Abstract

The effects of refractive turbulence on ground-based verification of the far-field performance of coherent Doppler lidar are determined with numerical simulation and compared with the first-order terms of a theoretical expansion. The collimated small-beam far-field test has better performance than the focused-beam test. For typical ground-based conditions, higher-order terms of the theoretical expansion are required for convergence.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. T. Menzies, R. M. Hardesty, “Coherent Doppler lidar for measurements of wind fields,” Proc. IEEE 77, 449–462 (1989).
    [CrossRef]
  2. S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2-µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
    [CrossRef]
  3. R. Frehlich, S. Hannon, S. Henderson, “Performance of a 2-µm coherent Doppler lidar for wind measurements,” J. Atmos. Oceanic Technol. 11, 1517–1528 (1994).
    [CrossRef]
  4. R. M. Huffaker, R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996).
    [CrossRef]
  5. R. G. Frehlich, S. Hannon, S. Henderson, “Coherent Doppler lidar measurements of wind field statistics,” Boundary-Layer Meteorol. 86, 233–256 (1998).
    [CrossRef]
  6. B. J. Rye, “Primary aberration contribution to incoherent backscatter heterodyne lidar returns,” Appl. Opt. 21, 839–844 (1982).
    [CrossRef] [PubMed]
  7. J. Y. Wang, “Optimum truncation of a lidar transmitted beam,” Appl. Opt. 27, 4470–4474 (1988).
    [CrossRef] [PubMed]
  8. D. M. Tratt, R. T. Menzies, “Unstable resonator antenna properties in coherent lidar applications: a comparative study,” Appl. Opt. 27, 3645–3649 (1988).
    [CrossRef] [PubMed]
  9. Y. Zhao, M. J. Post, R. M. Hardesty, “Receiving efficiency of monostatic pulsed coherent lidars. 1: Theory,” Appl. Opt. 29, 4111–4119 (1990).
    [CrossRef] [PubMed]
  10. R. G. Frehlich, M. J. Kavaya, “Coherent laser radar performance for general atmospheric refractive turbulence,” Appl. Opt. 30, 5325–5352 (1991).
    [CrossRef] [PubMed]
  11. D. M. Tratt, “Optimizing coherent lidar performance with graded-reflectance laser resonator optics,” Appl. Opt. 31, 4233–4239 (1992).
    [CrossRef] [PubMed]
  12. B. J. Rye, R. G. Frehlich, “Optimal truncation of Gaussian beams for coherent lidar using incoherent backscatter,” Appl. Opt. 31, 2891–2899 (1992).
    [CrossRef] [PubMed]
  13. R. G. Frehlich, “Optimal local oscillator field for a monostatic coherent laser radar with a circular aperture,” Appl. Opt. 32, 4569–4577 (1993).
    [CrossRef] [PubMed]
  14. R. G. Frehlich, “Heterodyne efficiency for a coherent laser radar with diffuse or aerosol targets,” J. Mod. Opt. 41, 1217–1230 (1994).
    [CrossRef]
  15. D. L. Fried, “Optical heterodyne detection of an atmospherically distorted signal wave front,” Proc. IEEE 55, 57–66 (1967).
    [CrossRef]
  16. H. T. Yura, “Signal-to-noise ratio of heterodyne lidar systems in the presence of atmospheric turbulence,” Opt. Acta 26, 627–644 (1979).
    [CrossRef]
  17. J. H. Shapiro, B. A. Capron, R. C. Harney, “Imaging and target detection with a heterodyne-reception optical radar,” Appl. Opt. 20, 3292–3313 (1981).
    [CrossRef] [PubMed]
  18. B. J. Rye, “Refractive-turbulence contribution to incoherent backscatter heterodyne lidar returns,” J. Opt. Soc. Am. 71, 687–691 (1981).
    [CrossRef]
  19. S. F. Clifford, S. Wandzura, “Monostatic heterodyne lidar performance: the effect of the turbulent atmosphere,” Appl. Opt. 20, 514–516 (1981); erratum, Appl. Opt. 20, 1502 (1981).
  20. J. Y. Wang, “Heterodyne laser radar SNR from a diffuse target containing multiple glints,” Appl. Opt. 21, 464–475 (1982).
    [CrossRef] [PubMed]
  21. R. Murty, “Refractive turbulence effects on truncated Gaussian beam heterodyne lidar,” Appl. Opt. 23, 2498–2502 (1984).
    [CrossRef] [PubMed]
  22. V. A. Banakh, V. L. Mironov, Lidar in a Turbulent Atmosphere (Artech House, Boston, Mass., 1987).
  23. M. S. Belen’kii, “Effect of atmospheric turbulence on heterodyne lidar performance,” Appl. Opt. 32, 5368–5372 (1993).
    [CrossRef] [PubMed]
  24. R. G. Frehlich, “Effects of refractive turbulence on coherent laser radar,” Appl. Opt. 32, 2122–2139 (1993).
    [CrossRef] [PubMed]
  25. J. A. Fleck, J. R. Morris, M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. 10, 129–160 (1976).
    [CrossRef]
  26. J. Martin, S. Flatté, “Intensity images and statistics from numerical simulation of wave propagation in 3-D random media,” Appl. Opt. 27, 2111–2126 (1988).
    [CrossRef] [PubMed]
  27. J. M. Martin, S. M. Flatté, “Simulation of point-source scintillation through three-dimensional random media,” J. Opt. Soc. Am. A 7, 838–847 (1990).
    [CrossRef]
  28. J. Martin, “Simulation of wave propagation in random: theory and applications,” in Wave Propagation in Random Media (Scintillation), V. I. Tatarskii, A. Ishimaru, V. U. Zavorotny, eds. (SPIE Press, Bellingham, Wash., 1993).
  29. Wm. A. Coles, J. P. Filice, R. G. Frehlich, M. Yadlowsky, “Simulation of wave propagation in three-dimensional random media,” Appl. Opt. 34, 2089–2101 (1995).
    [CrossRef] [PubMed]
  30. D. G. Youmans, V. S. Gudimetla, “Round-trip turbulence scintillation effects on laser radar: Monte Carlo simulation results for unresolved targets,” in Laser Radar Technology and Applications II, G. W. Kamerman, ed., Proc. SPIE3065, 71–83 (1997).
    [CrossRef]
  31. A. Belmonte, B. J. Rye, W. A. Brewer, R. M. Hardesty, “Coherent lidar returns in turbulent atmosphere from simulation of beam propagation,” in Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, 10227 Wincopin Circle, Columbia, Md. 21044-3498, 1999).
  32. V. A. Banakh, I. N. Smalikho, Ch. Werner, “Effect of refractive turbulence on Doppler lidar operation in atmosphere. Numerical simulation,” in Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, 10227 Wincopin Circle, Columbia, Md. 21044-3498, 1999).
  33. R. G. Frehlich, “Simulation of laser propagation in a turbulent atmosphere,” Appl. Opt. 39, 393–397 (2000).
    [CrossRef]
  34. J. W. Goodman, Statistical Optics (Wiley, New York, 1985).
  35. J. H. Churnside, H. T. Yura, “Speckle statistics of atmospherically backscattered laser light,” Appl. Opt. 22, 2559–2565 (1983).
    [CrossRef] [PubMed]
  36. R. G. Frehlich, “Coherent Doppler lidar signal covariance including wind shear and wind turbulence,” Appl. Opt. 33, 6472–6481 (1994).
    [CrossRef] [PubMed]
  37. A. E. Siegman, “The antenna properties of optical heterodyne receivers,” Proc. IEEE 51, 1350–1358 (1966); Appl. Opt. 5, 1588–1594 (1966).
    [CrossRef]
  38. R. J. Hill, “Models of the scalar spectrum for turbulent advection,” J. Fluid Mech. 88, 541–562 (1978).
    [CrossRef]
  39. R. Frehlich, “Laser scintillation measurements of the temperature spectrum in the atmospheric surface layer,” J. Atmos. Sci. 49, 1494–1509 (1992).
    [CrossRef]
  40. V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (Keter Press, Jerusalem, 1971).
  41. G. R. Ochs, R. J. Hill, “Optical-scintillation method of measuring turbulence inner scale,” Appl. Opt. 24, 2430–2432 (1985).
    [CrossRef] [PubMed]
  42. N. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng. 29, 1174–1180 (1990).
    [CrossRef]
  43. R. G. Lane, A. Glindemann, J. C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 209–224 (1992).
    [CrossRef]
  44. W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, J. McElroy, “Lidar measured winds from space: an essential component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
    [CrossRef]
  45. M. J. Kavaya, G. D. Emmitt, “Space readiness coherent lidar experiment (SPARCLE) Space Shuttle mission,” in Laser Radar Technology and Applications III, G. W. Kamerman, ed., Proc. SPIE3380, 2–11 (1998).
    [CrossRef]
  46. M. J. Kavaya, Global Hydrology and Climate Center, NASA Marshall Space Flight Center, Huntsville, Ala. 35812 (personal communication, 1999).
  47. A. Ishimaru, “Fluctuations of a beam wave propagating through a locally homogeneous medium,” Radio Sci. 4, 295–305 (1969).
    [CrossRef]

2000 (1)

1998 (1)

R. G. Frehlich, S. Hannon, S. Henderson, “Coherent Doppler lidar measurements of wind field statistics,” Boundary-Layer Meteorol. 86, 233–256 (1998).
[CrossRef]

1996 (1)

R. M. Huffaker, R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996).
[CrossRef]

1995 (2)

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, J. McElroy, “Lidar measured winds from space: an essential component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Wm. A. Coles, J. P. Filice, R. G. Frehlich, M. Yadlowsky, “Simulation of wave propagation in three-dimensional random media,” Appl. Opt. 34, 2089–2101 (1995).
[CrossRef] [PubMed]

1994 (3)

R. G. Frehlich, “Coherent Doppler lidar signal covariance including wind shear and wind turbulence,” Appl. Opt. 33, 6472–6481 (1994).
[CrossRef] [PubMed]

R. Frehlich, S. Hannon, S. Henderson, “Performance of a 2-µm coherent Doppler lidar for wind measurements,” J. Atmos. Oceanic Technol. 11, 1517–1528 (1994).
[CrossRef]

R. G. Frehlich, “Heterodyne efficiency for a coherent laser radar with diffuse or aerosol targets,” J. Mod. Opt. 41, 1217–1230 (1994).
[CrossRef]

1993 (4)

1992 (4)

B. J. Rye, R. G. Frehlich, “Optimal truncation of Gaussian beams for coherent lidar using incoherent backscatter,” Appl. Opt. 31, 2891–2899 (1992).
[CrossRef] [PubMed]

D. M. Tratt, “Optimizing coherent lidar performance with graded-reflectance laser resonator optics,” Appl. Opt. 31, 4233–4239 (1992).
[CrossRef] [PubMed]

R. Frehlich, “Laser scintillation measurements of the temperature spectrum in the atmospheric surface layer,” J. Atmos. Sci. 49, 1494–1509 (1992).
[CrossRef]

R. G. Lane, A. Glindemann, J. C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 209–224 (1992).
[CrossRef]

1991 (1)

1990 (3)

1989 (1)

R. T. Menzies, R. M. Hardesty, “Coherent Doppler lidar for measurements of wind fields,” Proc. IEEE 77, 449–462 (1989).
[CrossRef]

1988 (3)

1985 (1)

1984 (1)

1983 (1)

1982 (2)

1981 (3)

1979 (1)

H. T. Yura, “Signal-to-noise ratio of heterodyne lidar systems in the presence of atmospheric turbulence,” Opt. Acta 26, 627–644 (1979).
[CrossRef]

1978 (1)

R. J. Hill, “Models of the scalar spectrum for turbulent advection,” J. Fluid Mech. 88, 541–562 (1978).
[CrossRef]

1976 (1)

J. A. Fleck, J. R. Morris, M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. 10, 129–160 (1976).
[CrossRef]

1969 (1)

A. Ishimaru, “Fluctuations of a beam wave propagating through a locally homogeneous medium,” Radio Sci. 4, 295–305 (1969).
[CrossRef]

1967 (1)

D. L. Fried, “Optical heterodyne detection of an atmospherically distorted signal wave front,” Proc. IEEE 55, 57–66 (1967).
[CrossRef]

1966 (1)

A. E. Siegman, “The antenna properties of optical heterodyne receivers,” Proc. IEEE 51, 1350–1358 (1966); Appl. Opt. 5, 1588–1594 (1966).
[CrossRef]

Anderson, J. R.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, J. McElroy, “Lidar measured winds from space: an essential component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Atlas, R. M.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, J. McElroy, “Lidar measured winds from space: an essential component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Baker, W. E.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, J. McElroy, “Lidar measured winds from space: an essential component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Banakh, V. A.

V. A. Banakh, V. L. Mironov, Lidar in a Turbulent Atmosphere (Artech House, Boston, Mass., 1987).

V. A. Banakh, I. N. Smalikho, Ch. Werner, “Effect of refractive turbulence on Doppler lidar operation in atmosphere. Numerical simulation,” in Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, 10227 Wincopin Circle, Columbia, Md. 21044-3498, 1999).

Belen’kii, M. S.

Belmonte, A.

A. Belmonte, B. J. Rye, W. A. Brewer, R. M. Hardesty, “Coherent lidar returns in turbulent atmosphere from simulation of beam propagation,” in Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, 10227 Wincopin Circle, Columbia, Md. 21044-3498, 1999).

Bowdle, D. A.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, J. McElroy, “Lidar measured winds from space: an essential component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Brewer, W. A.

A. Belmonte, B. J. Rye, W. A. Brewer, R. M. Hardesty, “Coherent lidar returns in turbulent atmosphere from simulation of beam propagation,” in Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, 10227 Wincopin Circle, Columbia, Md. 21044-3498, 1999).

Brown, R. A.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, J. McElroy, “Lidar measured winds from space: an essential component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Bruns, D. L.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2-µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

Capron, B. A.

Churnside, J. H.

Clifford, S. F.

Coles, Wm. A.

Dainty, J. C.

R. G. Lane, A. Glindemann, J. C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 209–224 (1992).
[CrossRef]

Emmitt, G. D.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, J. McElroy, “Lidar measured winds from space: an essential component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

M. J. Kavaya, G. D. Emmitt, “Space readiness coherent lidar experiment (SPARCLE) Space Shuttle mission,” in Laser Radar Technology and Applications III, G. W. Kamerman, ed., Proc. SPIE3380, 2–11 (1998).
[CrossRef]

Feit, M. D.

J. A. Fleck, J. R. Morris, M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. 10, 129–160 (1976).
[CrossRef]

Filice, J. P.

Flatté, S.

Flatté, S. M.

Fleck, J. A.

J. A. Fleck, J. R. Morris, M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. 10, 129–160 (1976).
[CrossRef]

Frehlich, R.

R. Frehlich, S. Hannon, S. Henderson, “Performance of a 2-µm coherent Doppler lidar for wind measurements,” J. Atmos. Oceanic Technol. 11, 1517–1528 (1994).
[CrossRef]

R. Frehlich, “Laser scintillation measurements of the temperature spectrum in the atmospheric surface layer,” J. Atmos. Sci. 49, 1494–1509 (1992).
[CrossRef]

Frehlich, R. G.

Fried, D. L.

D. L. Fried, “Optical heterodyne detection of an atmospherically distorted signal wave front,” Proc. IEEE 55, 57–66 (1967).
[CrossRef]

Glindemann, A.

R. G. Lane, A. Glindemann, J. C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 209–224 (1992).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Statistical Optics (Wiley, New York, 1985).

Gudimetla, V. S.

D. G. Youmans, V. S. Gudimetla, “Round-trip turbulence scintillation effects on laser radar: Monte Carlo simulation results for unresolved targets,” in Laser Radar Technology and Applications II, G. W. Kamerman, ed., Proc. SPIE3065, 71–83 (1997).
[CrossRef]

Hale, C. P.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2-µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

Hannon, S.

R. G. Frehlich, S. Hannon, S. Henderson, “Coherent Doppler lidar measurements of wind field statistics,” Boundary-Layer Meteorol. 86, 233–256 (1998).
[CrossRef]

R. Frehlich, S. Hannon, S. Henderson, “Performance of a 2-µm coherent Doppler lidar for wind measurements,” J. Atmos. Oceanic Technol. 11, 1517–1528 (1994).
[CrossRef]

Hannon, S. M.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2-µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

Hardesty, R. M.

R. M. Huffaker, R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996).
[CrossRef]

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, J. McElroy, “Lidar measured winds from space: an essential component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Y. Zhao, M. J. Post, R. M. Hardesty, “Receiving efficiency of monostatic pulsed coherent lidars. 1: Theory,” Appl. Opt. 29, 4111–4119 (1990).
[CrossRef] [PubMed]

R. T. Menzies, R. M. Hardesty, “Coherent Doppler lidar for measurements of wind fields,” Proc. IEEE 77, 449–462 (1989).
[CrossRef]

A. Belmonte, B. J. Rye, W. A. Brewer, R. M. Hardesty, “Coherent lidar returns in turbulent atmosphere from simulation of beam propagation,” in Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, 10227 Wincopin Circle, Columbia, Md. 21044-3498, 1999).

Harney, R. C.

Henderson, S.

R. G. Frehlich, S. Hannon, S. Henderson, “Coherent Doppler lidar measurements of wind field statistics,” Boundary-Layer Meteorol. 86, 233–256 (1998).
[CrossRef]

R. Frehlich, S. Hannon, S. Henderson, “Performance of a 2-µm coherent Doppler lidar for wind measurements,” J. Atmos. Oceanic Technol. 11, 1517–1528 (1994).
[CrossRef]

Henderson, S. W.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2-µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

Hill, R. J.

G. R. Ochs, R. J. Hill, “Optical-scintillation method of measuring turbulence inner scale,” Appl. Opt. 24, 2430–2432 (1985).
[CrossRef] [PubMed]

R. J. Hill, “Models of the scalar spectrum for turbulent advection,” J. Fluid Mech. 88, 541–562 (1978).
[CrossRef]

Huffaker, R. M.

R. M. Huffaker, R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996).
[CrossRef]

Ishimaru, A.

A. Ishimaru, “Fluctuations of a beam wave propagating through a locally homogeneous medium,” Radio Sci. 4, 295–305 (1969).
[CrossRef]

Kavaya, M. J.

R. G. Frehlich, M. J. Kavaya, “Coherent laser radar performance for general atmospheric refractive turbulence,” Appl. Opt. 30, 5325–5352 (1991).
[CrossRef] [PubMed]

M. J. Kavaya, G. D. Emmitt, “Space readiness coherent lidar experiment (SPARCLE) Space Shuttle mission,” in Laser Radar Technology and Applications III, G. W. Kamerman, ed., Proc. SPIE3380, 2–11 (1998).
[CrossRef]

M. J. Kavaya, Global Hydrology and Climate Center, NASA Marshall Space Flight Center, Huntsville, Ala. 35812 (personal communication, 1999).

Krishnamurti, T. N.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, J. McElroy, “Lidar measured winds from space: an essential component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Lane, R. G.

R. G. Lane, A. Glindemann, J. C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 209–224 (1992).
[CrossRef]

Lorenc, A. C.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, J. McElroy, “Lidar measured winds from space: an essential component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Magee, J. R.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2-µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

Martin, J.

J. Martin, S. Flatté, “Intensity images and statistics from numerical simulation of wave propagation in 3-D random media,” Appl. Opt. 27, 2111–2126 (1988).
[CrossRef] [PubMed]

J. Martin, “Simulation of wave propagation in random: theory and applications,” in Wave Propagation in Random Media (Scintillation), V. I. Tatarskii, A. Ishimaru, V. U. Zavorotny, eds. (SPIE Press, Bellingham, Wash., 1993).

Martin, J. M.

McElroy, J.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, J. McElroy, “Lidar measured winds from space: an essential component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Menzies, R. T.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, J. McElroy, “Lidar measured winds from space: an essential component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

R. T. Menzies, R. M. Hardesty, “Coherent Doppler lidar for measurements of wind fields,” Proc. IEEE 77, 449–462 (1989).
[CrossRef]

D. M. Tratt, R. T. Menzies, “Unstable resonator antenna properties in coherent lidar applications: a comparative study,” Appl. Opt. 27, 3645–3649 (1988).
[CrossRef] [PubMed]

Mironov, V. L.

V. A. Banakh, V. L. Mironov, Lidar in a Turbulent Atmosphere (Artech House, Boston, Mass., 1987).

Molinari, J. E.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, J. McElroy, “Lidar measured winds from space: an essential component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Morris, J. R.

J. A. Fleck, J. R. Morris, M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. 10, 129–160 (1976).
[CrossRef]

Murty, R.

Ochs, G. R.

Paegle, J.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, J. McElroy, “Lidar measured winds from space: an essential component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Post, M. J.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, J. McElroy, “Lidar measured winds from space: an essential component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Y. Zhao, M. J. Post, R. M. Hardesty, “Receiving efficiency of monostatic pulsed coherent lidars. 1: Theory,” Appl. Opt. 29, 4111–4119 (1990).
[CrossRef] [PubMed]

Robertson, P.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, J. McElroy, “Lidar measured winds from space: an essential component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Roddier, N.

N. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng. 29, 1174–1180 (1990).
[CrossRef]

Rye, B. J.

Shapiro, J. H.

Siegman, A. E.

A. E. Siegman, “The antenna properties of optical heterodyne receivers,” Proc. IEEE 51, 1350–1358 (1966); Appl. Opt. 5, 1588–1594 (1966).
[CrossRef]

Smalikho, I. N.

V. A. Banakh, I. N. Smalikho, Ch. Werner, “Effect of refractive turbulence on Doppler lidar operation in atmosphere. Numerical simulation,” in Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, 10227 Wincopin Circle, Columbia, Md. 21044-3498, 1999).

Suni, P. J. M.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2-µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

Tatarskii, V. I.

V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (Keter Press, Jerusalem, 1971).

Tratt, D. M.

Wandzura, S.

Wang, J. Y.

Werner, Ch.

V. A. Banakh, I. N. Smalikho, Ch. Werner, “Effect of refractive turbulence on Doppler lidar operation in atmosphere. Numerical simulation,” in Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, 10227 Wincopin Circle, Columbia, Md. 21044-3498, 1999).

Yadlowsky, M.

Youmans, D. G.

D. G. Youmans, V. S. Gudimetla, “Round-trip turbulence scintillation effects on laser radar: Monte Carlo simulation results for unresolved targets,” in Laser Radar Technology and Applications II, G. W. Kamerman, ed., Proc. SPIE3065, 71–83 (1997).
[CrossRef]

Yuen, E. H.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2-µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

Yura, H. T.

J. H. Churnside, H. T. Yura, “Speckle statistics of atmospherically backscattered laser light,” Appl. Opt. 22, 2559–2565 (1983).
[CrossRef] [PubMed]

H. T. Yura, “Signal-to-noise ratio of heterodyne lidar systems in the presence of atmospheric turbulence,” Opt. Acta 26, 627–644 (1979).
[CrossRef]

Zhao, Y.

Appl. Opt. (20)

S. F. Clifford, S. Wandzura, “Monostatic heterodyne lidar performance: the effect of the turbulent atmosphere,” Appl. Opt. 20, 514–516 (1981); erratum, Appl. Opt. 20, 1502 (1981).

J. H. Shapiro, B. A. Capron, R. C. Harney, “Imaging and target detection with a heterodyne-reception optical radar,” Appl. Opt. 20, 3292–3313 (1981).
[CrossRef] [PubMed]

J. Y. Wang, “Heterodyne laser radar SNR from a diffuse target containing multiple glints,” Appl. Opt. 21, 464–475 (1982).
[CrossRef] [PubMed]

B. J. Rye, “Primary aberration contribution to incoherent backscatter heterodyne lidar returns,” Appl. Opt. 21, 839–844 (1982).
[CrossRef] [PubMed]

J. H. Churnside, H. T. Yura, “Speckle statistics of atmospherically backscattered laser light,” Appl. Opt. 22, 2559–2565 (1983).
[CrossRef] [PubMed]

R. Murty, “Refractive turbulence effects on truncated Gaussian beam heterodyne lidar,” Appl. Opt. 23, 2498–2502 (1984).
[CrossRef] [PubMed]

G. R. Ochs, R. J. Hill, “Optical-scintillation method of measuring turbulence inner scale,” Appl. Opt. 24, 2430–2432 (1985).
[CrossRef] [PubMed]

D. M. Tratt, R. T. Menzies, “Unstable resonator antenna properties in coherent lidar applications: a comparative study,” Appl. Opt. 27, 3645–3649 (1988).
[CrossRef] [PubMed]

J. Y. Wang, “Optimum truncation of a lidar transmitted beam,” Appl. Opt. 27, 4470–4474 (1988).
[CrossRef] [PubMed]

Y. Zhao, M. J. Post, R. M. Hardesty, “Receiving efficiency of monostatic pulsed coherent lidars. 1: Theory,” Appl. Opt. 29, 4111–4119 (1990).
[CrossRef] [PubMed]

R. G. Frehlich, M. J. Kavaya, “Coherent laser radar performance for general atmospheric refractive turbulence,” Appl. Opt. 30, 5325–5352 (1991).
[CrossRef] [PubMed]

B. J. Rye, R. G. Frehlich, “Optimal truncation of Gaussian beams for coherent lidar using incoherent backscatter,” Appl. Opt. 31, 2891–2899 (1992).
[CrossRef] [PubMed]

D. M. Tratt, “Optimizing coherent lidar performance with graded-reflectance laser resonator optics,” Appl. Opt. 31, 4233–4239 (1992).
[CrossRef] [PubMed]

R. G. Frehlich, “Effects of refractive turbulence on coherent laser radar,” Appl. Opt. 32, 2122–2139 (1993).
[CrossRef] [PubMed]

R. G. Frehlich, “Optimal local oscillator field for a monostatic coherent laser radar with a circular aperture,” Appl. Opt. 32, 4569–4577 (1993).
[CrossRef] [PubMed]

M. S. Belen’kii, “Effect of atmospheric turbulence on heterodyne lidar performance,” Appl. Opt. 32, 5368–5372 (1993).
[CrossRef] [PubMed]

R. G. Frehlich, “Coherent Doppler lidar signal covariance including wind shear and wind turbulence,” Appl. Opt. 33, 6472–6481 (1994).
[CrossRef] [PubMed]

R. G. Frehlich, “Simulation of laser propagation in a turbulent atmosphere,” Appl. Opt. 39, 393–397 (2000).
[CrossRef]

Wm. A. Coles, J. P. Filice, R. G. Frehlich, M. Yadlowsky, “Simulation of wave propagation in three-dimensional random media,” Appl. Opt. 34, 2089–2101 (1995).
[CrossRef] [PubMed]

J. Martin, S. Flatté, “Intensity images and statistics from numerical simulation of wave propagation in 3-D random media,” Appl. Opt. 27, 2111–2126 (1988).
[CrossRef] [PubMed]

Appl. Phys. (1)

J. A. Fleck, J. R. Morris, M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. 10, 129–160 (1976).
[CrossRef]

Boundary-Layer Meteorol. (1)

R. G. Frehlich, S. Hannon, S. Henderson, “Coherent Doppler lidar measurements of wind field statistics,” Boundary-Layer Meteorol. 86, 233–256 (1998).
[CrossRef]

Bull. Am. Meteorol. Soc. (1)

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, J. McElroy, “Lidar measured winds from space: an essential component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (1)

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2-µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

J. Atmos. Oceanic Technol. (1)

R. Frehlich, S. Hannon, S. Henderson, “Performance of a 2-µm coherent Doppler lidar for wind measurements,” J. Atmos. Oceanic Technol. 11, 1517–1528 (1994).
[CrossRef]

J. Atmos. Sci. (1)

R. Frehlich, “Laser scintillation measurements of the temperature spectrum in the atmospheric surface layer,” J. Atmos. Sci. 49, 1494–1509 (1992).
[CrossRef]

J. Fluid Mech. (1)

R. J. Hill, “Models of the scalar spectrum for turbulent advection,” J. Fluid Mech. 88, 541–562 (1978).
[CrossRef]

J. Mod. Opt. (1)

R. G. Frehlich, “Heterodyne efficiency for a coherent laser radar with diffuse or aerosol targets,” J. Mod. Opt. 41, 1217–1230 (1994).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Opt. Acta (1)

H. T. Yura, “Signal-to-noise ratio of heterodyne lidar systems in the presence of atmospheric turbulence,” Opt. Acta 26, 627–644 (1979).
[CrossRef]

Opt. Eng. (1)

N. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng. 29, 1174–1180 (1990).
[CrossRef]

Proc. IEEE (4)

R. T. Menzies, R. M. Hardesty, “Coherent Doppler lidar for measurements of wind fields,” Proc. IEEE 77, 449–462 (1989).
[CrossRef]

A. E. Siegman, “The antenna properties of optical heterodyne receivers,” Proc. IEEE 51, 1350–1358 (1966); Appl. Opt. 5, 1588–1594 (1966).
[CrossRef]

D. L. Fried, “Optical heterodyne detection of an atmospherically distorted signal wave front,” Proc. IEEE 55, 57–66 (1967).
[CrossRef]

R. M. Huffaker, R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996).
[CrossRef]

Radio Sci. (1)

A. Ishimaru, “Fluctuations of a beam wave propagating through a locally homogeneous medium,” Radio Sci. 4, 295–305 (1969).
[CrossRef]

Waves Random Media (1)

R. G. Lane, A. Glindemann, J. C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 209–224 (1992).
[CrossRef]

Other (9)

V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (Keter Press, Jerusalem, 1971).

V. A. Banakh, V. L. Mironov, Lidar in a Turbulent Atmosphere (Artech House, Boston, Mass., 1987).

J. Martin, “Simulation of wave propagation in random: theory and applications,” in Wave Propagation in Random Media (Scintillation), V. I. Tatarskii, A. Ishimaru, V. U. Zavorotny, eds. (SPIE Press, Bellingham, Wash., 1993).

D. G. Youmans, V. S. Gudimetla, “Round-trip turbulence scintillation effects on laser radar: Monte Carlo simulation results for unresolved targets,” in Laser Radar Technology and Applications II, G. W. Kamerman, ed., Proc. SPIE3065, 71–83 (1997).
[CrossRef]

A. Belmonte, B. J. Rye, W. A. Brewer, R. M. Hardesty, “Coherent lidar returns in turbulent atmosphere from simulation of beam propagation,” in Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, 10227 Wincopin Circle, Columbia, Md. 21044-3498, 1999).

V. A. Banakh, I. N. Smalikho, Ch. Werner, “Effect of refractive turbulence on Doppler lidar operation in atmosphere. Numerical simulation,” in Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, 10227 Wincopin Circle, Columbia, Md. 21044-3498, 1999).

J. W. Goodman, Statistical Optics (Wiley, New York, 1985).

M. J. Kavaya, G. D. Emmitt, “Space readiness coherent lidar experiment (SPARCLE) Space Shuttle mission,” in Laser Radar Technology and Applications III, G. W. Kamerman, ed., Proc. SPIE3380, 2–11 (1998).
[CrossRef]

M. J. Kavaya, Global Hydrology and Climate Center, NASA Marshall Space Flight Center, Huntsville, Ala. 35812 (personal communication, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

One realization of the intensity of a lidar beam focused onto a target at range R = 200 m with uniform turbulence statistics defined by C n 2 = 5 × 10-13 m-2/3 and l 0 = 0.005 m.

Fig. 2
Fig. 2

Coherent Doppler lidar performance η S = 〈q〉 [see Eqs. (1) and (2)] as a function of turbulence level C n 2 for a shuttle demonstration lidar focused at a calibration target at range R = 200 m and an inner scale of l 0 = 0.005 m. The results are produced with the traditional simulation (FFT) and the improved subharmonic simulation33 (FFT–SH). The 1-σ error bars are less than the symbol size. The leading-order term η S0 [Eq. (17)] of the theoretical expansion for η S in weak turbulence (low C n 2) is shown as a dotted curve, and the leading-order term η S 0 = η S0 + η S1 = 2η S0 [Eq. (22)] for strong turbulence (high C n 2) is shown as a dashed curve. The solid curve indicates SD[q] ∝ C n and SD[q] ∝ C n 2 as required by Born or Rytov theory where SD[q] denotes the standard deviation of q.

Fig. 3
Fig. 3

PDF(q) and the best-fit gamma distribution [Eq. (9)] for the parameters of Fig. 1 with 1000 simulations of q.

Fig. 4
Fig. 4

Coherent Doppler lidar performance η S = 〈q〉 [see Eqs. (1) and (2)] as a function of beam misalignment θ = θ T - θLO for a shuttle demonstration lidar focused at a range R = 200 m with C n 2 = 5 × 10-13 m-2/3 and l 0 = 0.005 m. The results are produced with the traditional simulation (FFT) and the improved subharmonic simulation (FFT–SH).

Fig. 5
Fig. 5

One realization of the intensity of a small collimated lidar beam and a target at range R = 200 m with uniform turbulence statistics defined by C n 2 = 5 × 10-13 m-2/3 and l 0 = 0.005 m.

Fig. 6
Fig. 6

Coherent Doppler lidar performance η S = 〈q〉 [see Eqs. (1) and (2)] as a function of turbulence level C n 2 for a shuttle demonstration lidar with a small collimated beam and a diffuse target at range R = 200 m and an inner scale of l 0 = 0.005 m. The results are produced with the traditional simulation (FFT) and the improved subharmonic simulation33 (FFT–SH). The 1-σ error bars are less than the symbol size. The leading-order term η S0 [Eq. (17)] of the theoretical expansion for η S in weak turbulence (low C n 2) is shown as a dotted curve, and the leading-order term η S 0 = η S0 + η S1 = 2η S0 [Eq. (22)] for strong turbulence (high C n 2) is shown as a dashed curve. The solid curves indicate SD[q] ∝ C n and SD[q] ∝ C n 2 as required by Born or Rytov theory where SD[q] denotes the standard deviation of q.

Fig. 7
Fig. 7

PDF(q) and the best-fit gamma distribution [Eq. (9)] for the parameters of Fig. 5 with 1000 simulations of q.

Fig. 8
Fig. 8

Coherent Doppler lidar performance η S = 〈q〉 [see Eqs. (1) and (2)] as a function of beam misalignment θ = θ T - θLO for a shuttle demonstration lidar with a small collimated beam and a diffuse target at a range R = 200 m with C n 2 = 5 × 10-13 m-2/3 and l 0 = 0.005 m. The results are produced with the traditional simulation (FFT) and the improved subharmonic simulation (FFT–SH).

Fig. 9
Fig. 9

One realization of the intensity of a lidar beam focused onto a calibration target at range R = 500 m with uniform turbulence statistics defined by C n 2 = 5 × 10-13 m-2/3 and l 0 = 0.005 m.

Fig. 10
Fig. 10

Coherent Doppler lidar performance η S = 〈q〉 [see Eqs. (1) and (2)] as a function of turbulence level C n 2 for a free-flyer lidar focused at a range R = 500 m and an inner scale of l 0 = 0.005 m. The results are produced with the traditional simulation (FFT) and the improved subharmonic simulation33 (FFT–SH). The 1-σ error bars are less than the symbol size. The leading-order term η S0 [Eq. (17)] of the theoretical expansion for η S in weak turbulence (low C n 2) is shown as a dotted curve, and the leading-order term η S 0 = η S0 + η S1 = 2η S0 [Eq. (22)] for strong turbulence (high C n 2) is shown as a dashed curve. The solid curve indicates SD[q] ∝ C n 2 as required by Born or Rytov theory where SD[q] denotes the standard deviation of q.

Fig. 11
Fig. 11

PDF(q) and the best-fit gamma distribution [Eq. (9)] for the parameters of Fig. 9 with 1000 simulations of q.

Fig. 12
Fig. 12

Coherent Doppler lidar performance η S = 〈q〉 [see Eqs. (1) and (2)] as a function of beam misalignment θ = θ T - θLO for a free-flyer lidar focused at a range R = 500 m with C n 2 = 5 × 10-13 m-2/3 and l 0 = 0.005 m. The results are produced with the traditional simulation (FFT) and the improved subharmonic simulation (FFT–SH).

Fig. 13
Fig. 13

One realization of the intensity of a small collimated lidar beam at range R = 500 m with uniform turbulence statistics defined by C n 2 = 5 × 10-13 m-2/3 and l 0 = 0.005 m.

Fig. 14
Fig. 14

Coherent Doppler lidar performance η S = 〈q〉 [see Eqs. (1) and (2)] as a function of turbulence level C n 2 for a free-flyer lidar with a small collimated beam and a diffuse target at range R = 500 m and an inner scale of l 0 = 0.005 m. The results are produced with the traditional simulation (FFT) and the improved subharmonic simulation33 (FFT–SH). The 1-σ error bars are less than the symbol size. The leading-order term η S0 [Eq. (17)] of the theoretical expansion for η S in weak turbulence (low C n 2) is shown as a dotted curve, and the leading-order term η S 0 = η S0 + η S1 = 2η S0 [Eq. (22)] for strong turbulence (high C n 2) is shown as a dashed curve. The solid curves indicate SD[q] ∝ C n and SD[q] ∝ C n 2 as required by Born or Rytov theory where SD[q] denotes the standard deviation of q.

Fig. 15
Fig. 15

PDF(q) and the best-fit gamma distribution [Eq. (9)] for the parameters of Fig. 13 with 1000 simulations of q.

Fig. 16
Fig. 16

Coherent Doppler lidar performance η S = 〈q〉 [see Eqs. (1) and (2)] as a function of beam misalignment θ = θ T - θLO for a free-flyer lidar with a small collimated beam and a diffuse target at a range R = 500 m with C n 2 = 5 × 10-13 m-2/3 and l 0 = 0.005 m. The results are produced with the traditional simulation (FFT) and the improved subharmonic simulation (FFT–SH).

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

SNRt, Θ=ηQβRKR2cULARqR2hνBR2,
qR=λ2R2AR- jTp, RjBPLOp, Rdp,
eTp, R=- eLu, 0WuGp; u, R, Θdu,
eBPLOp, R=- eLO*u, 0WuGp; u, R, Θdu,
PDFP|q=exp-P/PΘ/PΘ,
PDFP=0PDFP|qPDFPΘdPΘ=0 PΘ-1 exp-P/PΘPDFPΘdPΘ,
PDFP=αgP/α,
gx=0 q-1 exp-x/qPDFqdq.
PDFq=bpqp-1 exp-bq/Γp,
b=q/VARq=ηS/μ2, p=qb=q2/VARq=1/μ2,
μ=SDq/q=SDq/ηS,
gx=2bx1+p/2xΓp K1-p2bx,
Gp; u, R=k2πiRexpik2Rp-u2,
eLu, 0=πσL2-1/2Wuexp-u22σL2-iku22FL+ikθT·u,
eBPLOu, 0=πσLO2-1/2Wuexp-u22σLO2+iku22FLO+ikθLO·u,
Wu=1 for |u|<RA=0 otherwise.
ηS0R=1AR- OTs, ROBPLO*s, R×exp-0Rds1-z/R, zdzds,
OTs, R=- eTr+s/2, 0eT*r-s/2, 0×expikr·s/Rdr,
OBPLOs, R=- eBPLOr+s/2, 0eBPLO*r-s/2, 0×expikr·s/Rdr,
ds, R=4πk2-1-coss·q×Φnqx, qy, qz=0, Rdq,
Φnq, z=0.0330054 Cn2zq-11/3fql0z,
ηS0R=ηS0R+ηS1R,
ηS1R=1AR- |OXs, R|2×exp-0Rds1-z/R, zdzds,
OXs, R=- eTr+s/2, 0eBPLO*r-s/2, 0×expikr·s/Rdr.

Metrics