Abstract

A new dynamic model for gain-clamped fiber amplifiers is presented. The model can simulate the transient behavior of a gain-clamped erbium-doped fiber amplifier as a function of its controlling parameters. Results show the detailed dependence of the amplifier gain dynamics on launched pump power and reveal the pump-power penalty incurred in implementing gain control with minimal transients to power disturbances. The effect on the transients of varying the laser cavity feedback coupling is also presented. Model accuracy is verified by the excellent quantitative agreement with dynamic measurements over a range of operating conditions. Results show how an increase in pump power can effectively suppress both the dynamic and the steady-state signal power transients in wavelength-division multiplexing channel add–drop operations.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. R. Giles, E. Desurvire, “Transient gain and cross talk in erbium-doped fiber amplifiers,” Opt. Lett. 14, 880–882 (1989).
    [CrossRef] [PubMed]
  2. M. Zirngibl, “Gain control in erbium-doped fibre amplifiers by an all-optical feedback loop,” Electron. Lett. 27, 560–561 (1991).
    [CrossRef]
  3. J. F. Massicott, S. D. Willson, R. Wyatt, J. R. Armitage, R. Kashyap, D. Williams, R. A. Lobbett, “1480 nm pumped erbium doped fibre amplifier with all-optical automatic gain control,” Electron. Lett. 30, 962–963 (1994).
    [CrossRef]
  4. J. Chung, S. Y. Kim, C. J. Chae, “All-optical gain-clamped EDFAs with different feedback wavelengths for use in multiwavelength optical networks,” Electron. Lett. 32, 2159–2161 (1996).
    [CrossRef]
  5. B. Landousies, T. Georges, E. Delevaque, R. Lebref, M. Monerie, “Low power transient in multichannel equalised and stabilised gain amplifier using passive gain control,” Electron. Lett. 32, 1912–1913 (1996).
    [CrossRef]
  6. G. Luo, J. L. Zyskind, J. Nagel, M. Ali, “Experimental and theoretical analysis of relaxation-oscillations and spectral hole burning effects in all-optical gain-clamped EDFA’s for WDM networks,” J. Lightwave Technol. 16, 527–533 (1998).
    [CrossRef]
  7. D. H. Richards, J. L. Jackel, M. A. Ali, “A theoretical investigation of dynamic all-optical automatic gain control in multi-channel EDFA’s and EDFA cascades,” IEEE J. Sel. Top. Quantum Electron. 3, 1027–1036 (1997).
    [CrossRef]
  8. M. Karasek, J. A. Valles, “Analysis of channel addition/removal response in all-optical gain-controlled cascade of erbium-doped fiber amplifiers,” J. Lightwave Technol. 16, 1795–1803 (1998).
    [CrossRef]
  9. C. Giles, E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 271–283 (1991).
    [CrossRef]
  10. S. R. Chinn, “Simplified modeling of transients in gain-clamped erbium-doped fiber amplifiers,” J. Lightwave Technol. 16, 1095–1100 (1998).
    [CrossRef]
  11. M. Cai, X. Liu, J. Cui, P. Tang, J. Peng, “Study on noise characteristic of gain-clamped erbium-doped fiber-ring lasing amplifier,” IEEE Photon. Technol. Lett. 9, 1093–1095 (1997).
    [CrossRef]
  12. T. Hodgkinson, “Average power analysis technique for erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 3, 1082–1084 (1991).
    [CrossRef]
  13. T. Tellert, F. Di Pasquale, M. Federighi, “Theoretical analysis of the dynamic behaviour of highly efficient erbium/ytterbium codoped lasers,” IEEE Photon. Technol. Lett. 8, 1462–1464 (1996).
    [CrossRef]
  14. J. Bryce, G. Yoffe, Y. Zhao, R. A. Minasian, “Tunable, gain-clamped EDFA incorporating chirped fibre Bragg grating,” Electron. Lett. 34, 1680–1681 (1998).
    [CrossRef]
  15. Y. Zhao, J. Bryce, R. A. Minasian, “Gain clamped erbium-doped fibre amplifiers—modeling and experiment,” IEEE J. Sel. Top. Quantum Electron. 3, 1008–1012 (1997).
    [CrossRef]

1998 (4)

1997 (3)

Y. Zhao, J. Bryce, R. A. Minasian, “Gain clamped erbium-doped fibre amplifiers—modeling and experiment,” IEEE J. Sel. Top. Quantum Electron. 3, 1008–1012 (1997).
[CrossRef]

D. H. Richards, J. L. Jackel, M. A. Ali, “A theoretical investigation of dynamic all-optical automatic gain control in multi-channel EDFA’s and EDFA cascades,” IEEE J. Sel. Top. Quantum Electron. 3, 1027–1036 (1997).
[CrossRef]

M. Cai, X. Liu, J. Cui, P. Tang, J. Peng, “Study on noise characteristic of gain-clamped erbium-doped fiber-ring lasing amplifier,” IEEE Photon. Technol. Lett. 9, 1093–1095 (1997).
[CrossRef]

1996 (3)

J. Chung, S. Y. Kim, C. J. Chae, “All-optical gain-clamped EDFAs with different feedback wavelengths for use in multiwavelength optical networks,” Electron. Lett. 32, 2159–2161 (1996).
[CrossRef]

B. Landousies, T. Georges, E. Delevaque, R. Lebref, M. Monerie, “Low power transient in multichannel equalised and stabilised gain amplifier using passive gain control,” Electron. Lett. 32, 1912–1913 (1996).
[CrossRef]

T. Tellert, F. Di Pasquale, M. Federighi, “Theoretical analysis of the dynamic behaviour of highly efficient erbium/ytterbium codoped lasers,” IEEE Photon. Technol. Lett. 8, 1462–1464 (1996).
[CrossRef]

1994 (1)

J. F. Massicott, S. D. Willson, R. Wyatt, J. R. Armitage, R. Kashyap, D. Williams, R. A. Lobbett, “1480 nm pumped erbium doped fibre amplifier with all-optical automatic gain control,” Electron. Lett. 30, 962–963 (1994).
[CrossRef]

1991 (3)

M. Zirngibl, “Gain control in erbium-doped fibre amplifiers by an all-optical feedback loop,” Electron. Lett. 27, 560–561 (1991).
[CrossRef]

T. Hodgkinson, “Average power analysis technique for erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 3, 1082–1084 (1991).
[CrossRef]

C. Giles, E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 271–283 (1991).
[CrossRef]

1989 (1)

Ali, M.

Ali, M. A.

D. H. Richards, J. L. Jackel, M. A. Ali, “A theoretical investigation of dynamic all-optical automatic gain control in multi-channel EDFA’s and EDFA cascades,” IEEE J. Sel. Top. Quantum Electron. 3, 1027–1036 (1997).
[CrossRef]

Armitage, J. R.

J. F. Massicott, S. D. Willson, R. Wyatt, J. R. Armitage, R. Kashyap, D. Williams, R. A. Lobbett, “1480 nm pumped erbium doped fibre amplifier with all-optical automatic gain control,” Electron. Lett. 30, 962–963 (1994).
[CrossRef]

Bryce, J.

J. Bryce, G. Yoffe, Y. Zhao, R. A. Minasian, “Tunable, gain-clamped EDFA incorporating chirped fibre Bragg grating,” Electron. Lett. 34, 1680–1681 (1998).
[CrossRef]

Y. Zhao, J. Bryce, R. A. Minasian, “Gain clamped erbium-doped fibre amplifiers—modeling and experiment,” IEEE J. Sel. Top. Quantum Electron. 3, 1008–1012 (1997).
[CrossRef]

Cai, M.

M. Cai, X. Liu, J. Cui, P. Tang, J. Peng, “Study on noise characteristic of gain-clamped erbium-doped fiber-ring lasing amplifier,” IEEE Photon. Technol. Lett. 9, 1093–1095 (1997).
[CrossRef]

Chae, C. J.

J. Chung, S. Y. Kim, C. J. Chae, “All-optical gain-clamped EDFAs with different feedback wavelengths for use in multiwavelength optical networks,” Electron. Lett. 32, 2159–2161 (1996).
[CrossRef]

Chinn, S. R.

Chung, J.

J. Chung, S. Y. Kim, C. J. Chae, “All-optical gain-clamped EDFAs with different feedback wavelengths for use in multiwavelength optical networks,” Electron. Lett. 32, 2159–2161 (1996).
[CrossRef]

Cui, J.

M. Cai, X. Liu, J. Cui, P. Tang, J. Peng, “Study on noise characteristic of gain-clamped erbium-doped fiber-ring lasing amplifier,” IEEE Photon. Technol. Lett. 9, 1093–1095 (1997).
[CrossRef]

Delevaque, E.

B. Landousies, T. Georges, E. Delevaque, R. Lebref, M. Monerie, “Low power transient in multichannel equalised and stabilised gain amplifier using passive gain control,” Electron. Lett. 32, 1912–1913 (1996).
[CrossRef]

Desurvire, E.

C. Giles, E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 271–283 (1991).
[CrossRef]

C. R. Giles, E. Desurvire, “Transient gain and cross talk in erbium-doped fiber amplifiers,” Opt. Lett. 14, 880–882 (1989).
[CrossRef] [PubMed]

Di Pasquale, F.

T. Tellert, F. Di Pasquale, M. Federighi, “Theoretical analysis of the dynamic behaviour of highly efficient erbium/ytterbium codoped lasers,” IEEE Photon. Technol. Lett. 8, 1462–1464 (1996).
[CrossRef]

Federighi, M.

T. Tellert, F. Di Pasquale, M. Federighi, “Theoretical analysis of the dynamic behaviour of highly efficient erbium/ytterbium codoped lasers,” IEEE Photon. Technol. Lett. 8, 1462–1464 (1996).
[CrossRef]

Georges, T.

B. Landousies, T. Georges, E. Delevaque, R. Lebref, M. Monerie, “Low power transient in multichannel equalised and stabilised gain amplifier using passive gain control,” Electron. Lett. 32, 1912–1913 (1996).
[CrossRef]

Giles, C.

C. Giles, E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 271–283 (1991).
[CrossRef]

Giles, C. R.

Hodgkinson, T.

T. Hodgkinson, “Average power analysis technique for erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 3, 1082–1084 (1991).
[CrossRef]

Jackel, J. L.

D. H. Richards, J. L. Jackel, M. A. Ali, “A theoretical investigation of dynamic all-optical automatic gain control in multi-channel EDFA’s and EDFA cascades,” IEEE J. Sel. Top. Quantum Electron. 3, 1027–1036 (1997).
[CrossRef]

Karasek, M.

Kashyap, R.

J. F. Massicott, S. D. Willson, R. Wyatt, J. R. Armitage, R. Kashyap, D. Williams, R. A. Lobbett, “1480 nm pumped erbium doped fibre amplifier with all-optical automatic gain control,” Electron. Lett. 30, 962–963 (1994).
[CrossRef]

Kim, S. Y.

J. Chung, S. Y. Kim, C. J. Chae, “All-optical gain-clamped EDFAs with different feedback wavelengths for use in multiwavelength optical networks,” Electron. Lett. 32, 2159–2161 (1996).
[CrossRef]

Landousies, B.

B. Landousies, T. Georges, E. Delevaque, R. Lebref, M. Monerie, “Low power transient in multichannel equalised and stabilised gain amplifier using passive gain control,” Electron. Lett. 32, 1912–1913 (1996).
[CrossRef]

Lebref, R.

B. Landousies, T. Georges, E. Delevaque, R. Lebref, M. Monerie, “Low power transient in multichannel equalised and stabilised gain amplifier using passive gain control,” Electron. Lett. 32, 1912–1913 (1996).
[CrossRef]

Liu, X.

M. Cai, X. Liu, J. Cui, P. Tang, J. Peng, “Study on noise characteristic of gain-clamped erbium-doped fiber-ring lasing amplifier,” IEEE Photon. Technol. Lett. 9, 1093–1095 (1997).
[CrossRef]

Lobbett, R. A.

J. F. Massicott, S. D. Willson, R. Wyatt, J. R. Armitage, R. Kashyap, D. Williams, R. A. Lobbett, “1480 nm pumped erbium doped fibre amplifier with all-optical automatic gain control,” Electron. Lett. 30, 962–963 (1994).
[CrossRef]

Luo, G.

Massicott, J. F.

J. F. Massicott, S. D. Willson, R. Wyatt, J. R. Armitage, R. Kashyap, D. Williams, R. A. Lobbett, “1480 nm pumped erbium doped fibre amplifier with all-optical automatic gain control,” Electron. Lett. 30, 962–963 (1994).
[CrossRef]

Minasian, R. A.

J. Bryce, G. Yoffe, Y. Zhao, R. A. Minasian, “Tunable, gain-clamped EDFA incorporating chirped fibre Bragg grating,” Electron. Lett. 34, 1680–1681 (1998).
[CrossRef]

Y. Zhao, J. Bryce, R. A. Minasian, “Gain clamped erbium-doped fibre amplifiers—modeling and experiment,” IEEE J. Sel. Top. Quantum Electron. 3, 1008–1012 (1997).
[CrossRef]

Monerie, M.

B. Landousies, T. Georges, E. Delevaque, R. Lebref, M. Monerie, “Low power transient in multichannel equalised and stabilised gain amplifier using passive gain control,” Electron. Lett. 32, 1912–1913 (1996).
[CrossRef]

Nagel, J.

Peng, J.

M. Cai, X. Liu, J. Cui, P. Tang, J. Peng, “Study on noise characteristic of gain-clamped erbium-doped fiber-ring lasing amplifier,” IEEE Photon. Technol. Lett. 9, 1093–1095 (1997).
[CrossRef]

Richards, D. H.

D. H. Richards, J. L. Jackel, M. A. Ali, “A theoretical investigation of dynamic all-optical automatic gain control in multi-channel EDFA’s and EDFA cascades,” IEEE J. Sel. Top. Quantum Electron. 3, 1027–1036 (1997).
[CrossRef]

Tang, P.

M. Cai, X. Liu, J. Cui, P. Tang, J. Peng, “Study on noise characteristic of gain-clamped erbium-doped fiber-ring lasing amplifier,” IEEE Photon. Technol. Lett. 9, 1093–1095 (1997).
[CrossRef]

Tellert, T.

T. Tellert, F. Di Pasquale, M. Federighi, “Theoretical analysis of the dynamic behaviour of highly efficient erbium/ytterbium codoped lasers,” IEEE Photon. Technol. Lett. 8, 1462–1464 (1996).
[CrossRef]

Valles, J. A.

Williams, D.

J. F. Massicott, S. D. Willson, R. Wyatt, J. R. Armitage, R. Kashyap, D. Williams, R. A. Lobbett, “1480 nm pumped erbium doped fibre amplifier with all-optical automatic gain control,” Electron. Lett. 30, 962–963 (1994).
[CrossRef]

Willson, S. D.

J. F. Massicott, S. D. Willson, R. Wyatt, J. R. Armitage, R. Kashyap, D. Williams, R. A. Lobbett, “1480 nm pumped erbium doped fibre amplifier with all-optical automatic gain control,” Electron. Lett. 30, 962–963 (1994).
[CrossRef]

Wyatt, R.

J. F. Massicott, S. D. Willson, R. Wyatt, J. R. Armitage, R. Kashyap, D. Williams, R. A. Lobbett, “1480 nm pumped erbium doped fibre amplifier with all-optical automatic gain control,” Electron. Lett. 30, 962–963 (1994).
[CrossRef]

Yoffe, G.

J. Bryce, G. Yoffe, Y. Zhao, R. A. Minasian, “Tunable, gain-clamped EDFA incorporating chirped fibre Bragg grating,” Electron. Lett. 34, 1680–1681 (1998).
[CrossRef]

Zhao, Y.

J. Bryce, G. Yoffe, Y. Zhao, R. A. Minasian, “Tunable, gain-clamped EDFA incorporating chirped fibre Bragg grating,” Electron. Lett. 34, 1680–1681 (1998).
[CrossRef]

Y. Zhao, J. Bryce, R. A. Minasian, “Gain clamped erbium-doped fibre amplifiers—modeling and experiment,” IEEE J. Sel. Top. Quantum Electron. 3, 1008–1012 (1997).
[CrossRef]

Zirngibl, M.

M. Zirngibl, “Gain control in erbium-doped fibre amplifiers by an all-optical feedback loop,” Electron. Lett. 27, 560–561 (1991).
[CrossRef]

Zyskind, J. L.

Electron. Lett. (5)

M. Zirngibl, “Gain control in erbium-doped fibre amplifiers by an all-optical feedback loop,” Electron. Lett. 27, 560–561 (1991).
[CrossRef]

J. F. Massicott, S. D. Willson, R. Wyatt, J. R. Armitage, R. Kashyap, D. Williams, R. A. Lobbett, “1480 nm pumped erbium doped fibre amplifier with all-optical automatic gain control,” Electron. Lett. 30, 962–963 (1994).
[CrossRef]

J. Chung, S. Y. Kim, C. J. Chae, “All-optical gain-clamped EDFAs with different feedback wavelengths for use in multiwavelength optical networks,” Electron. Lett. 32, 2159–2161 (1996).
[CrossRef]

B. Landousies, T. Georges, E. Delevaque, R. Lebref, M. Monerie, “Low power transient in multichannel equalised and stabilised gain amplifier using passive gain control,” Electron. Lett. 32, 1912–1913 (1996).
[CrossRef]

J. Bryce, G. Yoffe, Y. Zhao, R. A. Minasian, “Tunable, gain-clamped EDFA incorporating chirped fibre Bragg grating,” Electron. Lett. 34, 1680–1681 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

Y. Zhao, J. Bryce, R. A. Minasian, “Gain clamped erbium-doped fibre amplifiers—modeling and experiment,” IEEE J. Sel. Top. Quantum Electron. 3, 1008–1012 (1997).
[CrossRef]

D. H. Richards, J. L. Jackel, M. A. Ali, “A theoretical investigation of dynamic all-optical automatic gain control in multi-channel EDFA’s and EDFA cascades,” IEEE J. Sel. Top. Quantum Electron. 3, 1027–1036 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

M. Cai, X. Liu, J. Cui, P. Tang, J. Peng, “Study on noise characteristic of gain-clamped erbium-doped fiber-ring lasing amplifier,” IEEE Photon. Technol. Lett. 9, 1093–1095 (1997).
[CrossRef]

T. Hodgkinson, “Average power analysis technique for erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 3, 1082–1084 (1991).
[CrossRef]

T. Tellert, F. Di Pasquale, M. Federighi, “Theoretical analysis of the dynamic behaviour of highly efficient erbium/ytterbium codoped lasers,” IEEE Photon. Technol. Lett. 8, 1462–1464 (1996).
[CrossRef]

J. Lightwave Technol. (4)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Experimental setup for power transient measurements. CRO, cathode ray oscilloscope; other abbreviations defined in text.

Fig. 2
Fig. 2

Gain at λ s = 1545 nm when a second signal at 1553 nm is (a) added and dropped, (b) added, and (c) dropped. L = 6 m, P p = 14 mW, λ l = 1520 nm, R out = 20%, P s = 50 µW.

Fig. 3
Fig. 3

Initial dynamic gain excursion on a 1545-nm signal when a 1553-nm signal is added or dropped. L = 10 m, λ l = 1536 nm, R out = 50%, P s = 50 µW.

Fig. 4
Fig. 4

(a) Period of relaxation oscillations on a 1545-nm signal and (b) settling time for a 1545-nm signal when a 1553-nm signal is added or dropped. L = 6 m, λ l = 1520 nm, R out = 20%, P s = 50 µW.

Fig. 5
Fig. 5

Dynamic effects on a signal at a 1545-nm (a) period of gain fluctuations and (b) amplitude of gain fluctuations, versus pump power when a 1553-nm channel is added or dropped. L = 4 m, λ l = 1508 nm, R out = 90%.

Fig. 6
Fig. 6

Gain- and length-averaged inversion for EDFA’s with different control laser wavelengths. L = 6 m, P p = 61 mW, R 1508 nm = 35%, R 1520 nm = 20%, R 1536 nm = 50%.

Fig. 7
Fig. 7

Dynamic effects on a 1545-nm signal when a 1553-nm signal is (a) added and (b), (c) dropped. P s = 50 µW.

Fig. 8
Fig. 8

Normalized amplitude of power fluctuations versus inversion, showing the effect of both lasing wavelength and output grating reflectivity.

Fig. 9
Fig. 9

Period of relaxation oscillations versus control laser wavelength when a 350-µW signal at 1553 nm is added or dropped.

Fig. 10
Fig. 10

Period of relaxation oscillations on a 1545-nm signal when a 1553-nm signal is added or dropped. L = 6 m, λ l = 1508 nm, P p = 60 mW, P s = 50 µW.

Fig. 11
Fig. 11

(a) Normalized steady-state shift in gain on a 1545-nm signal when a 1553-nm signal is added or dropped. L = 6 m, λ l = 1508 nm, P s = 50 µW, R out = 43 → 97%. (b) Settling time for the 1545-nm signal when the 1553-nm signal is added. L = 6 m, λ l = 1508 nm, P p = 60 mW, P s = 50 µW.

Fig. 12
Fig. 12

Signal gain fluctuations for gain-clamped EDFA’s with the same length–concentration product [Er3+]L = 4.8 × 1025 m-2, λ l = 1508 nm, R out = 90%, P 1545 = P 1553 = 50 µW.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

dN1dt=-W12+R13+L12N1+W21+L21+A21N2+R31N3,
dN2dt=W12+L12N1-W21+L21+A21N2+A32N3,
dN3dt=R13N1-R31+A32N3,
dPldt=cncorePlΓlLgLfσelN2-σalN1-α+4hνΔνσelΓlN2,
Pl2Lf=RinRout1-lin21-lout2Gl2Pl0.
α=ln1-lin21-lout2RinRout2Lf.
Gs=expLgΓsσesN2-σasN1,
Pdrop-PaddPdrop=1-GaddGdrop=110Gadd-Gdrop/10.

Metrics