Abstract

In the automatic assessment of image quality we obtained a high accuracy in the classification of image degradations in a manner that is widely independent of scene content. Using an all-digital ring–wedge detector system combined with neural-network software, we conducted several experiments in which the end goal is to classify images according to numerical quality scales. Experiments are presented to stress the importance of both local and global image quality assessment. Two databases of degraded images were prepared. One uses five levels of Gaussian blur to simulate depth of field. The other was prepared with lossy compression and recovery with artifacts generated by a JPEG (Joint Photographic Experts Group) compression algorithm. In quantitative terms our best sorting of Gaussian blur without knowledge of the original scene was to an accuracy of 96%. For degradation using JPEG we obtained an accuracy of 95% without knowledge of the original and 98% when the original scene is available as a reference.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (14)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription