Abstract

A 7-bit multichannel photonic delay line for phased-array antenna control is demonstrated. Multichannel (33-pixel) ferroelectric liquid-crystal (FLC) devices are used as polarization rotation elements, and polarization beam-splitter cubes are used as polarization elements that route the optical signals to different paths. The controller is remotely fed by a unique fiber-optic-array design that uses gradient-index lens collimators for the input single-mode polarization-maintaining fibers. The optical signal is collected by a similar fiber array that uses multimode fibers for improved coupling efficiency. Photonic delay-line (PDL) design issues such as multiport assemblies, multipixel FLC designs, and delay-line architectures are discussed. Furthermore, various PDL parameters are examined. High electrical isolation numbers are obtained for both the within-channel leakage noise (e.g., less than -70 dB) and the interchannel cross talk (e.g., less than -90 dB). Optical and electrical insertion loss is examined for the PDL as well as for the overall system. A high-compression dynamic range of 149 dB · Hz and a spurious free dynamic range of 105 dB · Hz2/3 are presented.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Madamopoulos, N. A. Riza, “Directly modulated semiconductor-laser-fed photonic delay line with ferroelectric liquid crystals,” Appl. Opt. 37, 1407–1416 (1998).
    [CrossRef]
  2. N. Madamopoulos, N. A. Riza, “Switched photonic delay line for phased-array antenna control using externally modulated microwave fiber optic link,” in Optical Technology for Microwave Applications VIII, A. Goutzoulis, ed., Proc. SPIE3160, 45–54 (1997).
    [CrossRef]
  3. N. A. Riza, ed., Selected Papers on Photonic Control Systems for Phased Array Antennas, Vol. MS136 of SPIE Milestone Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1997).
  4. W. Ng, A. A. Waltson, G. L. Tangonan, J. J. Lee, I. L. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave antenna using true-time-delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
    [CrossRef]
  5. W. Ng, R. Loo, V. Jones, J. Lewis, S. Livingston, J. J. Lee, “Silica-waveguide optical time-shift network for steering a 96-element L-band conformal array,” in Optical Technology for Microwave Applications VII, A. P. Goutzoulis, ed., Proc. SPIE2560, 140–147 (1995).
  6. D. Dolfi, P. Joffre, J. Antoine, J.-P. Huignard, D. Philippet, P. Granger, “Experimental demonstration of a phased-array antenna optically controlled with phase and time technology,” Appl. Opt. 35, 5293–5300 (1996).
    [CrossRef] [PubMed]
  7. M. Y. Frankel, P. J. Matthews, R. D. Esman, “Wideband array transmitter with two-dimensional fiber-optic beam steering,” in 1996 IEEE International Symposium on Phased Array Systems and Technology: Revolutionary Developments in Phased Arrays (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1996), pp. 425–428.
  8. M. Y. Frankel, P. J. Matthews, R. D. Esman, “Fiber-optic true time steering of an ultrawide-band receive array,” IEEE Trans. Microwave Theory Tech. 45, 1522–1526 (1997).
    [CrossRef]
  9. A. P. Goutzoulis, J. M. Zomp, “Development and field demonstration of an eight-element receive wavelength-multiplexed true-time-delay steering system,” Appl. Opt. 36, 7315–7326 (1997).
    [CrossRef]
  10. Lockheed-Martin Government Electronic Systems Division, Moorestown, N.J. 08057-0927.
  11. N. Madamopoulos, “Ferroelectric liquid crystal device-based photonic controllers for microwave antenna arrays,” Ph.D. Dissertation (School of Optics Hand Center for Research and Education in Optics and Lasers, University of Central Florida, Orlando, Fla., 1998).
  12. N. A. Riza, “Liquid crystal-based optical control of phased array antennas,” J. Lightwave Technol. 10, 1974–1984 (1992).
    [CrossRef]
  13. Fiber Collimators-Focusers (OZ Optics, Ltd., Carp, Ontario, Canada).
  14. N. A. Riza, S. Yuan, “Demonstration of a liquid crystal adaptive alignment tweeker for high-speed infrared band fiber-fed free-space systems,” Opt. Eng. 37, 1876–1880 (1998).
    [CrossRef]
  15. S. Yuan, N. A. Riza, “General formula for coupling-loss characterization of single-mode fiber collimators by use of gradient-index rod lenses,” Appl. Opt. 38, 3214–3222 (1999).
    [CrossRef]
  16. J. Kim, N. A. Riza, “Fiber array optical coupling design issues for photonic beamformers,” in Advances in Optical Information Processing VII, D. R. Pape, ed., Proc. SPIE2754, 271–282 (1996).
    [CrossRef]
  17. LightPath Collimators, LightPath Technologies Product Catalog (LightPath Technologies, Inc., Albuquerque, N.M., 1998).
  18. CODEV Version 8.30 (Optical Research Associates, Pasadena, Calif., 1998).
  19. N. A. Riza, N. Madamopoulos, “Characterization of a FLC-based time delay unit for phased array antennas,” J. Lightwave Technol. 15, 1088–1094 (1997).
    [CrossRef]
  20. N. Madamopoulos, N. A. Riza, “Adaptable-delay balanced-loss binary photonic delay line architectures using polarization switching,” Opt. Commun. 152, 135–143 (1998).
    [CrossRef]
  21. N. A. Riza, N. Madamopoulos, “Photonic time delay beamforming architectures using polarization switching arrays,” in Advances in Optical Information Processing VII, D. R. Pape, ed., Proc. SPIE2754, 186–197 (1996).
    [CrossRef]
  22. LAH-58 OHARA Glass Specification Sheet (OHARA Corporation, Rancho Santa Margarita, Calif., 1997).
  23. J. Stockley, Boulder Nonlinear Systems, Inc., Lafayette, Colo., 80026 (personal communication, 1998).
  24. N. A. Clark, S. T. Lagerwall, “Submicrosecond bistable electro-optic switching in liquid crystals,” Appl. Phys. Lett. 36, 899–901 (1990).
    [CrossRef]
  25. N. A. Riza, “Liquid crystal-based optical control of phased array antennas,” J. Lightwave Technol. 10, 1974–1984 (1992).
    [CrossRef]
  26. N. A. Riza, N. Madamopoulos, “Synchronous amplitude and time control for an optimum dynamic range variable photonic delay line,” Appl. Opt. 38, 2309–2318 (1999).
    [CrossRef]
  27. E. Ackerman, S. Wanuga, D. Kasemset, A. S. Daryoush, N. R. Samant, “Maximum dynamic range operation of microwave external modulation fiber-optic link,” IEEE Trans. Microwave Theory Tech. 41, 1299–1306 (1993).
    [CrossRef]
  28. Data sheet of UTP MZ-130-080-X Microwave Analog Intensity Modulator (Uniphase Telecommunication Products, Electro-Optic Products Division, Bloomfield, Conn., 1997).
  29. Designer’s Guide to External Modulation (Uniphase Telecommunication Products, Electro-Optic Products Division, Bloomfield, Conn., 1997).
  30. B. H. Kolner, D. W. Dolfi, “Intermodulation distortion and compression is an integrated electro-optic modulator,” Appl. Opt. 26, 3676–3680 (1987).
    [CrossRef] [PubMed]
  31. H. Goldberg, “Some notes on noise figure,” Proc. IRE 36, 1205–1214 (1948).
    [CrossRef]
  32. L. Xu, R. Taylor, S. R. Forrest, “True time-delay phased-array antenna feed system based on optical heterodyne techniques,” IEEE Photonics Technol. Lett. 8, 160–162 (1996).
    [CrossRef]
  33. L. Cardone, “Ultra-wideband microwave beamforming technique,” Microwave J. 28, 121–131 (1985).
  34. A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Hybrid electronic fiber optic wavelength-multiplexed system for true time-delay steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992).
    [CrossRef]
  35. H. Zmuda, R. A. Soref, P. Payson, S. Johns, E. N. Toughlian, “Photonic beamformer for phased array antennas using a fiber grating prism,” IEEE Photonics Technol. Lett. 9, 241–243 (1997).
    [CrossRef]
  36. D. Dolfi, F. Michel-Gabriel, S. Bann, J. P. Huignard, “Two-dimensional optical architecture for time-delay beam forming in a phased-array antenna,” Opt. Lett. 16, 255–257 (1991).
    [CrossRef] [PubMed]
  37. R. F. Mathis, W. L. Floyd, S. A. Pappert, “High performance fiber optic delay line,” in Proceedings of the Seventh Annual DARPA Symposium on Photonic Systems for Antenna Applications (PSAA-7), M. L. Van Blaricum, Conference Chair, C. H. Cox, Program Chair (Defense Advanced Research Projects Agency, Washington, D. C., 1997), pp. 9–14.

1999

1998

N. Madamopoulos, N. A. Riza, “Directly modulated semiconductor-laser-fed photonic delay line with ferroelectric liquid crystals,” Appl. Opt. 37, 1407–1416 (1998).
[CrossRef]

N. Madamopoulos, N. A. Riza, “Adaptable-delay balanced-loss binary photonic delay line architectures using polarization switching,” Opt. Commun. 152, 135–143 (1998).
[CrossRef]

N. A. Riza, S. Yuan, “Demonstration of a liquid crystal adaptive alignment tweeker for high-speed infrared band fiber-fed free-space systems,” Opt. Eng. 37, 1876–1880 (1998).
[CrossRef]

1997

M. Y. Frankel, P. J. Matthews, R. D. Esman, “Fiber-optic true time steering of an ultrawide-band receive array,” IEEE Trans. Microwave Theory Tech. 45, 1522–1526 (1997).
[CrossRef]

N. A. Riza, N. Madamopoulos, “Characterization of a FLC-based time delay unit for phased array antennas,” J. Lightwave Technol. 15, 1088–1094 (1997).
[CrossRef]

H. Zmuda, R. A. Soref, P. Payson, S. Johns, E. N. Toughlian, “Photonic beamformer for phased array antennas using a fiber grating prism,” IEEE Photonics Technol. Lett. 9, 241–243 (1997).
[CrossRef]

A. P. Goutzoulis, J. M. Zomp, “Development and field demonstration of an eight-element receive wavelength-multiplexed true-time-delay steering system,” Appl. Opt. 36, 7315–7326 (1997).
[CrossRef]

1996

D. Dolfi, P. Joffre, J. Antoine, J.-P. Huignard, D. Philippet, P. Granger, “Experimental demonstration of a phased-array antenna optically controlled with phase and time technology,” Appl. Opt. 35, 5293–5300 (1996).
[CrossRef] [PubMed]

L. Xu, R. Taylor, S. R. Forrest, “True time-delay phased-array antenna feed system based on optical heterodyne techniques,” IEEE Photonics Technol. Lett. 8, 160–162 (1996).
[CrossRef]

1993

E. Ackerman, S. Wanuga, D. Kasemset, A. S. Daryoush, N. R. Samant, “Maximum dynamic range operation of microwave external modulation fiber-optic link,” IEEE Trans. Microwave Theory Tech. 41, 1299–1306 (1993).
[CrossRef]

1992

N. A. Riza, “Liquid crystal-based optical control of phased array antennas,” J. Lightwave Technol. 10, 1974–1984 (1992).
[CrossRef]

N. A. Riza, “Liquid crystal-based optical control of phased array antennas,” J. Lightwave Technol. 10, 1974–1984 (1992).
[CrossRef]

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Hybrid electronic fiber optic wavelength-multiplexed system for true time-delay steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992).
[CrossRef]

1991

W. Ng, A. A. Waltson, G. L. Tangonan, J. J. Lee, I. L. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave antenna using true-time-delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

D. Dolfi, F. Michel-Gabriel, S. Bann, J. P. Huignard, “Two-dimensional optical architecture for time-delay beam forming in a phased-array antenna,” Opt. Lett. 16, 255–257 (1991).
[CrossRef] [PubMed]

1990

N. A. Clark, S. T. Lagerwall, “Submicrosecond bistable electro-optic switching in liquid crystals,” Appl. Phys. Lett. 36, 899–901 (1990).
[CrossRef]

1987

1985

L. Cardone, “Ultra-wideband microwave beamforming technique,” Microwave J. 28, 121–131 (1985).

1948

H. Goldberg, “Some notes on noise figure,” Proc. IRE 36, 1205–1214 (1948).
[CrossRef]

Ackerman, E.

E. Ackerman, S. Wanuga, D. Kasemset, A. S. Daryoush, N. R. Samant, “Maximum dynamic range operation of microwave external modulation fiber-optic link,” IEEE Trans. Microwave Theory Tech. 41, 1299–1306 (1993).
[CrossRef]

Antoine, J.

Bann, S.

Bernstein, N.

W. Ng, A. A. Waltson, G. L. Tangonan, J. J. Lee, I. L. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave antenna using true-time-delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

Cardone, L.

L. Cardone, “Ultra-wideband microwave beamforming technique,” Microwave J. 28, 121–131 (1985).

Clark, N. A.

N. A. Clark, S. T. Lagerwall, “Submicrosecond bistable electro-optic switching in liquid crystals,” Appl. Phys. Lett. 36, 899–901 (1990).
[CrossRef]

Cox, C. H.

R. F. Mathis, W. L. Floyd, S. A. Pappert, “High performance fiber optic delay line,” in Proceedings of the Seventh Annual DARPA Symposium on Photonic Systems for Antenna Applications (PSAA-7), M. L. Van Blaricum, Conference Chair, C. H. Cox, Program Chair (Defense Advanced Research Projects Agency, Washington, D. C., 1997), pp. 9–14.

Daryoush, A. S.

E. Ackerman, S. Wanuga, D. Kasemset, A. S. Daryoush, N. R. Samant, “Maximum dynamic range operation of microwave external modulation fiber-optic link,” IEEE Trans. Microwave Theory Tech. 41, 1299–1306 (1993).
[CrossRef]

Davies, D. K.

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Hybrid electronic fiber optic wavelength-multiplexed system for true time-delay steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992).
[CrossRef]

Dolfi, D.

Dolfi, D. W.

Esman, R. D.

M. Y. Frankel, P. J. Matthews, R. D. Esman, “Fiber-optic true time steering of an ultrawide-band receive array,” IEEE Trans. Microwave Theory Tech. 45, 1522–1526 (1997).
[CrossRef]

M. Y. Frankel, P. J. Matthews, R. D. Esman, “Wideband array transmitter with two-dimensional fiber-optic beam steering,” in 1996 IEEE International Symposium on Phased Array Systems and Technology: Revolutionary Developments in Phased Arrays (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1996), pp. 425–428.

Floyd, W. L.

R. F. Mathis, W. L. Floyd, S. A. Pappert, “High performance fiber optic delay line,” in Proceedings of the Seventh Annual DARPA Symposium on Photonic Systems for Antenna Applications (PSAA-7), M. L. Van Blaricum, Conference Chair, C. H. Cox, Program Chair (Defense Advanced Research Projects Agency, Washington, D. C., 1997), pp. 9–14.

Forrest, S. R.

L. Xu, R. Taylor, S. R. Forrest, “True time-delay phased-array antenna feed system based on optical heterodyne techniques,” IEEE Photonics Technol. Lett. 8, 160–162 (1996).
[CrossRef]

Frankel, M. Y.

M. Y. Frankel, P. J. Matthews, R. D. Esman, “Fiber-optic true time steering of an ultrawide-band receive array,” IEEE Trans. Microwave Theory Tech. 45, 1522–1526 (1997).
[CrossRef]

M. Y. Frankel, P. J. Matthews, R. D. Esman, “Wideband array transmitter with two-dimensional fiber-optic beam steering,” in 1996 IEEE International Symposium on Phased Array Systems and Technology: Revolutionary Developments in Phased Arrays (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1996), pp. 425–428.

Goldberg, H.

H. Goldberg, “Some notes on noise figure,” Proc. IRE 36, 1205–1214 (1948).
[CrossRef]

Goutzoulis, A. P.

A. P. Goutzoulis, J. M. Zomp, “Development and field demonstration of an eight-element receive wavelength-multiplexed true-time-delay steering system,” Appl. Opt. 36, 7315–7326 (1997).
[CrossRef]

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Hybrid electronic fiber optic wavelength-multiplexed system for true time-delay steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992).
[CrossRef]

Granger, P.

Huignard, J. P.

Huignard, J.-P.

Joffre, P.

Johns, S.

H. Zmuda, R. A. Soref, P. Payson, S. Johns, E. N. Toughlian, “Photonic beamformer for phased array antennas using a fiber grating prism,” IEEE Photonics Technol. Lett. 9, 241–243 (1997).
[CrossRef]

Jones, V.

W. Ng, R. Loo, V. Jones, J. Lewis, S. Livingston, J. J. Lee, “Silica-waveguide optical time-shift network for steering a 96-element L-band conformal array,” in Optical Technology for Microwave Applications VII, A. P. Goutzoulis, ed., Proc. SPIE2560, 140–147 (1995).

Kasemset, D.

E. Ackerman, S. Wanuga, D. Kasemset, A. S. Daryoush, N. R. Samant, “Maximum dynamic range operation of microwave external modulation fiber-optic link,” IEEE Trans. Microwave Theory Tech. 41, 1299–1306 (1993).
[CrossRef]

Kim, J.

J. Kim, N. A. Riza, “Fiber array optical coupling design issues for photonic beamformers,” in Advances in Optical Information Processing VII, D. R. Pape, ed., Proc. SPIE2754, 271–282 (1996).
[CrossRef]

Kolner, B. H.

Lagerwall, S. T.

N. A. Clark, S. T. Lagerwall, “Submicrosecond bistable electro-optic switching in liquid crystals,” Appl. Phys. Lett. 36, 899–901 (1990).
[CrossRef]

Lee, J. J.

W. Ng, A. A. Waltson, G. L. Tangonan, J. J. Lee, I. L. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave antenna using true-time-delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

W. Ng, R. Loo, V. Jones, J. Lewis, S. Livingston, J. J. Lee, “Silica-waveguide optical time-shift network for steering a 96-element L-band conformal array,” in Optical Technology for Microwave Applications VII, A. P. Goutzoulis, ed., Proc. SPIE2560, 140–147 (1995).

Lewis, J.

W. Ng, R. Loo, V. Jones, J. Lewis, S. Livingston, J. J. Lee, “Silica-waveguide optical time-shift network for steering a 96-element L-band conformal array,” in Optical Technology for Microwave Applications VII, A. P. Goutzoulis, ed., Proc. SPIE2560, 140–147 (1995).

Livingston, S.

W. Ng, R. Loo, V. Jones, J. Lewis, S. Livingston, J. J. Lee, “Silica-waveguide optical time-shift network for steering a 96-element L-band conformal array,” in Optical Technology for Microwave Applications VII, A. P. Goutzoulis, ed., Proc. SPIE2560, 140–147 (1995).

Loo, R.

W. Ng, R. Loo, V. Jones, J. Lewis, S. Livingston, J. J. Lee, “Silica-waveguide optical time-shift network for steering a 96-element L-band conformal array,” in Optical Technology for Microwave Applications VII, A. P. Goutzoulis, ed., Proc. SPIE2560, 140–147 (1995).

Madamopoulos, N.

N. A. Riza, N. Madamopoulos, “Synchronous amplitude and time control for an optimum dynamic range variable photonic delay line,” Appl. Opt. 38, 2309–2318 (1999).
[CrossRef]

N. Madamopoulos, N. A. Riza, “Directly modulated semiconductor-laser-fed photonic delay line with ferroelectric liquid crystals,” Appl. Opt. 37, 1407–1416 (1998).
[CrossRef]

N. Madamopoulos, N. A. Riza, “Adaptable-delay balanced-loss binary photonic delay line architectures using polarization switching,” Opt. Commun. 152, 135–143 (1998).
[CrossRef]

N. A. Riza, N. Madamopoulos, “Characterization of a FLC-based time delay unit for phased array antennas,” J. Lightwave Technol. 15, 1088–1094 (1997).
[CrossRef]

N. A. Riza, N. Madamopoulos, “Photonic time delay beamforming architectures using polarization switching arrays,” in Advances in Optical Information Processing VII, D. R. Pape, ed., Proc. SPIE2754, 186–197 (1996).
[CrossRef]

N. Madamopoulos, “Ferroelectric liquid crystal device-based photonic controllers for microwave antenna arrays,” Ph.D. Dissertation (School of Optics Hand Center for Research and Education in Optics and Lasers, University of Central Florida, Orlando, Fla., 1998).

N. Madamopoulos, N. A. Riza, “Switched photonic delay line for phased-array antenna control using externally modulated microwave fiber optic link,” in Optical Technology for Microwave Applications VIII, A. Goutzoulis, ed., Proc. SPIE3160, 45–54 (1997).
[CrossRef]

Mathis, R. F.

R. F. Mathis, W. L. Floyd, S. A. Pappert, “High performance fiber optic delay line,” in Proceedings of the Seventh Annual DARPA Symposium on Photonic Systems for Antenna Applications (PSAA-7), M. L. Van Blaricum, Conference Chair, C. H. Cox, Program Chair (Defense Advanced Research Projects Agency, Washington, D. C., 1997), pp. 9–14.

Matthews, P. J.

M. Y. Frankel, P. J. Matthews, R. D. Esman, “Fiber-optic true time steering of an ultrawide-band receive array,” IEEE Trans. Microwave Theory Tech. 45, 1522–1526 (1997).
[CrossRef]

M. Y. Frankel, P. J. Matthews, R. D. Esman, “Wideband array transmitter with two-dimensional fiber-optic beam steering,” in 1996 IEEE International Symposium on Phased Array Systems and Technology: Revolutionary Developments in Phased Arrays (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1996), pp. 425–428.

Michel-Gabriel, F.

Newberg, I. L.

W. Ng, A. A. Waltson, G. L. Tangonan, J. J. Lee, I. L. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave antenna using true-time-delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

Ng, W.

W. Ng, A. A. Waltson, G. L. Tangonan, J. J. Lee, I. L. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave antenna using true-time-delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

W. Ng, R. Loo, V. Jones, J. Lewis, S. Livingston, J. J. Lee, “Silica-waveguide optical time-shift network for steering a 96-element L-band conformal array,” in Optical Technology for Microwave Applications VII, A. P. Goutzoulis, ed., Proc. SPIE2560, 140–147 (1995).

Pappert, S. A.

R. F. Mathis, W. L. Floyd, S. A. Pappert, “High performance fiber optic delay line,” in Proceedings of the Seventh Annual DARPA Symposium on Photonic Systems for Antenna Applications (PSAA-7), M. L. Van Blaricum, Conference Chair, C. H. Cox, Program Chair (Defense Advanced Research Projects Agency, Washington, D. C., 1997), pp. 9–14.

Payson, P.

H. Zmuda, R. A. Soref, P. Payson, S. Johns, E. N. Toughlian, “Photonic beamformer for phased array antennas using a fiber grating prism,” IEEE Photonics Technol. Lett. 9, 241–243 (1997).
[CrossRef]

Philippet, D.

Riza, N. A.

S. Yuan, N. A. Riza, “General formula for coupling-loss characterization of single-mode fiber collimators by use of gradient-index rod lenses,” Appl. Opt. 38, 3214–3222 (1999).
[CrossRef]

N. A. Riza, N. Madamopoulos, “Synchronous amplitude and time control for an optimum dynamic range variable photonic delay line,” Appl. Opt. 38, 2309–2318 (1999).
[CrossRef]

N. Madamopoulos, N. A. Riza, “Directly modulated semiconductor-laser-fed photonic delay line with ferroelectric liquid crystals,” Appl. Opt. 37, 1407–1416 (1998).
[CrossRef]

N. A. Riza, S. Yuan, “Demonstration of a liquid crystal adaptive alignment tweeker for high-speed infrared band fiber-fed free-space systems,” Opt. Eng. 37, 1876–1880 (1998).
[CrossRef]

N. Madamopoulos, N. A. Riza, “Adaptable-delay balanced-loss binary photonic delay line architectures using polarization switching,” Opt. Commun. 152, 135–143 (1998).
[CrossRef]

N. A. Riza, N. Madamopoulos, “Characterization of a FLC-based time delay unit for phased array antennas,” J. Lightwave Technol. 15, 1088–1094 (1997).
[CrossRef]

N. A. Riza, “Liquid crystal-based optical control of phased array antennas,” J. Lightwave Technol. 10, 1974–1984 (1992).
[CrossRef]

N. A. Riza, “Liquid crystal-based optical control of phased array antennas,” J. Lightwave Technol. 10, 1974–1984 (1992).
[CrossRef]

J. Kim, N. A. Riza, “Fiber array optical coupling design issues for photonic beamformers,” in Advances in Optical Information Processing VII, D. R. Pape, ed., Proc. SPIE2754, 271–282 (1996).
[CrossRef]

N. A. Riza, N. Madamopoulos, “Photonic time delay beamforming architectures using polarization switching arrays,” in Advances in Optical Information Processing VII, D. R. Pape, ed., Proc. SPIE2754, 186–197 (1996).
[CrossRef]

N. Madamopoulos, N. A. Riza, “Switched photonic delay line for phased-array antenna control using externally modulated microwave fiber optic link,” in Optical Technology for Microwave Applications VIII, A. Goutzoulis, ed., Proc. SPIE3160, 45–54 (1997).
[CrossRef]

Samant, N. R.

E. Ackerman, S. Wanuga, D. Kasemset, A. S. Daryoush, N. R. Samant, “Maximum dynamic range operation of microwave external modulation fiber-optic link,” IEEE Trans. Microwave Theory Tech. 41, 1299–1306 (1993).
[CrossRef]

Soref, R. A.

H. Zmuda, R. A. Soref, P. Payson, S. Johns, E. N. Toughlian, “Photonic beamformer for phased array antennas using a fiber grating prism,” IEEE Photonics Technol. Lett. 9, 241–243 (1997).
[CrossRef]

Stockley, J.

J. Stockley, Boulder Nonlinear Systems, Inc., Lafayette, Colo., 80026 (personal communication, 1998).

Tangonan, G. L.

W. Ng, A. A. Waltson, G. L. Tangonan, J. J. Lee, I. L. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave antenna using true-time-delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

Taylor, R.

L. Xu, R. Taylor, S. R. Forrest, “True time-delay phased-array antenna feed system based on optical heterodyne techniques,” IEEE Photonics Technol. Lett. 8, 160–162 (1996).
[CrossRef]

Toughlian, E. N.

H. Zmuda, R. A. Soref, P. Payson, S. Johns, E. N. Toughlian, “Photonic beamformer for phased array antennas using a fiber grating prism,” IEEE Photonics Technol. Lett. 9, 241–243 (1997).
[CrossRef]

Van Blaricum, M. L.

R. F. Mathis, W. L. Floyd, S. A. Pappert, “High performance fiber optic delay line,” in Proceedings of the Seventh Annual DARPA Symposium on Photonic Systems for Antenna Applications (PSAA-7), M. L. Van Blaricum, Conference Chair, C. H. Cox, Program Chair (Defense Advanced Research Projects Agency, Washington, D. C., 1997), pp. 9–14.

Waltson, A. A.

W. Ng, A. A. Waltson, G. L. Tangonan, J. J. Lee, I. L. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave antenna using true-time-delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

Wanuga, S.

E. Ackerman, S. Wanuga, D. Kasemset, A. S. Daryoush, N. R. Samant, “Maximum dynamic range operation of microwave external modulation fiber-optic link,” IEEE Trans. Microwave Theory Tech. 41, 1299–1306 (1993).
[CrossRef]

Xu, L.

L. Xu, R. Taylor, S. R. Forrest, “True time-delay phased-array antenna feed system based on optical heterodyne techniques,” IEEE Photonics Technol. Lett. 8, 160–162 (1996).
[CrossRef]

Yuan, S.

S. Yuan, N. A. Riza, “General formula for coupling-loss characterization of single-mode fiber collimators by use of gradient-index rod lenses,” Appl. Opt. 38, 3214–3222 (1999).
[CrossRef]

N. A. Riza, S. Yuan, “Demonstration of a liquid crystal adaptive alignment tweeker for high-speed infrared band fiber-fed free-space systems,” Opt. Eng. 37, 1876–1880 (1998).
[CrossRef]

Zmuda, H.

H. Zmuda, R. A. Soref, P. Payson, S. Johns, E. N. Toughlian, “Photonic beamformer for phased array antennas using a fiber grating prism,” IEEE Photonics Technol. Lett. 9, 241–243 (1997).
[CrossRef]

Zomp, J. M.

A. P. Goutzoulis, J. M. Zomp, “Development and field demonstration of an eight-element receive wavelength-multiplexed true-time-delay steering system,” Appl. Opt. 36, 7315–7326 (1997).
[CrossRef]

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Hybrid electronic fiber optic wavelength-multiplexed system for true time-delay steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

N. A. Clark, S. T. Lagerwall, “Submicrosecond bistable electro-optic switching in liquid crystals,” Appl. Phys. Lett. 36, 899–901 (1990).
[CrossRef]

IEEE Photonics Technol. Lett.

L. Xu, R. Taylor, S. R. Forrest, “True time-delay phased-array antenna feed system based on optical heterodyne techniques,” IEEE Photonics Technol. Lett. 8, 160–162 (1996).
[CrossRef]

H. Zmuda, R. A. Soref, P. Payson, S. Johns, E. N. Toughlian, “Photonic beamformer for phased array antennas using a fiber grating prism,” IEEE Photonics Technol. Lett. 9, 241–243 (1997).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

E. Ackerman, S. Wanuga, D. Kasemset, A. S. Daryoush, N. R. Samant, “Maximum dynamic range operation of microwave external modulation fiber-optic link,” IEEE Trans. Microwave Theory Tech. 41, 1299–1306 (1993).
[CrossRef]

M. Y. Frankel, P. J. Matthews, R. D. Esman, “Fiber-optic true time steering of an ultrawide-band receive array,” IEEE Trans. Microwave Theory Tech. 45, 1522–1526 (1997).
[CrossRef]

J. Lightwave Technol.

N. A. Riza, “Liquid crystal-based optical control of phased array antennas,” J. Lightwave Technol. 10, 1974–1984 (1992).
[CrossRef]

W. Ng, A. A. Waltson, G. L. Tangonan, J. J. Lee, I. L. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave antenna using true-time-delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

N. A. Riza, “Liquid crystal-based optical control of phased array antennas,” J. Lightwave Technol. 10, 1974–1984 (1992).
[CrossRef]

N. A. Riza, N. Madamopoulos, “Characterization of a FLC-based time delay unit for phased array antennas,” J. Lightwave Technol. 15, 1088–1094 (1997).
[CrossRef]

Microwave J.

L. Cardone, “Ultra-wideband microwave beamforming technique,” Microwave J. 28, 121–131 (1985).

Opt. Commun.

N. Madamopoulos, N. A. Riza, “Adaptable-delay balanced-loss binary photonic delay line architectures using polarization switching,” Opt. Commun. 152, 135–143 (1998).
[CrossRef]

Opt. Eng.

N. A. Riza, S. Yuan, “Demonstration of a liquid crystal adaptive alignment tweeker for high-speed infrared band fiber-fed free-space systems,” Opt. Eng. 37, 1876–1880 (1998).
[CrossRef]

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Hybrid electronic fiber optic wavelength-multiplexed system for true time-delay steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992).
[CrossRef]

Opt. Lett.

Proc. IRE

H. Goldberg, “Some notes on noise figure,” Proc. IRE 36, 1205–1214 (1948).
[CrossRef]

Other

R. F. Mathis, W. L. Floyd, S. A. Pappert, “High performance fiber optic delay line,” in Proceedings of the Seventh Annual DARPA Symposium on Photonic Systems for Antenna Applications (PSAA-7), M. L. Van Blaricum, Conference Chair, C. H. Cox, Program Chair (Defense Advanced Research Projects Agency, Washington, D. C., 1997), pp. 9–14.

M. Y. Frankel, P. J. Matthews, R. D. Esman, “Wideband array transmitter with two-dimensional fiber-optic beam steering,” in 1996 IEEE International Symposium on Phased Array Systems and Technology: Revolutionary Developments in Phased Arrays (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1996), pp. 425–428.

Data sheet of UTP MZ-130-080-X Microwave Analog Intensity Modulator (Uniphase Telecommunication Products, Electro-Optic Products Division, Bloomfield, Conn., 1997).

Designer’s Guide to External Modulation (Uniphase Telecommunication Products, Electro-Optic Products Division, Bloomfield, Conn., 1997).

J. Kim, N. A. Riza, “Fiber array optical coupling design issues for photonic beamformers,” in Advances in Optical Information Processing VII, D. R. Pape, ed., Proc. SPIE2754, 271–282 (1996).
[CrossRef]

LightPath Collimators, LightPath Technologies Product Catalog (LightPath Technologies, Inc., Albuquerque, N.M., 1998).

CODEV Version 8.30 (Optical Research Associates, Pasadena, Calif., 1998).

N. A. Riza, N. Madamopoulos, “Photonic time delay beamforming architectures using polarization switching arrays,” in Advances in Optical Information Processing VII, D. R. Pape, ed., Proc. SPIE2754, 186–197 (1996).
[CrossRef]

LAH-58 OHARA Glass Specification Sheet (OHARA Corporation, Rancho Santa Margarita, Calif., 1997).

J. Stockley, Boulder Nonlinear Systems, Inc., Lafayette, Colo., 80026 (personal communication, 1998).

Fiber Collimators-Focusers (OZ Optics, Ltd., Carp, Ontario, Canada).

N. Madamopoulos, N. A. Riza, “Switched photonic delay line for phased-array antenna control using externally modulated microwave fiber optic link,” in Optical Technology for Microwave Applications VIII, A. Goutzoulis, ed., Proc. SPIE3160, 45–54 (1997).
[CrossRef]

N. A. Riza, ed., Selected Papers on Photonic Control Systems for Phased Array Antennas, Vol. MS136 of SPIE Milestone Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1997).

W. Ng, R. Loo, V. Jones, J. Lewis, S. Livingston, J. J. Lee, “Silica-waveguide optical time-shift network for steering a 96-element L-band conformal array,” in Optical Technology for Microwave Applications VII, A. P. Goutzoulis, ed., Proc. SPIE2560, 140–147 (1995).

Lockheed-Martin Government Electronic Systems Division, Moorestown, N.J. 08057-0927.

N. Madamopoulos, “Ferroelectric liquid crystal device-based photonic controllers for microwave antenna arrays,” Ph.D. Dissertation (School of Optics Hand Center for Research and Education in Optics and Lasers, University of Central Florida, Orlando, Fla., 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

High-density-packing hexagonal configuration for a GRIN-lens FO-collimator array using physical contact of the GRIN-lens ferrules.

Fig. 2
Fig. 2

Shift and tilt effects on the output collimated beam of a GRIN-lens FO-collimator when the SM fiber has a tilt or shift from the optimum position on the surface of the GRIN lens. (a) Optimum SM-fiber position. (b) Shift of the SM fiber from the optical axis of the GRIN lens causes tilt of the output collimated beam. (c) Tilt of the SM fiber from the optical axis of the GRIN lens causes shift of the output collimated beam.

Fig. 3
Fig. 3

Fiber-array design based on the OZ Optics FO flange.

Fig. 4
Fig. 4

(a) Position of the optical beams at the input plane of the telescope, (b) position of the optical beams at the output plane of the telescope.

Fig. 5
Fig. 5

FLC polarization-switching array consisting of 33 pixels. (a) FLC pixel-array layout, (b) detail of the pixels.

Fig. 6
Fig. 6

FLC polarization-switching arrays. (a) All 33 pixels are on, (b) 9 pixels are on.

Fig. 7
Fig. 7

Tilt of 6° in the FLC optical axis with respect to the array axis.

Fig. 8
Fig. 8

HWP–FLC–HWP system that can be used to correct the FLC device fabrication limitation. The lower part of the figure shows the state of polarization as the optical wave propagates through the system for both states of the FLC device.

Fig. 9
Fig. 9

(a) Input SM polarization-maintaining fiber array, (b) output MM-fiber array.

Fig. 10
Fig. 10

FO remoted photonic controller for phased-array antennas. T–R, transmit–receive.

Fig. 11
Fig. 11

Three different PDL architectures used in our 7-bit PDL system. (a) Adaptable, (b) symmetric, (c) feed forward.

Fig. 12
Fig. 12

Optical layout of the 7-bit 33-channel PDL with the input and output telescopes.

Fig. 13
Fig. 13

Oscilloscope traces of the switching time of the 33-pixel BNS FLC devices: (a) 37.6-µs rise time, (b) 100.4-µs fall time. Note also the finite delay times of 17 and 30 µs of the FLC response to the applied waveform.

Fig. 14
Fig. 14

(a) rf spectrum analyzer trace showing the 3-GHz signal of the FO link without the PDL, (b) rf spectrum analyzer trace showing the 3-GHz signal of the FO link with the PDL, using gain balancing.

Fig. 15
Fig. 15

FO-link fundamental and two-tone intermodulation distortion output versus the link fundamental input at 6 GHz (resolution bandwidth 1 kHz).

Fig. 16
Fig. 16

FO-link fundamental and two-tone intermodulation distortion output versus the link fundamental input at 3 GHz (resolution bandwidth 1 kHz).

Fig. 17
Fig. 17

Interchannel cross-talk measurements for the central channel.

Tables (5)

Tables Icon

Table 1 Delay-Line Requirements

Tables Icon

Table 2 Seven-bit PDL Design Characteristics

Tables Icon

Table 3 Desired and Experimentally Obtained Time Delays for the 7-bit PDL

Tables Icon

Table 4 Optical Insertion Loss for Each Bit of the 7-bit PDL System

Tables Icon

Table 5 Dynamic Range Performance of the FO Link 7-bit PDL System from 3 to 8 GHz

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

PIN,-1dB=Pπ-3.9 dB=18.1 dBm,
PIN,TOI=Pπ+5.1 dB=27.1 dBm,

Metrics