Abstract

The performance of fully phase- and amplitude-based encryption processors is analyzed. The effects of noise perturbations on the encrypted information are considered. A thresholding method of decryption that further reduces the mean-squared error (MSE) for the fully phase- and amplitude-based encryption processes is provided. The proposed thresholding scheme significantly improves the performance of fully phase- and amplitude-based encryption, as measured by the MSE metric. We obtain analytical MSE bounds when thresholding is used for both decryption methods, and we also present computer-simulation results. These results show that the fully phase-based method is more robust. We also give a formal proof of a conjecture about the decrypted distribution of distorted encrypted information. This allows the analytical bounds of the MSE to be extended to more general non-Gaussian, nonadditive, nonstationary distortions. Computer simulations support this extension.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (49)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription