Abstract

It is demonstrated that Er doping increases the photorefractive effect in LiTaO3. Raman and fluorescence spectra are used to establish that the upconverted green emission of Er3+ clusters acts as a gating source, significantly increasing the two-photon photorefractive effect of a monochromatic red or near-infrared pump source.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Lande, S. S. Orlov, L. Hesselink, “Two-photon apodization in lithium niobate,” Opt. Lett. 23, 1399–1401 (1998).
    [CrossRef]
  2. H. Guenter, G. Wittmann, R. M. Macfarlane, R. R. Neurgaonkar, “Intensity dependence and white-light gating of two-color photorefractive gratings in LiNbO3,” Opt. Lett. 22, 1305–1307 (1997).
    [CrossRef]
  3. Y. S. Bai, R. R. Neurgaonkar, R. Kachru, “High-efficiency nonvolatile holographic storage with two-step recording in praseodymium-doped lithium niobate by use of continuous-wave lasers,” Opt. Lett. 22, 334–336 (1997).
    [CrossRef] [PubMed]
  4. S. M. Kostritskii, O. G. Sevostyanov, “Influence of intrinsic defects on light-induced changes in refractive index of lithium niobate crystals,” Appl. Phys. B 65, 527–534 (1997).
    [CrossRef]
  5. O. F. Schirmer, O. Thiemann, M. Wöhlecke, “Defects in LiNbO3. I. Experimental aspects,” J. Phys. Chem. Solids 52, 185–200 (1991).
    [CrossRef]
  6. D. M. Gill, L. McCaughan, J. C. Wright, “Spectroscopic site determinations in erbium-doped lithium niobate,” Phys. Rev. B 53, 2334–2344 (1996).
    [CrossRef]
  7. S. Arahira, K. Watanabe, K. Shinozaki, Y. Ogawa, “Successive excited-state absorption through a multistep process in highly Er3+-doped fiber pumped by a 1.48-µm laser diode,” Opt. Lett. 17, 1679–1681 (1992).
    [CrossRef] [PubMed]
  8. A. M. Glass, G. E. Peterson, T. J. Negran, “Optical index damage in electrooptic crystals,” in Laser Induced Damage in Optical Materials, A. M. Glass, A. H. Guenter, eds. Natl. Bur. Stand. (U.S.) Spec. Publ.372 (1972).
  9. V. Gopalan, M. Gupta, “Origin of internal field and visualization of 180° domains in congruent LiTaO3 crystals,” J. Appl. Phys. 80, 6099–6106 (1996).
    [CrossRef]
  10. C.-H. Huang, L. McCaughan, “980-nm-pumped Er-doped LiNbO3 waveguide amplifiers: a comparison with 1484-nm pumping,” IEEE J. Sel. Top. Quantum Electron. 2, 367–372 (1996).
    [CrossRef]
  11. S. M. Kostritskii, O. M. Kolesnikov, “Photoinduced light scattering in copper-doped Li1–xHxNbO3 photorefractive waveguides,” J. Opt. Soc. Am. B 11, 1674–1680 (1994).
    [CrossRef]

1998 (1)

1997 (3)

1996 (3)

D. M. Gill, L. McCaughan, J. C. Wright, “Spectroscopic site determinations in erbium-doped lithium niobate,” Phys. Rev. B 53, 2334–2344 (1996).
[CrossRef]

V. Gopalan, M. Gupta, “Origin of internal field and visualization of 180° domains in congruent LiTaO3 crystals,” J. Appl. Phys. 80, 6099–6106 (1996).
[CrossRef]

C.-H. Huang, L. McCaughan, “980-nm-pumped Er-doped LiNbO3 waveguide amplifiers: a comparison with 1484-nm pumping,” IEEE J. Sel. Top. Quantum Electron. 2, 367–372 (1996).
[CrossRef]

1994 (1)

1992 (1)

1991 (1)

O. F. Schirmer, O. Thiemann, M. Wöhlecke, “Defects in LiNbO3. I. Experimental aspects,” J. Phys. Chem. Solids 52, 185–200 (1991).
[CrossRef]

Arahira, S.

Bai, Y. S.

Gill, D. M.

D. M. Gill, L. McCaughan, J. C. Wright, “Spectroscopic site determinations in erbium-doped lithium niobate,” Phys. Rev. B 53, 2334–2344 (1996).
[CrossRef]

Glass, A. M.

A. M. Glass, G. E. Peterson, T. J. Negran, “Optical index damage in electrooptic crystals,” in Laser Induced Damage in Optical Materials, A. M. Glass, A. H. Guenter, eds. Natl. Bur. Stand. (U.S.) Spec. Publ.372 (1972).

Gopalan, V.

V. Gopalan, M. Gupta, “Origin of internal field and visualization of 180° domains in congruent LiTaO3 crystals,” J. Appl. Phys. 80, 6099–6106 (1996).
[CrossRef]

Guenter, H.

Gupta, M.

V. Gopalan, M. Gupta, “Origin of internal field and visualization of 180° domains in congruent LiTaO3 crystals,” J. Appl. Phys. 80, 6099–6106 (1996).
[CrossRef]

Hesselink, L.

Huang, C.-H.

C.-H. Huang, L. McCaughan, “980-nm-pumped Er-doped LiNbO3 waveguide amplifiers: a comparison with 1484-nm pumping,” IEEE J. Sel. Top. Quantum Electron. 2, 367–372 (1996).
[CrossRef]

Kachru, R.

Kolesnikov, O. M.

Kostritskii, S. M.

S. M. Kostritskii, O. G. Sevostyanov, “Influence of intrinsic defects on light-induced changes in refractive index of lithium niobate crystals,” Appl. Phys. B 65, 527–534 (1997).
[CrossRef]

S. M. Kostritskii, O. M. Kolesnikov, “Photoinduced light scattering in copper-doped Li1–xHxNbO3 photorefractive waveguides,” J. Opt. Soc. Am. B 11, 1674–1680 (1994).
[CrossRef]

Lande, D.

Macfarlane, R. M.

McCaughan, L.

D. M. Gill, L. McCaughan, J. C. Wright, “Spectroscopic site determinations in erbium-doped lithium niobate,” Phys. Rev. B 53, 2334–2344 (1996).
[CrossRef]

C.-H. Huang, L. McCaughan, “980-nm-pumped Er-doped LiNbO3 waveguide amplifiers: a comparison with 1484-nm pumping,” IEEE J. Sel. Top. Quantum Electron. 2, 367–372 (1996).
[CrossRef]

Negran, T. J.

A. M. Glass, G. E. Peterson, T. J. Negran, “Optical index damage in electrooptic crystals,” in Laser Induced Damage in Optical Materials, A. M. Glass, A. H. Guenter, eds. Natl. Bur. Stand. (U.S.) Spec. Publ.372 (1972).

Neurgaonkar, R. R.

Ogawa, Y.

Orlov, S. S.

Peterson, G. E.

A. M. Glass, G. E. Peterson, T. J. Negran, “Optical index damage in electrooptic crystals,” in Laser Induced Damage in Optical Materials, A. M. Glass, A. H. Guenter, eds. Natl. Bur. Stand. (U.S.) Spec. Publ.372 (1972).

Schirmer, O. F.

O. F. Schirmer, O. Thiemann, M. Wöhlecke, “Defects in LiNbO3. I. Experimental aspects,” J. Phys. Chem. Solids 52, 185–200 (1991).
[CrossRef]

Sevostyanov, O. G.

S. M. Kostritskii, O. G. Sevostyanov, “Influence of intrinsic defects on light-induced changes in refractive index of lithium niobate crystals,” Appl. Phys. B 65, 527–534 (1997).
[CrossRef]

Shinozaki, K.

Thiemann, O.

O. F. Schirmer, O. Thiemann, M. Wöhlecke, “Defects in LiNbO3. I. Experimental aspects,” J. Phys. Chem. Solids 52, 185–200 (1991).
[CrossRef]

Watanabe, K.

Wittmann, G.

Wöhlecke, M.

O. F. Schirmer, O. Thiemann, M. Wöhlecke, “Defects in LiNbO3. I. Experimental aspects,” J. Phys. Chem. Solids 52, 185–200 (1991).
[CrossRef]

Wright, J. C.

D. M. Gill, L. McCaughan, J. C. Wright, “Spectroscopic site determinations in erbium-doped lithium niobate,” Phys. Rev. B 53, 2334–2344 (1996).
[CrossRef]

Appl. Phys. B (1)

S. M. Kostritskii, O. G. Sevostyanov, “Influence of intrinsic defects on light-induced changes in refractive index of lithium niobate crystals,” Appl. Phys. B 65, 527–534 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C.-H. Huang, L. McCaughan, “980-nm-pumped Er-doped LiNbO3 waveguide amplifiers: a comparison with 1484-nm pumping,” IEEE J. Sel. Top. Quantum Electron. 2, 367–372 (1996).
[CrossRef]

J. Appl. Phys. (1)

V. Gopalan, M. Gupta, “Origin of internal field and visualization of 180° domains in congruent LiTaO3 crystals,” J. Appl. Phys. 80, 6099–6106 (1996).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Solids (1)

O. F. Schirmer, O. Thiemann, M. Wöhlecke, “Defects in LiNbO3. I. Experimental aspects,” J. Phys. Chem. Solids 52, 185–200 (1991).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. B (1)

D. M. Gill, L. McCaughan, J. C. Wright, “Spectroscopic site determinations in erbium-doped lithium niobate,” Phys. Rev. B 53, 2334–2344 (1996).
[CrossRef]

Other (1)

A. M. Glass, G. E. Peterson, T. J. Negran, “Optical index damage in electrooptic crystals,” in Laser Induced Damage in Optical Materials, A. M. Glass, A. H. Guenter, eds. Natl. Bur. Stand. (U.S.) Spec. Publ.372 (1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic level diagram of the two-photon PR effect, depicting the blue–green gating light, the longer-wavelength recording light, the bipolaron level, the (single) polaron level, and the deep trap (outside the illuminated area).

Fig. 2
Fig. 2

Anti-Stokes fluorescence spectra excited at 632.8 and 647 nm in the Er:LiTaO3 sample with the highest Er concentration.

Fig. 3
Fig. 3

Intensity of green emission I ASF in the 510–560-nm range versus input intensity at 632.8 and 647 nm for sample shown in Fig. 2.

Fig. 4
Fig. 4

Saturated values of photorefractive index change Δn s versus input intensity J for excitation wavelengths of 785 and 632.8 nm on samples with (w/) and without (w/o) Er.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ΔnsJ=AIR,minJIRJmin-1=AIR,minIR˜-1,
Δn˜sJ=DEr3+Jx,
Δn˜s=EIASF,  IASF=D/EEr3+Jx,

Metrics