Abstract

Off-axis holograms recorded with a CCD camera are numerically reconstructed with a calculation of scalar diffraction in the Fresnel approximation. We show that the zero order of diffraction and the twin image can be digitally eliminated by means of filtering their associated spatial frequencies in the computed Fourier transform of the hologram. We show that this operation enhances the contrast of the reconstructed images and reduces the noise produced by parasitic reflections reaching the hologram plane with an incidence angle other than that of the object wave.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Schnars, “Direct phase determination in hologram interferometry with use of digitally recorded holograms,” J. Opt. Soc. Am. A 11, 2011–2015 (1994).
    [CrossRef]
  2. O. Coquoz, R. Conde, F. Taleblou, C. Depeursinge, “Performances of endoscopic holography with a multicore optical fiber,” Appl. Opt. 34, 7186–7193 (1995).
    [CrossRef] [PubMed]
  3. J. Pomarico, U. Schnars, H.-J. Hartmann, W. Jüptner, “Digital recording and numerical reconstruction of holograms: a new method for displaying light in flight,” Appl. Opt. 34, 8095–8099 (1995).
    [CrossRef] [PubMed]
  4. K. Boyer, J. C. Solem, J. W. Longworth, A. B. Borisov, C. K. Rhodes, “Biomedical three-dimensional holographic microimaging at visible, ultraviolet and x-ray wavelength,” Nature Med. 2, 939–941 (1996).
    [CrossRef]
  5. E. Leith, C. Chen, H. Chen, Y. Chen, D. Dilworth, J. Lopez, J. Rudd, P.-C. Sun, J. Valdmanis, G. Vossler, “Imaging through scattering media with holography,” J. Opt. Soc. Am. A 9, 1148–1153 (1992).
    [CrossRef]
  6. E. Cuche, P. Poscio, C. Depeursinge, “Optical tomography at the microscopic scale by means of a numerical low coherence holographic technique,” in Optical and Imaging Techniques for Biomonitoring II, H. J. Foth, R. Marchesini, H. Pobielska eds., Proc. SPIE2927, 61–66 (1996).
    [CrossRef]
  7. E. Cuche, F. Bevilacqua, C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291–293 (1999).
    [CrossRef]
  8. C. Wagner, S. Seebacher, W. Osten, W. Jüptner, “Digital recording and numerical reconstruction of lensless Fourier holograms in optical metrology,” Appl. Opt. 38, 4812–4820 (1999).
    [CrossRef]
  9. Y. Takaki, H. Ohzu, “Fast numerical reconstruction technique for high-resolution hybrid holographic microscopy,” Appl. Opt. 38, 2204–2211 (1999).
    [CrossRef]
  10. D. Beghin, E. Cuche, P. Dahlgren, C. Depeursinge, G. Delacrétaz, R. P. Salathé, “Single acquisition polarisation imaging with digital holography,” Electron. Lett. 35, 2053–2055 (1999).
    [CrossRef]
  11. D. Gabor, “A new microscopic principle,” Nature (London) 161, 777–778 (1948); Proc. R. Soc. London Ser. A 197, 454–487 (1949).
  12. E. Leith, J. Upatnieks, “Microscopy by wavefront reconstruction,” J. Opt. Soc. Am. 55, 569–570 (1965).
    [CrossRef]
  13. L. Onural, P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. 26, 1124–1132 (1987).
    [CrossRef]
  14. T.-C. Poon, K. B. Doh, B. W. Shilling, M. H. Wu, K. Shinoda, Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338–1344 (1995).
    [CrossRef]
  15. T. Zhang, I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23, 1221–1223 (1998).
    [CrossRef]
  16. G. Indenbetouw, P. Klysubun, “Space-time digital holography: a three-dimensional microscopic imaging scheme with an arbitrary degree of spatial coherence,” Appl. Phys. Lett. 75, 2017–2019 (1999).
    [CrossRef]
  17. T. M. Kreis, W. P. P. Jüptner, “Suppression of the dc term in digital holography,” Opt. Eng. 36, 2357–2360 (1997).
    [CrossRef]
  18. Y. Takaki, H. Kawai, H. Ohzu, “Hybrid holographic microscopy free of conjugate and zero-order images,” Appl. Opt. 38, 4990–4996 (1999).
    [CrossRef]
  19. See, e.g., E. N. Leith, J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52, 1123–1130 (1962).
    [CrossRef]
  20. E. Leith, P. Naulleau, D. Dilworth, “Ensemble-averaged imaging through turbid media,” Opt. Lett. 21, 1691–1693 (1996).
    [CrossRef] [PubMed]
  21. U. Schnars, W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
    [CrossRef] [PubMed]
  22. E. Cuche, P. Marquet, C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999).
    [CrossRef]
  23. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968), Chap. 8.
  24. M. Takeda, I. Hideki, S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982).
    [CrossRef]
  25. D. Malacara, S. L. DeVore, “Interferogram evaluation and wavefront Fitting,” in Optical Shop Testing, 2nd ed., Wiley Series in Pure and Applied Optics, D. Malacara ed. (Wiley, New York, 1992), Chap. 13.

1999

1998

1997

T. M. Kreis, W. P. P. Jüptner, “Suppression of the dc term in digital holography,” Opt. Eng. 36, 2357–2360 (1997).
[CrossRef]

1996

K. Boyer, J. C. Solem, J. W. Longworth, A. B. Borisov, C. K. Rhodes, “Biomedical three-dimensional holographic microimaging at visible, ultraviolet and x-ray wavelength,” Nature Med. 2, 939–941 (1996).
[CrossRef]

E. Leith, P. Naulleau, D. Dilworth, “Ensemble-averaged imaging through turbid media,” Opt. Lett. 21, 1691–1693 (1996).
[CrossRef] [PubMed]

1995

1994

1992

1987

L. Onural, P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. 26, 1124–1132 (1987).
[CrossRef]

1982

1965

1962

1948

D. Gabor, “A new microscopic principle,” Nature (London) 161, 777–778 (1948); Proc. R. Soc. London Ser. A 197, 454–487 (1949).

Beghin, D.

D. Beghin, E. Cuche, P. Dahlgren, C. Depeursinge, G. Delacrétaz, R. P. Salathé, “Single acquisition polarisation imaging with digital holography,” Electron. Lett. 35, 2053–2055 (1999).
[CrossRef]

Bevilacqua, F.

Borisov, A. B.

K. Boyer, J. C. Solem, J. W. Longworth, A. B. Borisov, C. K. Rhodes, “Biomedical three-dimensional holographic microimaging at visible, ultraviolet and x-ray wavelength,” Nature Med. 2, 939–941 (1996).
[CrossRef]

Boyer, K.

K. Boyer, J. C. Solem, J. W. Longworth, A. B. Borisov, C. K. Rhodes, “Biomedical three-dimensional holographic microimaging at visible, ultraviolet and x-ray wavelength,” Nature Med. 2, 939–941 (1996).
[CrossRef]

Chen, C.

Chen, H.

Chen, Y.

Conde, R.

Coquoz, O.

Cuche, E.

E. Cuche, F. Bevilacqua, C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291–293 (1999).
[CrossRef]

D. Beghin, E. Cuche, P. Dahlgren, C. Depeursinge, G. Delacrétaz, R. P. Salathé, “Single acquisition polarisation imaging with digital holography,” Electron. Lett. 35, 2053–2055 (1999).
[CrossRef]

E. Cuche, P. Marquet, C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999).
[CrossRef]

E. Cuche, P. Poscio, C. Depeursinge, “Optical tomography at the microscopic scale by means of a numerical low coherence holographic technique,” in Optical and Imaging Techniques for Biomonitoring II, H. J. Foth, R. Marchesini, H. Pobielska eds., Proc. SPIE2927, 61–66 (1996).
[CrossRef]

Dahlgren, P.

D. Beghin, E. Cuche, P. Dahlgren, C. Depeursinge, G. Delacrétaz, R. P. Salathé, “Single acquisition polarisation imaging with digital holography,” Electron. Lett. 35, 2053–2055 (1999).
[CrossRef]

Delacrétaz, G.

D. Beghin, E. Cuche, P. Dahlgren, C. Depeursinge, G. Delacrétaz, R. P. Salathé, “Single acquisition polarisation imaging with digital holography,” Electron. Lett. 35, 2053–2055 (1999).
[CrossRef]

Depeursinge, C.

D. Beghin, E. Cuche, P. Dahlgren, C. Depeursinge, G. Delacrétaz, R. P. Salathé, “Single acquisition polarisation imaging with digital holography,” Electron. Lett. 35, 2053–2055 (1999).
[CrossRef]

E. Cuche, F. Bevilacqua, C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291–293 (1999).
[CrossRef]

E. Cuche, P. Marquet, C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999).
[CrossRef]

O. Coquoz, R. Conde, F. Taleblou, C. Depeursinge, “Performances of endoscopic holography with a multicore optical fiber,” Appl. Opt. 34, 7186–7193 (1995).
[CrossRef] [PubMed]

E. Cuche, P. Poscio, C. Depeursinge, “Optical tomography at the microscopic scale by means of a numerical low coherence holographic technique,” in Optical and Imaging Techniques for Biomonitoring II, H. J. Foth, R. Marchesini, H. Pobielska eds., Proc. SPIE2927, 61–66 (1996).
[CrossRef]

DeVore, S. L.

D. Malacara, S. L. DeVore, “Interferogram evaluation and wavefront Fitting,” in Optical Shop Testing, 2nd ed., Wiley Series in Pure and Applied Optics, D. Malacara ed. (Wiley, New York, 1992), Chap. 13.

Dilworth, D.

Doh, K. B.

T.-C. Poon, K. B. Doh, B. W. Shilling, M. H. Wu, K. Shinoda, Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338–1344 (1995).
[CrossRef]

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature (London) 161, 777–778 (1948); Proc. R. Soc. London Ser. A 197, 454–487 (1949).

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968), Chap. 8.

Hartmann, H.-J.

Hideki, I.

Indenbetouw, G.

G. Indenbetouw, P. Klysubun, “Space-time digital holography: a three-dimensional microscopic imaging scheme with an arbitrary degree of spatial coherence,” Appl. Phys. Lett. 75, 2017–2019 (1999).
[CrossRef]

Jüptner, W.

Jüptner, W. P. P.

T. M. Kreis, W. P. P. Jüptner, “Suppression of the dc term in digital holography,” Opt. Eng. 36, 2357–2360 (1997).
[CrossRef]

Kawai, H.

Klysubun, P.

G. Indenbetouw, P. Klysubun, “Space-time digital holography: a three-dimensional microscopic imaging scheme with an arbitrary degree of spatial coherence,” Appl. Phys. Lett. 75, 2017–2019 (1999).
[CrossRef]

Kobayashi, S.

Kreis, T. M.

T. M. Kreis, W. P. P. Jüptner, “Suppression of the dc term in digital holography,” Opt. Eng. 36, 2357–2360 (1997).
[CrossRef]

Leith, E.

Leith, E. N.

Longworth, J. W.

K. Boyer, J. C. Solem, J. W. Longworth, A. B. Borisov, C. K. Rhodes, “Biomedical three-dimensional holographic microimaging at visible, ultraviolet and x-ray wavelength,” Nature Med. 2, 939–941 (1996).
[CrossRef]

Lopez, J.

Malacara, D.

D. Malacara, S. L. DeVore, “Interferogram evaluation and wavefront Fitting,” in Optical Shop Testing, 2nd ed., Wiley Series in Pure and Applied Optics, D. Malacara ed. (Wiley, New York, 1992), Chap. 13.

Marquet, P.

Naulleau, P.

Ohzu, H.

Onural, L.

L. Onural, P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. 26, 1124–1132 (1987).
[CrossRef]

Osten, W.

Pomarico, J.

Poon, T.-C.

T.-C. Poon, K. B. Doh, B. W. Shilling, M. H. Wu, K. Shinoda, Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338–1344 (1995).
[CrossRef]

Poscio, P.

E. Cuche, P. Poscio, C. Depeursinge, “Optical tomography at the microscopic scale by means of a numerical low coherence holographic technique,” in Optical and Imaging Techniques for Biomonitoring II, H. J. Foth, R. Marchesini, H. Pobielska eds., Proc. SPIE2927, 61–66 (1996).
[CrossRef]

Rhodes, C. K.

K. Boyer, J. C. Solem, J. W. Longworth, A. B. Borisov, C. K. Rhodes, “Biomedical three-dimensional holographic microimaging at visible, ultraviolet and x-ray wavelength,” Nature Med. 2, 939–941 (1996).
[CrossRef]

Rudd, J.

Salathé, R. P.

D. Beghin, E. Cuche, P. Dahlgren, C. Depeursinge, G. Delacrétaz, R. P. Salathé, “Single acquisition polarisation imaging with digital holography,” Electron. Lett. 35, 2053–2055 (1999).
[CrossRef]

Schnars, U.

Scott, P. D.

L. Onural, P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. 26, 1124–1132 (1987).
[CrossRef]

Seebacher, S.

Shilling, B. W.

T.-C. Poon, K. B. Doh, B. W. Shilling, M. H. Wu, K. Shinoda, Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338–1344 (1995).
[CrossRef]

Shinoda, K.

T.-C. Poon, K. B. Doh, B. W. Shilling, M. H. Wu, K. Shinoda, Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338–1344 (1995).
[CrossRef]

Solem, J. C.

K. Boyer, J. C. Solem, J. W. Longworth, A. B. Borisov, C. K. Rhodes, “Biomedical three-dimensional holographic microimaging at visible, ultraviolet and x-ray wavelength,” Nature Med. 2, 939–941 (1996).
[CrossRef]

Sun, P.-C.

Suzuki, Y.

T.-C. Poon, K. B. Doh, B. W. Shilling, M. H. Wu, K. Shinoda, Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338–1344 (1995).
[CrossRef]

Takaki, Y.

Takeda, M.

Taleblou, F.

Upatnieks, J.

Valdmanis, J.

Vossler, G.

Wagner, C.

Wu, M. H.

T.-C. Poon, K. B. Doh, B. W. Shilling, M. H. Wu, K. Shinoda, Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338–1344 (1995).
[CrossRef]

Yamaguchi, I.

Zhang, T.

Appl. Opt.

Appl. Phys. Lett.

G. Indenbetouw, P. Klysubun, “Space-time digital holography: a three-dimensional microscopic imaging scheme with an arbitrary degree of spatial coherence,” Appl. Phys. Lett. 75, 2017–2019 (1999).
[CrossRef]

Electron. Lett.

D. Beghin, E. Cuche, P. Dahlgren, C. Depeursinge, G. Delacrétaz, R. P. Salathé, “Single acquisition polarisation imaging with digital holography,” Electron. Lett. 35, 2053–2055 (1999).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Nature (London)

D. Gabor, “A new microscopic principle,” Nature (London) 161, 777–778 (1948); Proc. R. Soc. London Ser. A 197, 454–487 (1949).

Nature Med.

K. Boyer, J. C. Solem, J. W. Longworth, A. B. Borisov, C. K. Rhodes, “Biomedical three-dimensional holographic microimaging at visible, ultraviolet and x-ray wavelength,” Nature Med. 2, 939–941 (1996).
[CrossRef]

Opt. Eng.

T. M. Kreis, W. P. P. Jüptner, “Suppression of the dc term in digital holography,” Opt. Eng. 36, 2357–2360 (1997).
[CrossRef]

L. Onural, P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. 26, 1124–1132 (1987).
[CrossRef]

T.-C. Poon, K. B. Doh, B. W. Shilling, M. H. Wu, K. Shinoda, Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338–1344 (1995).
[CrossRef]

Opt. Lett.

Other

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968), Chap. 8.

D. Malacara, S. L. DeVore, “Interferogram evaluation and wavefront Fitting,” in Optical Shop Testing, 2nd ed., Wiley Series in Pure and Applied Optics, D. Malacara ed. (Wiley, New York, 1992), Chap. 13.

E. Cuche, P. Poscio, C. Depeursinge, “Optical tomography at the microscopic scale by means of a numerical low coherence holographic technique,” in Optical and Imaging Techniques for Biomonitoring II, H. J. Foth, R. Marchesini, H. Pobielska eds., Proc. SPIE2927, 61–66 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup: BE, beam expander; NF, neutral-density filter; M, mirror; O, object wave; R, reference wave. Inset, detail of the off-axis geometry.

Fig. 2
Fig. 2

Elimination of the zero order of diffraction by spatial filtering. (a) Original off-axis hologram, (b) two-dimensional Fourier spectrum of the original hologram, (c) amplitude-contrast image obtained by numerical reconstruction of the original hologram, (d) filtered hologram, (e) two-dimensional Fourier spectrum of the filtered hologram, (f) amplitude-contrast image obtained by numerical reconstruction of the filtered hologram. The filtered hologram in Fig. 2(d) is obtained by computation of the inverse Fourier transform of the filtered spectrum presented in Fig. 2(e).

Fig. 3
Fig. 3

Virtual image elimination. (a) Filtered two-dimensional Fourier spectrum, (b) numerically reconstructed amplitude-contrast image.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

θθmax=arc sinλ2Δx,
Ψm, n=A expiπλdm2Δξ2+n2Δη2×FFTRDk, lIHk, l×expiπλdk2Δx2+l2Δy2m,n,
Δξ=Δη=λd/L.
IHx, y=Ir+Iox, y+R*O+RO*,
Ψx, y=UIr+UIox, y+UR*O+URO*.
IHx, y=Ir+Iox, y+IRexp-ik sin θxO+IRexpik sin θxO*.

Metrics