Fig. 6
Fig. 6

Comparison of birefringence correction in the stable resonator aligned to maximum output power, obtained by use of either an IVRM or a VRM. A reference measurement was made without the polarizer and FR’s. The per pulse output energy at low pump power (0.2-Hz repetition rate) was 1.25 J for the unpolarized resonator and 1.02 J for the polarized resonators. The repetition rate varied between 0.2 and 25 Hz. The pulse-forming network energy was 28 J.

Fig. 7
Fig. 7

Oscillator performance with static and dynamic adjustment of the IVRM.

Fig. 8
Fig. 8

Beam quality measurements obtained by use of an IVRM or a VRM with and without a cylindrical zoom lens.

Fig. 9
Fig. 9

(a) Birefringence-compensated unstable resonator with an adaptive rear mirror and a gradient reflectivity front mirror (GRM). (b) Far-field analysis scheme.

Fig. 10
Fig. 10

Output energies normalized to the lowest pulse-repetition frequency output energies as functions of pump power from an unstable resonator. The measurement was taken in birefringence-compensated resonators, with either an IVRM or a VRM, and in a polarized resonator without compensation (without FR’s). The output energy per pulse for cold operation (0.2 Hz) was 0.3 J, and the repetition rate varied between 0.2 and 20 Hz. The pulse-forming network energy was 18.4 J.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d2=d1f2-d12f2d1f-d12-f2,
m=f/f-d1.
ABCDd1=2f, d2=2f=102R-fRf1.
R=f1-f/fT.
Reff=FlensRmirror+ΔFlens-Rmirror-Δ,

Metrics