Abstract

The optical design of a high-throughput grazing-incidence flat-field spectrometer is presented. The spectral focal curve is almost a straight line because of the flat-field focusing properties of spherical variable-line-spaced gratings. The angular acceptance in the direction perpendicular to the plane of dispersion is maximized by means of a focusing spherical mirror mounted with its tangential plane coincident with the sagittal plane of the grating. Analytical calculations for the determination of the optimum mirror parameters are presented. A spectrometer for high-throughput experiments in the 800–60-eV region is designed with an extreme-ultraviolet-enhanced CCD detector: when the available flux is compared with that of a spectrometer with the same kinds of grating and detector but without a focusing mirror, the increase is as much as a factor 3.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. R. Samson, D. L. Ederer, Vacuum Ultraviolet Spectroscopy II (Academic, San Diego, Calif., 1998).
  2. J. Nordgren, R. Nyholm, “Design of a portable large spectral range grazing incidence instrument,” Nucl. Instrum. Meth. 246, 242–245 (1986).
    [CrossRef]
  3. L. Poletto, A. Boscolo, G. Tondello, “Characterization of a charge-coupled-device detector in the 1100–0.14-nm (1-eV to 9-keV) spectral region,” Appl. Opt. 38, 29–36 (1999).
    [CrossRef]
  4. O. H. W. Siegmund, E. Everman, J. V. Vallerga, J. Sokolowski, M. Lampton, “Ultraviolet quantum detection efficiency of potassium bromide as an opaque photocathode applied to microchannel plates,” Appl. Opt. 26, 3607–3614 (1987).
    [CrossRef] [PubMed]
  5. R. M. Rideout, J. F. Pearson, G. W. Fraser, J. E. Lees, A. N. Brunton, N. P. Bannister, A. Kenter, R. Kraft, “Synchrotron measurements of the absolute x-ray quantum efficiency of Cs–I coated microchannel plates,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy IX, O. W. Siegmund, ed., Proc. SPIE3445, 384–392 (1998).
    [CrossRef]
  6. L. Poletto, A. Boscolo, M. G. Pelizzo, L. Placentino, G. Tondello, “Performances of a CCD camera from 1 to 1100 nm spectral region,” in Sensors, Sensor Systems, and Sensor Data Processing, O. Loffeld, ed., Proc. SPIE3100, 132–141 (1997).
    [CrossRef]
  7. T. Kita, T. Harada, N. Nakano, H. Kuroda, “Mechanically ruled aberration corrected concave grating for a flat-field grazing incidence spectrograph,” Appl. Opt. 22, 819–825 (1983).
    [CrossRef]
  8. I. Woo Choi, J. Ung Lee, C. Hee Nam, “Space-resolving flat-field extreme ultraviolet spectrograph system and its aberration analysis with wave-front aberration,” Appl. Opt. 36, 1457–1466 (1997).
    [CrossRef]
  9. T. Harada, K. Takahashi, H. Sakuma, A. Osyczka, “Optimum design of a grazing-incidence flat-field spectrograph with a spherical varied-line-space grating,” Appl. Opt. 38, 2743–2748 (1999).
    [CrossRef]
  10. J. Nordgren, N. Wasdahl, “Current status and future prospects for ultra-soft x-ray emission spectroscopy,” Phys. Scr. T31, 103–111 (1990).
    [CrossRef]
  11. T. Namioka, “Theory of concave grating,” J. Opt. Soc. Am. 49, 446–460 (1959).
    [CrossRef]
  12. T. Harada, T. Kita, “Mechanically ruled aberration-corrected concave gratings,” Appl. Opt. 19, 3987–3993 (1980).
    [CrossRef] [PubMed]
  13. P. Kirkpatrick, A. V. Baez, “Formation of optical images by x-rays,” J. Opt. Soc. Am. 38, 766–774 (1948).
    [CrossRef] [PubMed]
  14. F. L. Pedrotti, L. S. Pedrotti, Introduction to Optics (Prentice-Hall, Englewood Cliffs, N.J., 1987).
  15. P. Fan, Z. Zhang, J. Zhou, R. Jin, Z. Xu, X. Guo, “Stigmatic grazing-incidence flat-field grating spectrograph,” Appl. Opt. 31, 6720–6723 (1992).
    [CrossRef] [PubMed]
  16. M. Hettrick, S. Bowyer, “Variable line-space gratings: new designs for use in grazing incidence spectrometers,” Appl. Opt. 22, 3921–3932 (1983).
    [CrossRef] [PubMed]
  17. L. Poletto, G. Naletto, G. Tondello, “Optical design of a grazing incidence spectrometer with varied line-space flat grating for high-order harmonic diagnostic,” in Ultraviolet and X-Ray Detection, Spectroscopy, and Polarimetry III, S. Fineschi, ed., Proc. SPIE3764, 80–90 (1999).

1999 (2)

1997 (1)

1992 (1)

1990 (1)

J. Nordgren, N. Wasdahl, “Current status and future prospects for ultra-soft x-ray emission spectroscopy,” Phys. Scr. T31, 103–111 (1990).
[CrossRef]

1987 (1)

1986 (1)

J. Nordgren, R. Nyholm, “Design of a portable large spectral range grazing incidence instrument,” Nucl. Instrum. Meth. 246, 242–245 (1986).
[CrossRef]

1983 (2)

1980 (1)

1959 (1)

1948 (1)

Baez, A. V.

Bannister, N. P.

R. M. Rideout, J. F. Pearson, G. W. Fraser, J. E. Lees, A. N. Brunton, N. P. Bannister, A. Kenter, R. Kraft, “Synchrotron measurements of the absolute x-ray quantum efficiency of Cs–I coated microchannel plates,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy IX, O. W. Siegmund, ed., Proc. SPIE3445, 384–392 (1998).
[CrossRef]

Boscolo, A.

L. Poletto, A. Boscolo, G. Tondello, “Characterization of a charge-coupled-device detector in the 1100–0.14-nm (1-eV to 9-keV) spectral region,” Appl. Opt. 38, 29–36 (1999).
[CrossRef]

L. Poletto, A. Boscolo, M. G. Pelizzo, L. Placentino, G. Tondello, “Performances of a CCD camera from 1 to 1100 nm spectral region,” in Sensors, Sensor Systems, and Sensor Data Processing, O. Loffeld, ed., Proc. SPIE3100, 132–141 (1997).
[CrossRef]

Bowyer, S.

Brunton, A. N.

R. M. Rideout, J. F. Pearson, G. W. Fraser, J. E. Lees, A. N. Brunton, N. P. Bannister, A. Kenter, R. Kraft, “Synchrotron measurements of the absolute x-ray quantum efficiency of Cs–I coated microchannel plates,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy IX, O. W. Siegmund, ed., Proc. SPIE3445, 384–392 (1998).
[CrossRef]

Ederer, D. L.

J. A. R. Samson, D. L. Ederer, Vacuum Ultraviolet Spectroscopy II (Academic, San Diego, Calif., 1998).

Everman, E.

Fan, P.

Fraser, G. W.

R. M. Rideout, J. F. Pearson, G. W. Fraser, J. E. Lees, A. N. Brunton, N. P. Bannister, A. Kenter, R. Kraft, “Synchrotron measurements of the absolute x-ray quantum efficiency of Cs–I coated microchannel plates,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy IX, O. W. Siegmund, ed., Proc. SPIE3445, 384–392 (1998).
[CrossRef]

Guo, X.

Harada, T.

Hee Nam, C.

Hettrick, M.

Jin, R.

Kenter, A.

R. M. Rideout, J. F. Pearson, G. W. Fraser, J. E. Lees, A. N. Brunton, N. P. Bannister, A. Kenter, R. Kraft, “Synchrotron measurements of the absolute x-ray quantum efficiency of Cs–I coated microchannel plates,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy IX, O. W. Siegmund, ed., Proc. SPIE3445, 384–392 (1998).
[CrossRef]

Kirkpatrick, P.

Kita, T.

Kraft, R.

R. M. Rideout, J. F. Pearson, G. W. Fraser, J. E. Lees, A. N. Brunton, N. P. Bannister, A. Kenter, R. Kraft, “Synchrotron measurements of the absolute x-ray quantum efficiency of Cs–I coated microchannel plates,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy IX, O. W. Siegmund, ed., Proc. SPIE3445, 384–392 (1998).
[CrossRef]

Kuroda, H.

Lampton, M.

Lees, J. E.

R. M. Rideout, J. F. Pearson, G. W. Fraser, J. E. Lees, A. N. Brunton, N. P. Bannister, A. Kenter, R. Kraft, “Synchrotron measurements of the absolute x-ray quantum efficiency of Cs–I coated microchannel plates,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy IX, O. W. Siegmund, ed., Proc. SPIE3445, 384–392 (1998).
[CrossRef]

Nakano, N.

Naletto, G.

L. Poletto, G. Naletto, G. Tondello, “Optical design of a grazing incidence spectrometer with varied line-space flat grating for high-order harmonic diagnostic,” in Ultraviolet and X-Ray Detection, Spectroscopy, and Polarimetry III, S. Fineschi, ed., Proc. SPIE3764, 80–90 (1999).

Namioka, T.

Nordgren, J.

J. Nordgren, N. Wasdahl, “Current status and future prospects for ultra-soft x-ray emission spectroscopy,” Phys. Scr. T31, 103–111 (1990).
[CrossRef]

J. Nordgren, R. Nyholm, “Design of a portable large spectral range grazing incidence instrument,” Nucl. Instrum. Meth. 246, 242–245 (1986).
[CrossRef]

Nyholm, R.

J. Nordgren, R. Nyholm, “Design of a portable large spectral range grazing incidence instrument,” Nucl. Instrum. Meth. 246, 242–245 (1986).
[CrossRef]

Osyczka, A.

Pearson, J. F.

R. M. Rideout, J. F. Pearson, G. W. Fraser, J. E. Lees, A. N. Brunton, N. P. Bannister, A. Kenter, R. Kraft, “Synchrotron measurements of the absolute x-ray quantum efficiency of Cs–I coated microchannel plates,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy IX, O. W. Siegmund, ed., Proc. SPIE3445, 384–392 (1998).
[CrossRef]

Pedrotti, F. L.

F. L. Pedrotti, L. S. Pedrotti, Introduction to Optics (Prentice-Hall, Englewood Cliffs, N.J., 1987).

Pedrotti, L. S.

F. L. Pedrotti, L. S. Pedrotti, Introduction to Optics (Prentice-Hall, Englewood Cliffs, N.J., 1987).

Pelizzo, M. G.

L. Poletto, A. Boscolo, M. G. Pelizzo, L. Placentino, G. Tondello, “Performances of a CCD camera from 1 to 1100 nm spectral region,” in Sensors, Sensor Systems, and Sensor Data Processing, O. Loffeld, ed., Proc. SPIE3100, 132–141 (1997).
[CrossRef]

Placentino, L.

L. Poletto, A. Boscolo, M. G. Pelizzo, L. Placentino, G. Tondello, “Performances of a CCD camera from 1 to 1100 nm spectral region,” in Sensors, Sensor Systems, and Sensor Data Processing, O. Loffeld, ed., Proc. SPIE3100, 132–141 (1997).
[CrossRef]

Poletto, L.

L. Poletto, A. Boscolo, G. Tondello, “Characterization of a charge-coupled-device detector in the 1100–0.14-nm (1-eV to 9-keV) spectral region,” Appl. Opt. 38, 29–36 (1999).
[CrossRef]

L. Poletto, A. Boscolo, M. G. Pelizzo, L. Placentino, G. Tondello, “Performances of a CCD camera from 1 to 1100 nm spectral region,” in Sensors, Sensor Systems, and Sensor Data Processing, O. Loffeld, ed., Proc. SPIE3100, 132–141 (1997).
[CrossRef]

L. Poletto, G. Naletto, G. Tondello, “Optical design of a grazing incidence spectrometer with varied line-space flat grating for high-order harmonic diagnostic,” in Ultraviolet and X-Ray Detection, Spectroscopy, and Polarimetry III, S. Fineschi, ed., Proc. SPIE3764, 80–90 (1999).

Rideout, R. M.

R. M. Rideout, J. F. Pearson, G. W. Fraser, J. E. Lees, A. N. Brunton, N. P. Bannister, A. Kenter, R. Kraft, “Synchrotron measurements of the absolute x-ray quantum efficiency of Cs–I coated microchannel plates,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy IX, O. W. Siegmund, ed., Proc. SPIE3445, 384–392 (1998).
[CrossRef]

Sakuma, H.

Samson, J. A. R.

J. A. R. Samson, D. L. Ederer, Vacuum Ultraviolet Spectroscopy II (Academic, San Diego, Calif., 1998).

Siegmund, O. H. W.

Sokolowski, J.

Takahashi, K.

Tondello, G.

L. Poletto, A. Boscolo, G. Tondello, “Characterization of a charge-coupled-device detector in the 1100–0.14-nm (1-eV to 9-keV) spectral region,” Appl. Opt. 38, 29–36 (1999).
[CrossRef]

L. Poletto, G. Naletto, G. Tondello, “Optical design of a grazing incidence spectrometer with varied line-space flat grating for high-order harmonic diagnostic,” in Ultraviolet and X-Ray Detection, Spectroscopy, and Polarimetry III, S. Fineschi, ed., Proc. SPIE3764, 80–90 (1999).

L. Poletto, A. Boscolo, M. G. Pelizzo, L. Placentino, G. Tondello, “Performances of a CCD camera from 1 to 1100 nm spectral region,” in Sensors, Sensor Systems, and Sensor Data Processing, O. Loffeld, ed., Proc. SPIE3100, 132–141 (1997).
[CrossRef]

Ung Lee, J.

Vallerga, J. V.

Wasdahl, N.

J. Nordgren, N. Wasdahl, “Current status and future prospects for ultra-soft x-ray emission spectroscopy,” Phys. Scr. T31, 103–111 (1990).
[CrossRef]

Woo Choi, I.

Xu, Z.

Zhang, Z.

Zhou, J.

Appl. Opt. (8)

T. Harada, T. Kita, “Mechanically ruled aberration-corrected concave gratings,” Appl. Opt. 19, 3987–3993 (1980).
[CrossRef] [PubMed]

T. Kita, T. Harada, N. Nakano, H. Kuroda, “Mechanically ruled aberration corrected concave grating for a flat-field grazing incidence spectrograph,” Appl. Opt. 22, 819–825 (1983).
[CrossRef]

O. H. W. Siegmund, E. Everman, J. V. Vallerga, J. Sokolowski, M. Lampton, “Ultraviolet quantum detection efficiency of potassium bromide as an opaque photocathode applied to microchannel plates,” Appl. Opt. 26, 3607–3614 (1987).
[CrossRef] [PubMed]

P. Fan, Z. Zhang, J. Zhou, R. Jin, Z. Xu, X. Guo, “Stigmatic grazing-incidence flat-field grating spectrograph,” Appl. Opt. 31, 6720–6723 (1992).
[CrossRef] [PubMed]

I. Woo Choi, J. Ung Lee, C. Hee Nam, “Space-resolving flat-field extreme ultraviolet spectrograph system and its aberration analysis with wave-front aberration,” Appl. Opt. 36, 1457–1466 (1997).
[CrossRef]

L. Poletto, A. Boscolo, G. Tondello, “Characterization of a charge-coupled-device detector in the 1100–0.14-nm (1-eV to 9-keV) spectral region,” Appl. Opt. 38, 29–36 (1999).
[CrossRef]

T. Harada, K. Takahashi, H. Sakuma, A. Osyczka, “Optimum design of a grazing-incidence flat-field spectrograph with a spherical varied-line-space grating,” Appl. Opt. 38, 2743–2748 (1999).
[CrossRef]

M. Hettrick, S. Bowyer, “Variable line-space gratings: new designs for use in grazing incidence spectrometers,” Appl. Opt. 22, 3921–3932 (1983).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (2)

Nucl. Instrum. Meth. (1)

J. Nordgren, R. Nyholm, “Design of a portable large spectral range grazing incidence instrument,” Nucl. Instrum. Meth. 246, 242–245 (1986).
[CrossRef]

Phys. Scr. (1)

J. Nordgren, N. Wasdahl, “Current status and future prospects for ultra-soft x-ray emission spectroscopy,” Phys. Scr. T31, 103–111 (1990).
[CrossRef]

Other (5)

F. L. Pedrotti, L. S. Pedrotti, Introduction to Optics (Prentice-Hall, Englewood Cliffs, N.J., 1987).

L. Poletto, G. Naletto, G. Tondello, “Optical design of a grazing incidence spectrometer with varied line-space flat grating for high-order harmonic diagnostic,” in Ultraviolet and X-Ray Detection, Spectroscopy, and Polarimetry III, S. Fineschi, ed., Proc. SPIE3764, 80–90 (1999).

R. M. Rideout, J. F. Pearson, G. W. Fraser, J. E. Lees, A. N. Brunton, N. P. Bannister, A. Kenter, R. Kraft, “Synchrotron measurements of the absolute x-ray quantum efficiency of Cs–I coated microchannel plates,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy IX, O. W. Siegmund, ed., Proc. SPIE3445, 384–392 (1998).
[CrossRef]

L. Poletto, A. Boscolo, M. G. Pelizzo, L. Placentino, G. Tondello, “Performances of a CCD camera from 1 to 1100 nm spectral region,” in Sensors, Sensor Systems, and Sensor Data Processing, O. Loffeld, ed., Proc. SPIE3100, 132–141 (1997).
[CrossRef]

J. A. R. Samson, D. L. Ederer, Vacuum Ultraviolet Spectroscopy II (Academic, San Diego, Calif., 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Optical layout of the grazing-incidence SVLS grating.

Fig. 2
Fig. 2

Schematic of the grazing-incidence flat-field spectrometer: (a) with a single SVLS grating, (b) with a SVLS grating and a focusing mirror. The views refer to the plane of dispersion (spec) and to a plane perpendicular to the plane of dispersion (spat).

Fig. 3
Fig. 3

Optical layout of the grazing-incidence focusing mirror.

Fig. 4
Fig. 4

Spectral focal curves of the spectrometer in the 800–250 eV region (2400-line/mm grating) and in the 250–60-eV region (1200-line/mm grating).

Fig. 5
Fig. 5

Spatial angular acceptance with an additional focusing mirror and without a focusing mirror.

Fig. 6
Fig. 6

Ray-traced spectral images on the detector plane for (a) the 2400-line/mm and (b) the 1200-line/mm gratings; the entrance-slit size is fixed to 15 µm (in the spectral direction) × 200 µm.

Fig. 7
Fig. 7

Dispersion curve for the spectrometer.

Fig. 8
Fig. 8

Schematic three-dimensional view of the spectrometer with the 2400-line/mm SVLS grating. The detector is shown in the position for acquiring the 800–400-eV spectrum. The mirror parameters are p 0 = 100 mm, α0 = 88°, W = 150 mm, and R = 3100 mm; the grating parameters are d 0 = 1/2400 mm, α = 87°, W = 86 mm, and R = 10000 mm. The total length of the optical path is ∼1 m.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

F=AP+PB+nmλ,
n=1d0w+b2R w2+b3R2 w3+b4R3 w4,
F=r+r+wF10+w2F20+l2F02+w3F30+wl2F12+w4F40+w2l2F22+l4F40+Ow5,
Fij=Cij+mλd0 Mij.
Fw=0,  Fl=0,
sin α+sin β=mλd0;
cos2 αr+cos2 βr-cos α+cos βR+2sin α+sin βb2R=0.
p=xP-xA2+yP-yA21/2,
cos α=p2-p02+2p0Rm cos α02pRm,
cos γ=p2+p02-xP2-yP22pp0,
xA=p0 cos α0,  yA=-p0 sin α0,
xP=Rm-Rm2-yP21/2,  -W2yPW2,
y=x-xPtanα±θ+yP,
cos θ=1-xP2+yP22Rm2.
xB=q0 cos α0,  yB=q0 sin α0,
xB=q0tan α0+xP tanα±θ-yPtanα±θ+1tan α0-1,
yB=q0sin α0-xBtan α0,
Dima=max-w/2yPW/2xB-xB2+yB-yB21/2.
ΓG=γ-W/2γW/2 Rαdγ,
ΓG=Ddetp0+q0.

Metrics