Abstract

A time-resolved photoacoustic technique has been applied to the study of dissolved and dispersed absorbers in aqueous systems. The temporal pressure profiles generated from colloidal graphite and glucose solutions were measured, and it was found that the amplitude of the photoacoustic signal of both the glucose and the colloidal graphite solutions increase linearly with concentration and that acoustic signal time delay yields the acoustic velocity. The logarithm of the photoacoustic signal amplitude changes linearly with the time delay, with a slope that is proportional to the product of the acoustic velocity and the optical absorption that can thus be determined.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. S. Freeborn, J. Hannigan, F. Greig, R. A. Suttie, H. A. MacKenzie, “A pulsed photoacoustic instrument for detection of crude oil concentrations in produced water,” Rev. Sci. Instrum. 69, 3948–3952 (1998).
    [CrossRef]
  2. G. B. Christison, H. A. MacKenzie, “Laser photoacoustic determination of physiological glucose concentrations in human whole blood,” Med. Biol. Eng. Comput. 31, 284–290 (1993).
    [CrossRef] [PubMed]
  3. G. J. Diebold, T. Sun, “Properties of photoacoustic waves in one, two, and three dimensions,” Acoustica 80, 339–351 (1994).
  4. E. F. Carome, N. A. Clark, C. E. Moeller, “Generation of acoustic signals in liquids by ruby laser-induced thermal stress transients,” Appl. Phys. Lett. 4, 95–97 (1964).
    [CrossRef]
  5. L. S. Gournay, “Conversion of electromagnetic to acoustic energy by surface heating,” J. Opt. Soc. Am. 40, 1322–1330 (1966).
  6. L. V. Burmiistrova, A. A. Karabutov, A. I. Portnyagin, O. V. Rudenko, E. B. Cherepetskaya, “Method of transfer functions in problems of thermooptical sound generation,” Sov. Phys. Acoust. 24, 369–374 (1978).
  7. D. A. Hutchins, “Mechanisms of pulsed photoacoustic generation,” Can. J. Phys. 64, 1247–1264 (1986).
    [CrossRef]
  8. G. W. C. Kay, T. H. Laby, Tables of Physical and Chemical Constants and Some Mathematical Functions, 16th ed. (Longman Scientific and Technical, Essex, UK, 1995).
  9. B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time resolved spectroscopy of hemoglobin and myoglobin in resting and ishemic muscle,” Anal. Biochem. 174, 698–707 (1988).
    [CrossRef] [PubMed]
  10. H. A. MacKenzie, H. S. Ashton, S. Spiers, S. S. Freeborn, Y. C. Shen, J. Hannigan, J. Lindberg, P. Rae, “Advances in photoacoustic non-invasive glucose testing,” Clin. Chem. 45, 1587–1595 (1999).
    [PubMed]
  11. O. S. Khalil, “Spectroscopic and clinical aspects of non-invasive glucose measurements,” Clin. Chem. 45, 165–177 (1999).
    [PubMed]
  12. A. A. Karabutov, N. B. Podymova, V. S. Letokhov, “Time-resolved laser optoacoustic tomography of inhomogeneous media,” Appl. Phys. B 63, 545–563 (1996).
  13. G. Paltauf, H. Schmidt-Kloiber, “Measurement of laser-induced acoustic waves with a calibrated optical transducer,” J. Appl. Phys. 82, 1525–1531 (1997).
    [CrossRef]

1999 (2)

H. A. MacKenzie, H. S. Ashton, S. Spiers, S. S. Freeborn, Y. C. Shen, J. Hannigan, J. Lindberg, P. Rae, “Advances in photoacoustic non-invasive glucose testing,” Clin. Chem. 45, 1587–1595 (1999).
[PubMed]

O. S. Khalil, “Spectroscopic and clinical aspects of non-invasive glucose measurements,” Clin. Chem. 45, 165–177 (1999).
[PubMed]

1998 (1)

S. S. Freeborn, J. Hannigan, F. Greig, R. A. Suttie, H. A. MacKenzie, “A pulsed photoacoustic instrument for detection of crude oil concentrations in produced water,” Rev. Sci. Instrum. 69, 3948–3952 (1998).
[CrossRef]

1997 (1)

G. Paltauf, H. Schmidt-Kloiber, “Measurement of laser-induced acoustic waves with a calibrated optical transducer,” J. Appl. Phys. 82, 1525–1531 (1997).
[CrossRef]

1996 (1)

A. A. Karabutov, N. B. Podymova, V. S. Letokhov, “Time-resolved laser optoacoustic tomography of inhomogeneous media,” Appl. Phys. B 63, 545–563 (1996).

1994 (1)

G. J. Diebold, T. Sun, “Properties of photoacoustic waves in one, two, and three dimensions,” Acoustica 80, 339–351 (1994).

1993 (1)

G. B. Christison, H. A. MacKenzie, “Laser photoacoustic determination of physiological glucose concentrations in human whole blood,” Med. Biol. Eng. Comput. 31, 284–290 (1993).
[CrossRef] [PubMed]

1988 (1)

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time resolved spectroscopy of hemoglobin and myoglobin in resting and ishemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

1986 (1)

D. A. Hutchins, “Mechanisms of pulsed photoacoustic generation,” Can. J. Phys. 64, 1247–1264 (1986).
[CrossRef]

1978 (1)

L. V. Burmiistrova, A. A. Karabutov, A. I. Portnyagin, O. V. Rudenko, E. B. Cherepetskaya, “Method of transfer functions in problems of thermooptical sound generation,” Sov. Phys. Acoust. 24, 369–374 (1978).

1966 (1)

L. S. Gournay, “Conversion of electromagnetic to acoustic energy by surface heating,” J. Opt. Soc. Am. 40, 1322–1330 (1966).

1964 (1)

E. F. Carome, N. A. Clark, C. E. Moeller, “Generation of acoustic signals in liquids by ruby laser-induced thermal stress transients,” Appl. Phys. Lett. 4, 95–97 (1964).
[CrossRef]

Ashton, H. S.

H. A. MacKenzie, H. S. Ashton, S. Spiers, S. S. Freeborn, Y. C. Shen, J. Hannigan, J. Lindberg, P. Rae, “Advances in photoacoustic non-invasive glucose testing,” Clin. Chem. 45, 1587–1595 (1999).
[PubMed]

Burmiistrova, L. V.

L. V. Burmiistrova, A. A. Karabutov, A. I. Portnyagin, O. V. Rudenko, E. B. Cherepetskaya, “Method of transfer functions in problems of thermooptical sound generation,” Sov. Phys. Acoust. 24, 369–374 (1978).

Carome, E. F.

E. F. Carome, N. A. Clark, C. E. Moeller, “Generation of acoustic signals in liquids by ruby laser-induced thermal stress transients,” Appl. Phys. Lett. 4, 95–97 (1964).
[CrossRef]

Chance, B.

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time resolved spectroscopy of hemoglobin and myoglobin in resting and ishemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Cherepetskaya, E. B.

L. V. Burmiistrova, A. A. Karabutov, A. I. Portnyagin, O. V. Rudenko, E. B. Cherepetskaya, “Method of transfer functions in problems of thermooptical sound generation,” Sov. Phys. Acoust. 24, 369–374 (1978).

Christison, G. B.

G. B. Christison, H. A. MacKenzie, “Laser photoacoustic determination of physiological glucose concentrations in human whole blood,” Med. Biol. Eng. Comput. 31, 284–290 (1993).
[CrossRef] [PubMed]

Clark, N. A.

E. F. Carome, N. A. Clark, C. E. Moeller, “Generation of acoustic signals in liquids by ruby laser-induced thermal stress transients,” Appl. Phys. Lett. 4, 95–97 (1964).
[CrossRef]

Diebold, G. J.

G. J. Diebold, T. Sun, “Properties of photoacoustic waves in one, two, and three dimensions,” Acoustica 80, 339–351 (1994).

Fountain, M.

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time resolved spectroscopy of hemoglobin and myoglobin in resting and ishemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Freeborn, S. S.

H. A. MacKenzie, H. S. Ashton, S. Spiers, S. S. Freeborn, Y. C. Shen, J. Hannigan, J. Lindberg, P. Rae, “Advances in photoacoustic non-invasive glucose testing,” Clin. Chem. 45, 1587–1595 (1999).
[PubMed]

S. S. Freeborn, J. Hannigan, F. Greig, R. A. Suttie, H. A. MacKenzie, “A pulsed photoacoustic instrument for detection of crude oil concentrations in produced water,” Rev. Sci. Instrum. 69, 3948–3952 (1998).
[CrossRef]

Gournay, L. S.

L. S. Gournay, “Conversion of electromagnetic to acoustic energy by surface heating,” J. Opt. Soc. Am. 40, 1322–1330 (1966).

Greenfeld, R.

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time resolved spectroscopy of hemoglobin and myoglobin in resting and ishemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Greig, F.

S. S. Freeborn, J. Hannigan, F. Greig, R. A. Suttie, H. A. MacKenzie, “A pulsed photoacoustic instrument for detection of crude oil concentrations in produced water,” Rev. Sci. Instrum. 69, 3948–3952 (1998).
[CrossRef]

Hannigan, J.

H. A. MacKenzie, H. S. Ashton, S. Spiers, S. S. Freeborn, Y. C. Shen, J. Hannigan, J. Lindberg, P. Rae, “Advances in photoacoustic non-invasive glucose testing,” Clin. Chem. 45, 1587–1595 (1999).
[PubMed]

S. S. Freeborn, J. Hannigan, F. Greig, R. A. Suttie, H. A. MacKenzie, “A pulsed photoacoustic instrument for detection of crude oil concentrations in produced water,” Rev. Sci. Instrum. 69, 3948–3952 (1998).
[CrossRef]

Holtom, G.

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time resolved spectroscopy of hemoglobin and myoglobin in resting and ishemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Hutchins, D. A.

D. A. Hutchins, “Mechanisms of pulsed photoacoustic generation,” Can. J. Phys. 64, 1247–1264 (1986).
[CrossRef]

Karabutov, A. A.

A. A. Karabutov, N. B. Podymova, V. S. Letokhov, “Time-resolved laser optoacoustic tomography of inhomogeneous media,” Appl. Phys. B 63, 545–563 (1996).

L. V. Burmiistrova, A. A. Karabutov, A. I. Portnyagin, O. V. Rudenko, E. B. Cherepetskaya, “Method of transfer functions in problems of thermooptical sound generation,” Sov. Phys. Acoust. 24, 369–374 (1978).

Kay, G. W. C.

G. W. C. Kay, T. H. Laby, Tables of Physical and Chemical Constants and Some Mathematical Functions, 16th ed. (Longman Scientific and Technical, Essex, UK, 1995).

Kent, J.

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time resolved spectroscopy of hemoglobin and myoglobin in resting and ishemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Khalil, O. S.

O. S. Khalil, “Spectroscopic and clinical aspects of non-invasive glucose measurements,” Clin. Chem. 45, 165–177 (1999).
[PubMed]

Laby, T. H.

G. W. C. Kay, T. H. Laby, Tables of Physical and Chemical Constants and Some Mathematical Functions, 16th ed. (Longman Scientific and Technical, Essex, UK, 1995).

Letokhov, V. S.

A. A. Karabutov, N. B. Podymova, V. S. Letokhov, “Time-resolved laser optoacoustic tomography of inhomogeneous media,” Appl. Phys. B 63, 545–563 (1996).

Lindberg, J.

H. A. MacKenzie, H. S. Ashton, S. Spiers, S. S. Freeborn, Y. C. Shen, J. Hannigan, J. Lindberg, P. Rae, “Advances in photoacoustic non-invasive glucose testing,” Clin. Chem. 45, 1587–1595 (1999).
[PubMed]

MacKenzie, H. A.

H. A. MacKenzie, H. S. Ashton, S. Spiers, S. S. Freeborn, Y. C. Shen, J. Hannigan, J. Lindberg, P. Rae, “Advances in photoacoustic non-invasive glucose testing,” Clin. Chem. 45, 1587–1595 (1999).
[PubMed]

S. S. Freeborn, J. Hannigan, F. Greig, R. A. Suttie, H. A. MacKenzie, “A pulsed photoacoustic instrument for detection of crude oil concentrations in produced water,” Rev. Sci. Instrum. 69, 3948–3952 (1998).
[CrossRef]

G. B. Christison, H. A. MacKenzie, “Laser photoacoustic determination of physiological glucose concentrations in human whole blood,” Med. Biol. Eng. Comput. 31, 284–290 (1993).
[CrossRef] [PubMed]

McCully, K.

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time resolved spectroscopy of hemoglobin and myoglobin in resting and ishemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Moeller, C. E.

E. F. Carome, N. A. Clark, C. E. Moeller, “Generation of acoustic signals in liquids by ruby laser-induced thermal stress transients,” Appl. Phys. Lett. 4, 95–97 (1964).
[CrossRef]

Nioka, S.

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time resolved spectroscopy of hemoglobin and myoglobin in resting and ishemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Paltauf, G.

G. Paltauf, H. Schmidt-Kloiber, “Measurement of laser-induced acoustic waves with a calibrated optical transducer,” J. Appl. Phys. 82, 1525–1531 (1997).
[CrossRef]

Podymova, N. B.

A. A. Karabutov, N. B. Podymova, V. S. Letokhov, “Time-resolved laser optoacoustic tomography of inhomogeneous media,” Appl. Phys. B 63, 545–563 (1996).

Portnyagin, A. I.

L. V. Burmiistrova, A. A. Karabutov, A. I. Portnyagin, O. V. Rudenko, E. B. Cherepetskaya, “Method of transfer functions in problems of thermooptical sound generation,” Sov. Phys. Acoust. 24, 369–374 (1978).

Rae, P.

H. A. MacKenzie, H. S. Ashton, S. Spiers, S. S. Freeborn, Y. C. Shen, J. Hannigan, J. Lindberg, P. Rae, “Advances in photoacoustic non-invasive glucose testing,” Clin. Chem. 45, 1587–1595 (1999).
[PubMed]

Rudenko, O. V.

L. V. Burmiistrova, A. A. Karabutov, A. I. Portnyagin, O. V. Rudenko, E. B. Cherepetskaya, “Method of transfer functions in problems of thermooptical sound generation,” Sov. Phys. Acoust. 24, 369–374 (1978).

Schmidt-Kloiber, H.

G. Paltauf, H. Schmidt-Kloiber, “Measurement of laser-induced acoustic waves with a calibrated optical transducer,” J. Appl. Phys. 82, 1525–1531 (1997).
[CrossRef]

Shen, Y. C.

H. A. MacKenzie, H. S. Ashton, S. Spiers, S. S. Freeborn, Y. C. Shen, J. Hannigan, J. Lindberg, P. Rae, “Advances in photoacoustic non-invasive glucose testing,” Clin. Chem. 45, 1587–1595 (1999).
[PubMed]

Spiers, S.

H. A. MacKenzie, H. S. Ashton, S. Spiers, S. S. Freeborn, Y. C. Shen, J. Hannigan, J. Lindberg, P. Rae, “Advances in photoacoustic non-invasive glucose testing,” Clin. Chem. 45, 1587–1595 (1999).
[PubMed]

Sun, T.

G. J. Diebold, T. Sun, “Properties of photoacoustic waves in one, two, and three dimensions,” Acoustica 80, 339–351 (1994).

Suttie, R. A.

S. S. Freeborn, J. Hannigan, F. Greig, R. A. Suttie, H. A. MacKenzie, “A pulsed photoacoustic instrument for detection of crude oil concentrations in produced water,” Rev. Sci. Instrum. 69, 3948–3952 (1998).
[CrossRef]

Acoustica (1)

G. J. Diebold, T. Sun, “Properties of photoacoustic waves in one, two, and three dimensions,” Acoustica 80, 339–351 (1994).

Anal. Biochem. (1)

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time resolved spectroscopy of hemoglobin and myoglobin in resting and ishemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Appl. Phys. B (1)

A. A. Karabutov, N. B. Podymova, V. S. Letokhov, “Time-resolved laser optoacoustic tomography of inhomogeneous media,” Appl. Phys. B 63, 545–563 (1996).

Appl. Phys. Lett. (1)

E. F. Carome, N. A. Clark, C. E. Moeller, “Generation of acoustic signals in liquids by ruby laser-induced thermal stress transients,” Appl. Phys. Lett. 4, 95–97 (1964).
[CrossRef]

Can. J. Phys. (1)

D. A. Hutchins, “Mechanisms of pulsed photoacoustic generation,” Can. J. Phys. 64, 1247–1264 (1986).
[CrossRef]

Clin. Chem. (2)

H. A. MacKenzie, H. S. Ashton, S. Spiers, S. S. Freeborn, Y. C. Shen, J. Hannigan, J. Lindberg, P. Rae, “Advances in photoacoustic non-invasive glucose testing,” Clin. Chem. 45, 1587–1595 (1999).
[PubMed]

O. S. Khalil, “Spectroscopic and clinical aspects of non-invasive glucose measurements,” Clin. Chem. 45, 165–177 (1999).
[PubMed]

J. Appl. Phys. (1)

G. Paltauf, H. Schmidt-Kloiber, “Measurement of laser-induced acoustic waves with a calibrated optical transducer,” J. Appl. Phys. 82, 1525–1531 (1997).
[CrossRef]

J. Opt. Soc. Am. (1)

L. S. Gournay, “Conversion of electromagnetic to acoustic energy by surface heating,” J. Opt. Soc. Am. 40, 1322–1330 (1966).

Med. Biol. Eng. Comput. (1)

G. B. Christison, H. A. MacKenzie, “Laser photoacoustic determination of physiological glucose concentrations in human whole blood,” Med. Biol. Eng. Comput. 31, 284–290 (1993).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

S. S. Freeborn, J. Hannigan, F. Greig, R. A. Suttie, H. A. MacKenzie, “A pulsed photoacoustic instrument for detection of crude oil concentrations in produced water,” Rev. Sci. Instrum. 69, 3948–3952 (1998).
[CrossRef]

Sov. Phys. Acoust. (1)

L. V. Burmiistrova, A. A. Karabutov, A. I. Portnyagin, O. V. Rudenko, E. B. Cherepetskaya, “Method of transfer functions in problems of thermooptical sound generation,” Sov. Phys. Acoust. 24, 369–374 (1978).

Other (1)

G. W. C. Kay, T. H. Laby, Tables of Physical and Chemical Constants and Some Mathematical Functions, 16th ed. (Longman Scientific and Technical, Essex, UK, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Calculated photoacoustic signals with a one-dimensional theoretical model. Typical photoacoustic signal of a liquid generated by laser pulses, dashed curve; and logarithm of the photoacoustic signal, which is proportional to the time, solid line.

Fig. 2
Fig. 2

Schematic representation of time-resolved photoacoustic technique.

Fig. 3
Fig. 3

Normalized photoacoustic signal.

Fig. 4
Fig. 4

Logarithm of the photoacoustic signal in Fig. 3.

Fig. 5
Fig. 5

Logarithm of the photoacoustic signals measured at a wavelength of 900 nm from colloidal graphite with optical absorption coefficients from 28.0–123.0 cm-1.

Fig. 6
Fig. 6

Slope of the logarithm of the photoacoustic signal versus optical absorption coefficient of colloidal graphite samples. The optical absorption coefficient was measured with a Shimadzu 3000 NIR Spectrometer. The solid line represents the best-fit line to that data.

Fig. 7
Fig. 7

Log profile of the photoacoustic signals measured at 1450 nm from glucose solution with a concentrations from 0.0–15.0 g/dl.

Fig. 8
Fig. 8

Glucose concentration dependence of the amplitude and the peak position changes of the photoacoustic signals at 1450 nm. The solid line represents the best-fit line to that data.

Fig. 9
Fig. 9

Log profile of the photoacoustic signals obtained at a wavelength of 2150 nm from water and glucose solution with a concentration of 30 g/dL.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

2ξx2-1ν22ξt2=βCpϕx,
px, t=σexpανt1-exp-αντt<0exp-ανt-expανt-τ0<tτexp-ανt1-expαντt>τ.
σ=νβE02Cpτ.
lnpx, t=lnσ+ανt+ln1-exp-αντt<0lnσ+lnexp-ανt-expανt-τ0<tτlnσ-ανt+ln1-expαντt>τ.

Metrics