Abstract

We propose a novel wavelength-selective photodetector with three subcavities, i.e., a filtering cavity, a spacer cavity, and an absorption cavity, for obtaining a narrow spectral response linewidth and a high quantum efficiency simultaneously. A theoretical prediction has been made that a less than 1-nm linewidth and a quantum efficiency as high as 90% are possible. We discuss the effects of the key factors on the performance of this type of photodetector that has been designed and fabricated. A spectral response linewidth of approximately 1.4 nm (FWHM) and an external quantum efficiency higher than 50% have been achieved experimentally. Such devices are promising for wavelength-division multiplexing applications.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Sel. Areas Commun. 8, 948–964 (1990).
    [CrossRef]
  2. M. S. Ünlü, S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78, 607–639 (1995).
    [CrossRef]
  3. M. S. Ünlü, K. Kishino, H. J. Liaw, H. Morkoc, “A theoretical study of resonant cavity-enhanced photo-detector with Ge and Si active regions,” J. Appl. Phys. 71, 4049–4058 (1992).
    [CrossRef]
  4. X. Ren, J. C. Campbell, “Theory and simulations of tunable two-mirror and three-mirror resonant cavity photodetectors with a built-in liquid-crystal layer,” IEEE J. Quantum Electron. 32, 2012–2025 (1996).
  5. K. Lai, J. C. Campbell, “Design of a tunable GaAs/AlGaAs multiple-quantum-well resonant-cavity photodetector,” IEEE J. Quantum Electron. 30, 108–114 (1995).
    [CrossRef]
  6. S. T. Wilkinson, N. M. Jokerst, R. P. Leavitt, “Resonant-cavity-enhanced thin-film AlGaAs/GaAs/AlGaAs LED’s with metal mirrors,” Appl. Opt. 34, 8298–8302 (1995).
    [CrossRef] [PubMed]
  7. X. Ren, J. C. Campbell, “A novel structure: one mirror inclined three-mirror cavity high performance photodetector,” in Technical Proceedings: International Topical Meeting on Photoelectronics (Beijing Institute of Technology Press, Beijing, China, 1997), pp. 81–84.
  8. K. Liu, Y. Huang, X. Ren, “Analysis of resonant-cavity-enhanced-photo-detectors considering the inter-layer refractive index differences,” Chin. J. Optoelectron. Laser 9, 360–363 (1999).

1999 (1)

K. Liu, Y. Huang, X. Ren, “Analysis of resonant-cavity-enhanced-photo-detectors considering the inter-layer refractive index differences,” Chin. J. Optoelectron. Laser 9, 360–363 (1999).

1996 (1)

X. Ren, J. C. Campbell, “Theory and simulations of tunable two-mirror and three-mirror resonant cavity photodetectors with a built-in liquid-crystal layer,” IEEE J. Quantum Electron. 32, 2012–2025 (1996).

1995 (3)

K. Lai, J. C. Campbell, “Design of a tunable GaAs/AlGaAs multiple-quantum-well resonant-cavity photodetector,” IEEE J. Quantum Electron. 30, 108–114 (1995).
[CrossRef]

S. T. Wilkinson, N. M. Jokerst, R. P. Leavitt, “Resonant-cavity-enhanced thin-film AlGaAs/GaAs/AlGaAs LED’s with metal mirrors,” Appl. Opt. 34, 8298–8302 (1995).
[CrossRef] [PubMed]

M. S. Ünlü, S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78, 607–639 (1995).
[CrossRef]

1992 (1)

M. S. Ünlü, K. Kishino, H. J. Liaw, H. Morkoc, “A theoretical study of resonant cavity-enhanced photo-detector with Ge and Si active regions,” J. Appl. Phys. 71, 4049–4058 (1992).
[CrossRef]

1990 (1)

C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Sel. Areas Commun. 8, 948–964 (1990).
[CrossRef]

Brackett, C. A.

C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Sel. Areas Commun. 8, 948–964 (1990).
[CrossRef]

Campbell, J. C.

X. Ren, J. C. Campbell, “Theory and simulations of tunable two-mirror and three-mirror resonant cavity photodetectors with a built-in liquid-crystal layer,” IEEE J. Quantum Electron. 32, 2012–2025 (1996).

K. Lai, J. C. Campbell, “Design of a tunable GaAs/AlGaAs multiple-quantum-well resonant-cavity photodetector,” IEEE J. Quantum Electron. 30, 108–114 (1995).
[CrossRef]

X. Ren, J. C. Campbell, “A novel structure: one mirror inclined three-mirror cavity high performance photodetector,” in Technical Proceedings: International Topical Meeting on Photoelectronics (Beijing Institute of Technology Press, Beijing, China, 1997), pp. 81–84.

Huang, Y.

K. Liu, Y. Huang, X. Ren, “Analysis of resonant-cavity-enhanced-photo-detectors considering the inter-layer refractive index differences,” Chin. J. Optoelectron. Laser 9, 360–363 (1999).

Jokerst, N. M.

Kishino, K.

M. S. Ünlü, K. Kishino, H. J. Liaw, H. Morkoc, “A theoretical study of resonant cavity-enhanced photo-detector with Ge and Si active regions,” J. Appl. Phys. 71, 4049–4058 (1992).
[CrossRef]

Lai, K.

K. Lai, J. C. Campbell, “Design of a tunable GaAs/AlGaAs multiple-quantum-well resonant-cavity photodetector,” IEEE J. Quantum Electron. 30, 108–114 (1995).
[CrossRef]

Leavitt, R. P.

Liaw, H. J.

M. S. Ünlü, K. Kishino, H. J. Liaw, H. Morkoc, “A theoretical study of resonant cavity-enhanced photo-detector with Ge and Si active regions,” J. Appl. Phys. 71, 4049–4058 (1992).
[CrossRef]

Liu, K.

K. Liu, Y. Huang, X. Ren, “Analysis of resonant-cavity-enhanced-photo-detectors considering the inter-layer refractive index differences,” Chin. J. Optoelectron. Laser 9, 360–363 (1999).

Morkoc, H.

M. S. Ünlü, K. Kishino, H. J. Liaw, H. Morkoc, “A theoretical study of resonant cavity-enhanced photo-detector with Ge and Si active regions,” J. Appl. Phys. 71, 4049–4058 (1992).
[CrossRef]

Ren, X.

K. Liu, Y. Huang, X. Ren, “Analysis of resonant-cavity-enhanced-photo-detectors considering the inter-layer refractive index differences,” Chin. J. Optoelectron. Laser 9, 360–363 (1999).

X. Ren, J. C. Campbell, “Theory and simulations of tunable two-mirror and three-mirror resonant cavity photodetectors with a built-in liquid-crystal layer,” IEEE J. Quantum Electron. 32, 2012–2025 (1996).

X. Ren, J. C. Campbell, “A novel structure: one mirror inclined three-mirror cavity high performance photodetector,” in Technical Proceedings: International Topical Meeting on Photoelectronics (Beijing Institute of Technology Press, Beijing, China, 1997), pp. 81–84.

Strite, S.

M. S. Ünlü, S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78, 607–639 (1995).
[CrossRef]

Ünlü, M. S.

M. S. Ünlü, S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78, 607–639 (1995).
[CrossRef]

M. S. Ünlü, K. Kishino, H. J. Liaw, H. Morkoc, “A theoretical study of resonant cavity-enhanced photo-detector with Ge and Si active regions,” J. Appl. Phys. 71, 4049–4058 (1992).
[CrossRef]

Wilkinson, S. T.

Appl. Opt. (1)

Chin. J. Optoelectron. Laser (1)

K. Liu, Y. Huang, X. Ren, “Analysis of resonant-cavity-enhanced-photo-detectors considering the inter-layer refractive index differences,” Chin. J. Optoelectron. Laser 9, 360–363 (1999).

IEEE J. Quantum Electron. (2)

X. Ren, J. C. Campbell, “Theory and simulations of tunable two-mirror and three-mirror resonant cavity photodetectors with a built-in liquid-crystal layer,” IEEE J. Quantum Electron. 32, 2012–2025 (1996).

K. Lai, J. C. Campbell, “Design of a tunable GaAs/AlGaAs multiple-quantum-well resonant-cavity photodetector,” IEEE J. Quantum Electron. 30, 108–114 (1995).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Sel. Areas Commun. 8, 948–964 (1990).
[CrossRef]

J. Appl. Phys. (2)

M. S. Ünlü, S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78, 607–639 (1995).
[CrossRef]

M. S. Ünlü, K. Kishino, H. J. Liaw, H. Morkoc, “A theoretical study of resonant cavity-enhanced photo-detector with Ge and Si active regions,” J. Appl. Phys. 71, 4049–4058 (1992).
[CrossRef]

Other (1)

X. Ren, J. C. Campbell, “A novel structure: one mirror inclined three-mirror cavity high performance photodetector,” in Technical Proceedings: International Topical Meeting on Photoelectronics (Beijing Institute of Technology Press, Beijing, China, 1997), pp. 81–84.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Proposed device structure.

Fig. 2
Fig. 2

Analysis model.

Fig. 3
Fig. 3

Reconstructed analysis model.

Fig. 4
Fig. 4

Relations between R1′ and R M2: (a) R 1′ (solid curve) decreases from R M2 (short dashed curve) with a 10% maximal value of reduction, when R 1 (long dashed curve) changes from less than 10% to greater than 90%; (b) R 1′ (solid curve) tracks to the increase of R M2 (long dashed curve) but with a maximal difference of 10%, and R 1 (short dashed curve) is constant.

Fig. 5
Fig. 5

Response spectrum of the three-cavity photodetector and its subcavities: solid curve, three-cavity photodetector’s quantum efficiency spectrum; short dashed curve, transmission spectrum of its filtering cavity; long dashed curve, the quantum efficiency spectrum of its absorption cavity.

Fig. 6
Fig. 6

Quantum efficiency of the three-cavity photodetector (solid curve) and its absorption cavity (short dashed curve) based on the different thicknesses of the absorption layer and quantum efficiency of a conventional p-i-n photodetector (long dashed curve) for comparison.

Fig. 7
Fig. 7

Calculated quantum efficiency spectrum of the three-cavity photodetector with a FWHM of less than 1 nm.

Fig. 8
Fig. 8

Effects of mode mismatch: (a) the three-cavity photodetector’s quantum efficiency spectrum where (b) λ a changes from 0.848 to 0.852 µm; and (c) λ f is unchanged at 0.85 µm, the numbers at the top of (a) represent the corresponding λ a ; (d), the three-cavity photodetector’s quantum efficiency spectrum when (e) λ f changes from 0.848 to 0.851 µm and (f) λ a is unchanged at 0.85 µm.

Fig. 9
Fig. 9

Effect of the spacer cavity on the three-cavity photodetector.

Fig. 10
Fig. 10

Effect of transmission loss on the three-cavity photodetector.

Fig. 11
Fig. 11

Three-cavity photodetector structure.

Fig. 12
Fig. 12

Three-cavity photodetector’s spectral response: (a) responsivity spectrum and (b) quantum efficiency spectrum. The numbers in the figure give the applied bias voltage.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

EiREiL=SFCUSCSACEoREoL, Un=expαn×ln/2+jφn,00,exp-αn×ln/2-jφn Wnn+1=12×1+nn+1nn,1-nn+1nn1-nn+1nn,1+nn+1nnEiREiL=SFCUSCSmirrorM2SabEbREbL,
SFC=Smirror1UfSmirrorM1, SAC=SmirrorM2ScavitySmirror2, Scavity=UaWabUbWbcUc, Sab=UaWab.
S=SFCUSCSAC, S=SFCUSCSmirrorM2Sab.
EbR=S22-S12S21/S11|S|×EiR, EbL=S11S21/S11-S21|S|×expαblb/2+jφbEiR.
Pabsorption=PbR+PbL1-exp-αblb,
PbR=n2η0 |EbR|2, PbL=n2η0 |EbL|2.
η=1|S|2S22-S12 S21S1121-exp-αblb+S11 S21S11-S212expαblb-1nbn0.
Ri=|Si21/Si11|2, i=1, 2, M1, and M2.
S1=SFCUSCSmirror M2.
R1=|S121/S111|2.

Metrics