Abstract

We describe the system of Tomographic Extreme Ultraviolet (EUV) SpectrographS (TESS) that are the primary instruments for the Tomographic Experiment using Radiative Recombinative Ionospheric EUV and Radio Sources (TERRIERS) satellite. The spectrographs were designed to make high-sensitivity {80 counts/s)/Rayleigh [one Rayleigh is equivalent to 106 photons/(4π str cm2 s)}, line-of-sight measurements of the oi 135.6- and 91.1-nm emissions suitable for tomographic inversion. The system consists of five spectrographs, four identical nightglow instruments (for redundancy and added sensitivity), and one instrument with a smaller aperture to reduce sensitivity and increase spectral resolution for daytime operation. Each instrument has a bandpass of 80–140 nm with approximately 2- and 1-nm resolution for the night and day instruments, respectively. They utilize microchannel-plate-based two-dimensional imaging detectors with wedge-and-strip anode readouts. The instruments were designed, fabricated, and calibrated at Boston University, and the TERRIERS satellite was launched on 18 May 1999 from Vandenberg Air Force Base, California.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. Burch, “IMAGE mission overview,” Space Sci. Rev. 91, 1–14 (2000).
    [CrossRef]
  2. D. M. Cotton, T. Cook, S. Chakrabarti, “A single element imaging spectrograph,” Appl. Opt. 33, 1958–1962 (1994).
    [CrossRef] [PubMed]
  3. P. A. Bernhardt, R. P. McCoy, K. F. Dymond, J. M. Picone, R. R. Meier, F. Kamalabadi, D. M. Cotton, S. Chakrabarti, J. S. Vickers, A. W. Stephan, L. Kersley, S. E. Pryse, I. K. Walker, J. A. T. Heaton, C. N. Mitchell, P. R. Straus, H. Na, C. Biswas, G. R. Kronschnalbl, T. D. Raymund, “Two dimensional mapping of the plasma density in the upper atmosphere with computerized ionospheric tomography (CIT),” Phys. Plasmas 5, 2010–2021 (1998).
    [CrossRef]
  4. J. Radon, “Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten,” Math.-Phys. Kl. 69, 262–277 (1917).
  5. F. Kamalabadi, W. C. Karl, J. L. Semeter, D. M. Cotton, T. A. Cook, S. Chakrabarti, “A statistical framework for space-based EUV ionospheric tomography,” Radio Sci. 34, 437–447 (1999).
    [CrossRef]
  6. E. S. Andreeva, A. V. Galinov, V. E. Kunitsyn, Y. A. Melnichenko, E. E. Tereschenko, M. A. Filimonov, S. M. Chernyakov, “Radio-tomographic reconstruction of ionization trough in the plasma near the Earth,” J. Exp. Theor. Phys. Lett. 52, 145–148 (1990).
  7. V. E. Kunitsyn, E. D. Tereshchenko, Tomography of the Ionosphere (Nauka, Moscow, 1991).
  8. V. E. Kunitsyn, E. D. Tereshchenko, “Tomography of the ionosphere,” Antennas Propag. Mag. 34(5) , 22–32 (1992).
    [CrossRef]
  9. S. E. Pryse, L. Kersley, “A preliminary experimental test of ionospheric tomography,” J. Atmos. Terr. Phys. 54, 1007–1012 (1992).
    [CrossRef]
  10. S. E. Pryse, L. Kersley, R. L. Rice, C. D. Russell, I. K. Walker, “Tomographic imaging of the ionospheric mid-latitude trough,” Ann. Geophys. 11, 144–149 (1993).
  11. T. D. Raymund, S. E. Pryse, L. Kersley, J. A. T. Heaton, “Tomographic reconstruction of ionospheric electron density with European incoherent scatter radar verification,” Radio Sci. 28, 811–817 (1993).
    [CrossRef]
  12. J. C. Foster, J. A. Klobuchar, V. E. Kunitsyn, E. D. Tereshchenko, E. S. Andreeva, M. J. Buonsanto, P. Fougere, J. M. Holt, B. Z. Khudukon, W. Pakula, T. D. Raymund, “Russian–American tomography experiment,” Int. J. Imaging Syst. Technol. 5, 148–159 (1994).
    [CrossRef]
  13. S. C. Solomon, P. B. Hayes, V. J. Abreu, “Tomographic inversion of satellite photometry,” Appl. Opt. 23, 3409–3414 (1984).
    [CrossRef] [PubMed]
  14. S. C. Solomon, P. B. Hayes, V. J. Abreu, “Tomographic inversion of satellite photometry. 2,” Appl. Opt. 23, 3409–3414 (1984).
    [CrossRef]
  15. I. C. McDade, E. J. Llewellyn, “Inversion techniques for recovering two-dimensional distributions of auroral emission rates from tomographic rocket photometer measurements,” Can. J. Phys. 69, 1059–1068 (1991).
    [CrossRef]
  16. I. C. McDade, N. D. Lloyd, E. J. Llewellyn, “A rocket tomography measurement of the N2+ 3914 Å emission rates within an auroral arc,” Planet. Space Sci. 39, 895–906 (1991).
    [CrossRef]
  17. R. A. Keski-Kuha, J. F. Osantowski, H. Herzig, J. S. Gum, A. R. Toft, “Normal incidence reflectance of ion beam deposited SiC films in the EUV,” Appl. Opt. 27, 2815–2816 (1988).
    [CrossRef] [PubMed]
  18. P. Jelinsky, S. Jelinsky, “Low reflectance EUV materials—a comparative study,” Appl. Opt. 26, 613–615 (1987).
    [CrossRef] [PubMed]
  19. J. Tom, D. M. Cotton, B. C. Bush, R. Chung, S. Chakrabarti, “Rigid lightweight optical bench for a spaceborne FUV spatial heterodyne interferometer,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy II, O. H. Siegmund, R. E. Roghschild, eds., Proc. SPIE1549, 302–307 (1991).
    [CrossRef]
  20. S. Chakrabarti, F. Paresce, S. Bowyer, R. Kimble, S. Kumar, “The extreme ultraviolet day airglow,” J. Geophys. Res. 88, 4898–4904 (1983).
    [CrossRef]
  21. S. Chakrabarti, R. Kimble, S. Bowyer, “Spectroscopy of the EUV (350–1400 Å) nightglow,” J. Geophys. Res. 89, 5660–5664 (1984).
    [CrossRef]
  22. R. F. Malina, K. R. Coburn, “Comparative lifetesting results for microchannel plates in windowless EUV photon detectors,” IEEE Trans. Nucl. Sci. NS-31, 404–407 (1984).
    [CrossRef]
  23. J. S. Vickers, D. M. Cotton, T. A. Cook, S. Chakrabarti, “Gas ionization solar spectral monitor (GISSMO),” Opt. Eng. 32, 3126–3131 (1993).
    [CrossRef]
  24. R. Hemphill, J. Edelstein, D. Rogers, “Chemical method to increase extreme ultraviolet microchannel-plate quantum efficiency,” Appl. Opt. 36, 1421–1426 (1997).
    [CrossRef] [PubMed]
  25. O. H. W. Siegmund, E. Everman, J. V. Vallerga, J. Sokolowski, M. Lampton, “Ultraviolet quantum detection efficiency of potassium bromide as an opaque photocathode applied to microchannel plates,” Appl. Opt. 26, 3607–3614 (1987).
    [CrossRef] [PubMed]
  26. T. Cook, V. Taylor, S. Chakrabarti, F. Kamalabadi are preparing a paper to be called “A high resolution ultraviolet spectral imaging system.”

2000 (1)

J. L. Burch, “IMAGE mission overview,” Space Sci. Rev. 91, 1–14 (2000).
[CrossRef]

1999 (1)

F. Kamalabadi, W. C. Karl, J. L. Semeter, D. M. Cotton, T. A. Cook, S. Chakrabarti, “A statistical framework for space-based EUV ionospheric tomography,” Radio Sci. 34, 437–447 (1999).
[CrossRef]

1998 (1)

P. A. Bernhardt, R. P. McCoy, K. F. Dymond, J. M. Picone, R. R. Meier, F. Kamalabadi, D. M. Cotton, S. Chakrabarti, J. S. Vickers, A. W. Stephan, L. Kersley, S. E. Pryse, I. K. Walker, J. A. T. Heaton, C. N. Mitchell, P. R. Straus, H. Na, C. Biswas, G. R. Kronschnalbl, T. D. Raymund, “Two dimensional mapping of the plasma density in the upper atmosphere with computerized ionospheric tomography (CIT),” Phys. Plasmas 5, 2010–2021 (1998).
[CrossRef]

1997 (1)

1994 (2)

D. M. Cotton, T. Cook, S. Chakrabarti, “A single element imaging spectrograph,” Appl. Opt. 33, 1958–1962 (1994).
[CrossRef] [PubMed]

J. C. Foster, J. A. Klobuchar, V. E. Kunitsyn, E. D. Tereshchenko, E. S. Andreeva, M. J. Buonsanto, P. Fougere, J. M. Holt, B. Z. Khudukon, W. Pakula, T. D. Raymund, “Russian–American tomography experiment,” Int. J. Imaging Syst. Technol. 5, 148–159 (1994).
[CrossRef]

1993 (3)

S. E. Pryse, L. Kersley, R. L. Rice, C. D. Russell, I. K. Walker, “Tomographic imaging of the ionospheric mid-latitude trough,” Ann. Geophys. 11, 144–149 (1993).

T. D. Raymund, S. E. Pryse, L. Kersley, J. A. T. Heaton, “Tomographic reconstruction of ionospheric electron density with European incoherent scatter radar verification,” Radio Sci. 28, 811–817 (1993).
[CrossRef]

J. S. Vickers, D. M. Cotton, T. A. Cook, S. Chakrabarti, “Gas ionization solar spectral monitor (GISSMO),” Opt. Eng. 32, 3126–3131 (1993).
[CrossRef]

1992 (2)

V. E. Kunitsyn, E. D. Tereshchenko, “Tomography of the ionosphere,” Antennas Propag. Mag. 34(5) , 22–32 (1992).
[CrossRef]

S. E. Pryse, L. Kersley, “A preliminary experimental test of ionospheric tomography,” J. Atmos. Terr. Phys. 54, 1007–1012 (1992).
[CrossRef]

1991 (2)

I. C. McDade, E. J. Llewellyn, “Inversion techniques for recovering two-dimensional distributions of auroral emission rates from tomographic rocket photometer measurements,” Can. J. Phys. 69, 1059–1068 (1991).
[CrossRef]

I. C. McDade, N. D. Lloyd, E. J. Llewellyn, “A rocket tomography measurement of the N2+ 3914 Å emission rates within an auroral arc,” Planet. Space Sci. 39, 895–906 (1991).
[CrossRef]

1990 (1)

E. S. Andreeva, A. V. Galinov, V. E. Kunitsyn, Y. A. Melnichenko, E. E. Tereschenko, M. A. Filimonov, S. M. Chernyakov, “Radio-tomographic reconstruction of ionization trough in the plasma near the Earth,” J. Exp. Theor. Phys. Lett. 52, 145–148 (1990).

1988 (1)

1987 (2)

1984 (4)

S. C. Solomon, P. B. Hayes, V. J. Abreu, “Tomographic inversion of satellite photometry,” Appl. Opt. 23, 3409–3414 (1984).
[CrossRef] [PubMed]

S. C. Solomon, P. B. Hayes, V. J. Abreu, “Tomographic inversion of satellite photometry. 2,” Appl. Opt. 23, 3409–3414 (1984).
[CrossRef]

S. Chakrabarti, R. Kimble, S. Bowyer, “Spectroscopy of the EUV (350–1400 Å) nightglow,” J. Geophys. Res. 89, 5660–5664 (1984).
[CrossRef]

R. F. Malina, K. R. Coburn, “Comparative lifetesting results for microchannel plates in windowless EUV photon detectors,” IEEE Trans. Nucl. Sci. NS-31, 404–407 (1984).
[CrossRef]

1983 (1)

S. Chakrabarti, F. Paresce, S. Bowyer, R. Kimble, S. Kumar, “The extreme ultraviolet day airglow,” J. Geophys. Res. 88, 4898–4904 (1983).
[CrossRef]

1917 (1)

J. Radon, “Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten,” Math.-Phys. Kl. 69, 262–277 (1917).

Abreu, V. J.

Andreeva, E. S.

J. C. Foster, J. A. Klobuchar, V. E. Kunitsyn, E. D. Tereshchenko, E. S. Andreeva, M. J. Buonsanto, P. Fougere, J. M. Holt, B. Z. Khudukon, W. Pakula, T. D. Raymund, “Russian–American tomography experiment,” Int. J. Imaging Syst. Technol. 5, 148–159 (1994).
[CrossRef]

E. S. Andreeva, A. V. Galinov, V. E. Kunitsyn, Y. A. Melnichenko, E. E. Tereschenko, M. A. Filimonov, S. M. Chernyakov, “Radio-tomographic reconstruction of ionization trough in the plasma near the Earth,” J. Exp. Theor. Phys. Lett. 52, 145–148 (1990).

Bernhardt, P. A.

P. A. Bernhardt, R. P. McCoy, K. F. Dymond, J. M. Picone, R. R. Meier, F. Kamalabadi, D. M. Cotton, S. Chakrabarti, J. S. Vickers, A. W. Stephan, L. Kersley, S. E. Pryse, I. K. Walker, J. A. T. Heaton, C. N. Mitchell, P. R. Straus, H. Na, C. Biswas, G. R. Kronschnalbl, T. D. Raymund, “Two dimensional mapping of the plasma density in the upper atmosphere with computerized ionospheric tomography (CIT),” Phys. Plasmas 5, 2010–2021 (1998).
[CrossRef]

Biswas, C.

P. A. Bernhardt, R. P. McCoy, K. F. Dymond, J. M. Picone, R. R. Meier, F. Kamalabadi, D. M. Cotton, S. Chakrabarti, J. S. Vickers, A. W. Stephan, L. Kersley, S. E. Pryse, I. K. Walker, J. A. T. Heaton, C. N. Mitchell, P. R. Straus, H. Na, C. Biswas, G. R. Kronschnalbl, T. D. Raymund, “Two dimensional mapping of the plasma density in the upper atmosphere with computerized ionospheric tomography (CIT),” Phys. Plasmas 5, 2010–2021 (1998).
[CrossRef]

Bowyer, S.

S. Chakrabarti, R. Kimble, S. Bowyer, “Spectroscopy of the EUV (350–1400 Å) nightglow,” J. Geophys. Res. 89, 5660–5664 (1984).
[CrossRef]

S. Chakrabarti, F. Paresce, S. Bowyer, R. Kimble, S. Kumar, “The extreme ultraviolet day airglow,” J. Geophys. Res. 88, 4898–4904 (1983).
[CrossRef]

Buonsanto, M. J.

J. C. Foster, J. A. Klobuchar, V. E. Kunitsyn, E. D. Tereshchenko, E. S. Andreeva, M. J. Buonsanto, P. Fougere, J. M. Holt, B. Z. Khudukon, W. Pakula, T. D. Raymund, “Russian–American tomography experiment,” Int. J. Imaging Syst. Technol. 5, 148–159 (1994).
[CrossRef]

Burch, J. L.

J. L. Burch, “IMAGE mission overview,” Space Sci. Rev. 91, 1–14 (2000).
[CrossRef]

Bush, B. C.

J. Tom, D. M. Cotton, B. C. Bush, R. Chung, S. Chakrabarti, “Rigid lightweight optical bench for a spaceborne FUV spatial heterodyne interferometer,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy II, O. H. Siegmund, R. E. Roghschild, eds., Proc. SPIE1549, 302–307 (1991).
[CrossRef]

Chakrabarti, S.

F. Kamalabadi, W. C. Karl, J. L. Semeter, D. M. Cotton, T. A. Cook, S. Chakrabarti, “A statistical framework for space-based EUV ionospheric tomography,” Radio Sci. 34, 437–447 (1999).
[CrossRef]

P. A. Bernhardt, R. P. McCoy, K. F. Dymond, J. M. Picone, R. R. Meier, F. Kamalabadi, D. M. Cotton, S. Chakrabarti, J. S. Vickers, A. W. Stephan, L. Kersley, S. E. Pryse, I. K. Walker, J. A. T. Heaton, C. N. Mitchell, P. R. Straus, H. Na, C. Biswas, G. R. Kronschnalbl, T. D. Raymund, “Two dimensional mapping of the plasma density in the upper atmosphere with computerized ionospheric tomography (CIT),” Phys. Plasmas 5, 2010–2021 (1998).
[CrossRef]

D. M. Cotton, T. Cook, S. Chakrabarti, “A single element imaging spectrograph,” Appl. Opt. 33, 1958–1962 (1994).
[CrossRef] [PubMed]

J. S. Vickers, D. M. Cotton, T. A. Cook, S. Chakrabarti, “Gas ionization solar spectral monitor (GISSMO),” Opt. Eng. 32, 3126–3131 (1993).
[CrossRef]

S. Chakrabarti, R. Kimble, S. Bowyer, “Spectroscopy of the EUV (350–1400 Å) nightglow,” J. Geophys. Res. 89, 5660–5664 (1984).
[CrossRef]

S. Chakrabarti, F. Paresce, S. Bowyer, R. Kimble, S. Kumar, “The extreme ultraviolet day airglow,” J. Geophys. Res. 88, 4898–4904 (1983).
[CrossRef]

J. Tom, D. M. Cotton, B. C. Bush, R. Chung, S. Chakrabarti, “Rigid lightweight optical bench for a spaceborne FUV spatial heterodyne interferometer,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy II, O. H. Siegmund, R. E. Roghschild, eds., Proc. SPIE1549, 302–307 (1991).
[CrossRef]

T. Cook, V. Taylor, S. Chakrabarti, F. Kamalabadi are preparing a paper to be called “A high resolution ultraviolet spectral imaging system.”

Chernyakov, S. M.

E. S. Andreeva, A. V. Galinov, V. E. Kunitsyn, Y. A. Melnichenko, E. E. Tereschenko, M. A. Filimonov, S. M. Chernyakov, “Radio-tomographic reconstruction of ionization trough in the plasma near the Earth,” J. Exp. Theor. Phys. Lett. 52, 145–148 (1990).

Chung, R.

J. Tom, D. M. Cotton, B. C. Bush, R. Chung, S. Chakrabarti, “Rigid lightweight optical bench for a spaceborne FUV spatial heterodyne interferometer,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy II, O. H. Siegmund, R. E. Roghschild, eds., Proc. SPIE1549, 302–307 (1991).
[CrossRef]

Coburn, K. R.

R. F. Malina, K. R. Coburn, “Comparative lifetesting results for microchannel plates in windowless EUV photon detectors,” IEEE Trans. Nucl. Sci. NS-31, 404–407 (1984).
[CrossRef]

Cook, T.

D. M. Cotton, T. Cook, S. Chakrabarti, “A single element imaging spectrograph,” Appl. Opt. 33, 1958–1962 (1994).
[CrossRef] [PubMed]

T. Cook, V. Taylor, S. Chakrabarti, F. Kamalabadi are preparing a paper to be called “A high resolution ultraviolet spectral imaging system.”

Cook, T. A.

F. Kamalabadi, W. C. Karl, J. L. Semeter, D. M. Cotton, T. A. Cook, S. Chakrabarti, “A statistical framework for space-based EUV ionospheric tomography,” Radio Sci. 34, 437–447 (1999).
[CrossRef]

J. S. Vickers, D. M. Cotton, T. A. Cook, S. Chakrabarti, “Gas ionization solar spectral monitor (GISSMO),” Opt. Eng. 32, 3126–3131 (1993).
[CrossRef]

Cotton, D. M.

F. Kamalabadi, W. C. Karl, J. L. Semeter, D. M. Cotton, T. A. Cook, S. Chakrabarti, “A statistical framework for space-based EUV ionospheric tomography,” Radio Sci. 34, 437–447 (1999).
[CrossRef]

P. A. Bernhardt, R. P. McCoy, K. F. Dymond, J. M. Picone, R. R. Meier, F. Kamalabadi, D. M. Cotton, S. Chakrabarti, J. S. Vickers, A. W. Stephan, L. Kersley, S. E. Pryse, I. K. Walker, J. A. T. Heaton, C. N. Mitchell, P. R. Straus, H. Na, C. Biswas, G. R. Kronschnalbl, T. D. Raymund, “Two dimensional mapping of the plasma density in the upper atmosphere with computerized ionospheric tomography (CIT),” Phys. Plasmas 5, 2010–2021 (1998).
[CrossRef]

D. M. Cotton, T. Cook, S. Chakrabarti, “A single element imaging spectrograph,” Appl. Opt. 33, 1958–1962 (1994).
[CrossRef] [PubMed]

J. S. Vickers, D. M. Cotton, T. A. Cook, S. Chakrabarti, “Gas ionization solar spectral monitor (GISSMO),” Opt. Eng. 32, 3126–3131 (1993).
[CrossRef]

J. Tom, D. M. Cotton, B. C. Bush, R. Chung, S. Chakrabarti, “Rigid lightweight optical bench for a spaceborne FUV spatial heterodyne interferometer,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy II, O. H. Siegmund, R. E. Roghschild, eds., Proc. SPIE1549, 302–307 (1991).
[CrossRef]

Dymond, K. F.

P. A. Bernhardt, R. P. McCoy, K. F. Dymond, J. M. Picone, R. R. Meier, F. Kamalabadi, D. M. Cotton, S. Chakrabarti, J. S. Vickers, A. W. Stephan, L. Kersley, S. E. Pryse, I. K. Walker, J. A. T. Heaton, C. N. Mitchell, P. R. Straus, H. Na, C. Biswas, G. R. Kronschnalbl, T. D. Raymund, “Two dimensional mapping of the plasma density in the upper atmosphere with computerized ionospheric tomography (CIT),” Phys. Plasmas 5, 2010–2021 (1998).
[CrossRef]

Edelstein, J.

Everman, E.

Filimonov, M. A.

E. S. Andreeva, A. V. Galinov, V. E. Kunitsyn, Y. A. Melnichenko, E. E. Tereschenko, M. A. Filimonov, S. M. Chernyakov, “Radio-tomographic reconstruction of ionization trough in the plasma near the Earth,” J. Exp. Theor. Phys. Lett. 52, 145–148 (1990).

Foster, J. C.

J. C. Foster, J. A. Klobuchar, V. E. Kunitsyn, E. D. Tereshchenko, E. S. Andreeva, M. J. Buonsanto, P. Fougere, J. M. Holt, B. Z. Khudukon, W. Pakula, T. D. Raymund, “Russian–American tomography experiment,” Int. J. Imaging Syst. Technol. 5, 148–159 (1994).
[CrossRef]

Fougere, P.

J. C. Foster, J. A. Klobuchar, V. E. Kunitsyn, E. D. Tereshchenko, E. S. Andreeva, M. J. Buonsanto, P. Fougere, J. M. Holt, B. Z. Khudukon, W. Pakula, T. D. Raymund, “Russian–American tomography experiment,” Int. J. Imaging Syst. Technol. 5, 148–159 (1994).
[CrossRef]

Galinov, A. V.

E. S. Andreeva, A. V. Galinov, V. E. Kunitsyn, Y. A. Melnichenko, E. E. Tereschenko, M. A. Filimonov, S. M. Chernyakov, “Radio-tomographic reconstruction of ionization trough in the plasma near the Earth,” J. Exp. Theor. Phys. Lett. 52, 145–148 (1990).

Gum, J. S.

Hayes, P. B.

Heaton, J. A. T.

P. A. Bernhardt, R. P. McCoy, K. F. Dymond, J. M. Picone, R. R. Meier, F. Kamalabadi, D. M. Cotton, S. Chakrabarti, J. S. Vickers, A. W. Stephan, L. Kersley, S. E. Pryse, I. K. Walker, J. A. T. Heaton, C. N. Mitchell, P. R. Straus, H. Na, C. Biswas, G. R. Kronschnalbl, T. D. Raymund, “Two dimensional mapping of the plasma density in the upper atmosphere with computerized ionospheric tomography (CIT),” Phys. Plasmas 5, 2010–2021 (1998).
[CrossRef]

T. D. Raymund, S. E. Pryse, L. Kersley, J. A. T. Heaton, “Tomographic reconstruction of ionospheric electron density with European incoherent scatter radar verification,” Radio Sci. 28, 811–817 (1993).
[CrossRef]

Hemphill, R.

Herzig, H.

Holt, J. M.

J. C. Foster, J. A. Klobuchar, V. E. Kunitsyn, E. D. Tereshchenko, E. S. Andreeva, M. J. Buonsanto, P. Fougere, J. M. Holt, B. Z. Khudukon, W. Pakula, T. D. Raymund, “Russian–American tomography experiment,” Int. J. Imaging Syst. Technol. 5, 148–159 (1994).
[CrossRef]

Jelinsky, P.

Jelinsky, S.

Kamalabadi, F.

F. Kamalabadi, W. C. Karl, J. L. Semeter, D. M. Cotton, T. A. Cook, S. Chakrabarti, “A statistical framework for space-based EUV ionospheric tomography,” Radio Sci. 34, 437–447 (1999).
[CrossRef]

P. A. Bernhardt, R. P. McCoy, K. F. Dymond, J. M. Picone, R. R. Meier, F. Kamalabadi, D. M. Cotton, S. Chakrabarti, J. S. Vickers, A. W. Stephan, L. Kersley, S. E. Pryse, I. K. Walker, J. A. T. Heaton, C. N. Mitchell, P. R. Straus, H. Na, C. Biswas, G. R. Kronschnalbl, T. D. Raymund, “Two dimensional mapping of the plasma density in the upper atmosphere with computerized ionospheric tomography (CIT),” Phys. Plasmas 5, 2010–2021 (1998).
[CrossRef]

T. Cook, V. Taylor, S. Chakrabarti, F. Kamalabadi are preparing a paper to be called “A high resolution ultraviolet spectral imaging system.”

Karl, W. C.

F. Kamalabadi, W. C. Karl, J. L. Semeter, D. M. Cotton, T. A. Cook, S. Chakrabarti, “A statistical framework for space-based EUV ionospheric tomography,” Radio Sci. 34, 437–447 (1999).
[CrossRef]

Kersley, L.

P. A. Bernhardt, R. P. McCoy, K. F. Dymond, J. M. Picone, R. R. Meier, F. Kamalabadi, D. M. Cotton, S. Chakrabarti, J. S. Vickers, A. W. Stephan, L. Kersley, S. E. Pryse, I. K. Walker, J. A. T. Heaton, C. N. Mitchell, P. R. Straus, H. Na, C. Biswas, G. R. Kronschnalbl, T. D. Raymund, “Two dimensional mapping of the plasma density in the upper atmosphere with computerized ionospheric tomography (CIT),” Phys. Plasmas 5, 2010–2021 (1998).
[CrossRef]

S. E. Pryse, L. Kersley, R. L. Rice, C. D. Russell, I. K. Walker, “Tomographic imaging of the ionospheric mid-latitude trough,” Ann. Geophys. 11, 144–149 (1993).

T. D. Raymund, S. E. Pryse, L. Kersley, J. A. T. Heaton, “Tomographic reconstruction of ionospheric electron density with European incoherent scatter radar verification,” Radio Sci. 28, 811–817 (1993).
[CrossRef]

S. E. Pryse, L. Kersley, “A preliminary experimental test of ionospheric tomography,” J. Atmos. Terr. Phys. 54, 1007–1012 (1992).
[CrossRef]

Keski-Kuha, R. A.

Khudukon, B. Z.

J. C. Foster, J. A. Klobuchar, V. E. Kunitsyn, E. D. Tereshchenko, E. S. Andreeva, M. J. Buonsanto, P. Fougere, J. M. Holt, B. Z. Khudukon, W. Pakula, T. D. Raymund, “Russian–American tomography experiment,” Int. J. Imaging Syst. Technol. 5, 148–159 (1994).
[CrossRef]

Kimble, R.

S. Chakrabarti, R. Kimble, S. Bowyer, “Spectroscopy of the EUV (350–1400 Å) nightglow,” J. Geophys. Res. 89, 5660–5664 (1984).
[CrossRef]

S. Chakrabarti, F. Paresce, S. Bowyer, R. Kimble, S. Kumar, “The extreme ultraviolet day airglow,” J. Geophys. Res. 88, 4898–4904 (1983).
[CrossRef]

Klobuchar, J. A.

J. C. Foster, J. A. Klobuchar, V. E. Kunitsyn, E. D. Tereshchenko, E. S. Andreeva, M. J. Buonsanto, P. Fougere, J. M. Holt, B. Z. Khudukon, W. Pakula, T. D. Raymund, “Russian–American tomography experiment,” Int. J. Imaging Syst. Technol. 5, 148–159 (1994).
[CrossRef]

Kronschnalbl, G. R.

P. A. Bernhardt, R. P. McCoy, K. F. Dymond, J. M. Picone, R. R. Meier, F. Kamalabadi, D. M. Cotton, S. Chakrabarti, J. S. Vickers, A. W. Stephan, L. Kersley, S. E. Pryse, I. K. Walker, J. A. T. Heaton, C. N. Mitchell, P. R. Straus, H. Na, C. Biswas, G. R. Kronschnalbl, T. D. Raymund, “Two dimensional mapping of the plasma density in the upper atmosphere with computerized ionospheric tomography (CIT),” Phys. Plasmas 5, 2010–2021 (1998).
[CrossRef]

Kumar, S.

S. Chakrabarti, F. Paresce, S. Bowyer, R. Kimble, S. Kumar, “The extreme ultraviolet day airglow,” J. Geophys. Res. 88, 4898–4904 (1983).
[CrossRef]

Kunitsyn, V. E.

J. C. Foster, J. A. Klobuchar, V. E. Kunitsyn, E. D. Tereshchenko, E. S. Andreeva, M. J. Buonsanto, P. Fougere, J. M. Holt, B. Z. Khudukon, W. Pakula, T. D. Raymund, “Russian–American tomography experiment,” Int. J. Imaging Syst. Technol. 5, 148–159 (1994).
[CrossRef]

V. E. Kunitsyn, E. D. Tereshchenko, “Tomography of the ionosphere,” Antennas Propag. Mag. 34(5) , 22–32 (1992).
[CrossRef]

E. S. Andreeva, A. V. Galinov, V. E. Kunitsyn, Y. A. Melnichenko, E. E. Tereschenko, M. A. Filimonov, S. M. Chernyakov, “Radio-tomographic reconstruction of ionization trough in the plasma near the Earth,” J. Exp. Theor. Phys. Lett. 52, 145–148 (1990).

V. E. Kunitsyn, E. D. Tereshchenko, Tomography of the Ionosphere (Nauka, Moscow, 1991).

Lampton, M.

Llewellyn, E. J.

I. C. McDade, E. J. Llewellyn, “Inversion techniques for recovering two-dimensional distributions of auroral emission rates from tomographic rocket photometer measurements,” Can. J. Phys. 69, 1059–1068 (1991).
[CrossRef]

I. C. McDade, N. D. Lloyd, E. J. Llewellyn, “A rocket tomography measurement of the N2+ 3914 Å emission rates within an auroral arc,” Planet. Space Sci. 39, 895–906 (1991).
[CrossRef]

Lloyd, N. D.

I. C. McDade, N. D. Lloyd, E. J. Llewellyn, “A rocket tomography measurement of the N2+ 3914 Å emission rates within an auroral arc,” Planet. Space Sci. 39, 895–906 (1991).
[CrossRef]

Malina, R. F.

R. F. Malina, K. R. Coburn, “Comparative lifetesting results for microchannel plates in windowless EUV photon detectors,” IEEE Trans. Nucl. Sci. NS-31, 404–407 (1984).
[CrossRef]

McCoy, R. P.

P. A. Bernhardt, R. P. McCoy, K. F. Dymond, J. M. Picone, R. R. Meier, F. Kamalabadi, D. M. Cotton, S. Chakrabarti, J. S. Vickers, A. W. Stephan, L. Kersley, S. E. Pryse, I. K. Walker, J. A. T. Heaton, C. N. Mitchell, P. R. Straus, H. Na, C. Biswas, G. R. Kronschnalbl, T. D. Raymund, “Two dimensional mapping of the plasma density in the upper atmosphere with computerized ionospheric tomography (CIT),” Phys. Plasmas 5, 2010–2021 (1998).
[CrossRef]

McDade, I. C.

I. C. McDade, N. D. Lloyd, E. J. Llewellyn, “A rocket tomography measurement of the N2+ 3914 Å emission rates within an auroral arc,” Planet. Space Sci. 39, 895–906 (1991).
[CrossRef]

I. C. McDade, E. J. Llewellyn, “Inversion techniques for recovering two-dimensional distributions of auroral emission rates from tomographic rocket photometer measurements,” Can. J. Phys. 69, 1059–1068 (1991).
[CrossRef]

Meier, R. R.

P. A. Bernhardt, R. P. McCoy, K. F. Dymond, J. M. Picone, R. R. Meier, F. Kamalabadi, D. M. Cotton, S. Chakrabarti, J. S. Vickers, A. W. Stephan, L. Kersley, S. E. Pryse, I. K. Walker, J. A. T. Heaton, C. N. Mitchell, P. R. Straus, H. Na, C. Biswas, G. R. Kronschnalbl, T. D. Raymund, “Two dimensional mapping of the plasma density in the upper atmosphere with computerized ionospheric tomography (CIT),” Phys. Plasmas 5, 2010–2021 (1998).
[CrossRef]

Melnichenko, Y. A.

E. S. Andreeva, A. V. Galinov, V. E. Kunitsyn, Y. A. Melnichenko, E. E. Tereschenko, M. A. Filimonov, S. M. Chernyakov, “Radio-tomographic reconstruction of ionization trough in the plasma near the Earth,” J. Exp. Theor. Phys. Lett. 52, 145–148 (1990).

Mitchell, C. N.

P. A. Bernhardt, R. P. McCoy, K. F. Dymond, J. M. Picone, R. R. Meier, F. Kamalabadi, D. M. Cotton, S. Chakrabarti, J. S. Vickers, A. W. Stephan, L. Kersley, S. E. Pryse, I. K. Walker, J. A. T. Heaton, C. N. Mitchell, P. R. Straus, H. Na, C. Biswas, G. R. Kronschnalbl, T. D. Raymund, “Two dimensional mapping of the plasma density in the upper atmosphere with computerized ionospheric tomography (CIT),” Phys. Plasmas 5, 2010–2021 (1998).
[CrossRef]

Na, H.

P. A. Bernhardt, R. P. McCoy, K. F. Dymond, J. M. Picone, R. R. Meier, F. Kamalabadi, D. M. Cotton, S. Chakrabarti, J. S. Vickers, A. W. Stephan, L. Kersley, S. E. Pryse, I. K. Walker, J. A. T. Heaton, C. N. Mitchell, P. R. Straus, H. Na, C. Biswas, G. R. Kronschnalbl, T. D. Raymund, “Two dimensional mapping of the plasma density in the upper atmosphere with computerized ionospheric tomography (CIT),” Phys. Plasmas 5, 2010–2021 (1998).
[CrossRef]

Osantowski, J. F.

Pakula, W.

J. C. Foster, J. A. Klobuchar, V. E. Kunitsyn, E. D. Tereshchenko, E. S. Andreeva, M. J. Buonsanto, P. Fougere, J. M. Holt, B. Z. Khudukon, W. Pakula, T. D. Raymund, “Russian–American tomography experiment,” Int. J. Imaging Syst. Technol. 5, 148–159 (1994).
[CrossRef]

Paresce, F.

S. Chakrabarti, F. Paresce, S. Bowyer, R. Kimble, S. Kumar, “The extreme ultraviolet day airglow,” J. Geophys. Res. 88, 4898–4904 (1983).
[CrossRef]

Picone, J. M.

P. A. Bernhardt, R. P. McCoy, K. F. Dymond, J. M. Picone, R. R. Meier, F. Kamalabadi, D. M. Cotton, S. Chakrabarti, J. S. Vickers, A. W. Stephan, L. Kersley, S. E. Pryse, I. K. Walker, J. A. T. Heaton, C. N. Mitchell, P. R. Straus, H. Na, C. Biswas, G. R. Kronschnalbl, T. D. Raymund, “Two dimensional mapping of the plasma density in the upper atmosphere with computerized ionospheric tomography (CIT),” Phys. Plasmas 5, 2010–2021 (1998).
[CrossRef]

Pryse, S. E.

P. A. Bernhardt, R. P. McCoy, K. F. Dymond, J. M. Picone, R. R. Meier, F. Kamalabadi, D. M. Cotton, S. Chakrabarti, J. S. Vickers, A. W. Stephan, L. Kersley, S. E. Pryse, I. K. Walker, J. A. T. Heaton, C. N. Mitchell, P. R. Straus, H. Na, C. Biswas, G. R. Kronschnalbl, T. D. Raymund, “Two dimensional mapping of the plasma density in the upper atmosphere with computerized ionospheric tomography (CIT),” Phys. Plasmas 5, 2010–2021 (1998).
[CrossRef]

S. E. Pryse, L. Kersley, R. L. Rice, C. D. Russell, I. K. Walker, “Tomographic imaging of the ionospheric mid-latitude trough,” Ann. Geophys. 11, 144–149 (1993).

T. D. Raymund, S. E. Pryse, L. Kersley, J. A. T. Heaton, “Tomographic reconstruction of ionospheric electron density with European incoherent scatter radar verification,” Radio Sci. 28, 811–817 (1993).
[CrossRef]

S. E. Pryse, L. Kersley, “A preliminary experimental test of ionospheric tomography,” J. Atmos. Terr. Phys. 54, 1007–1012 (1992).
[CrossRef]

Radon, J.

J. Radon, “Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten,” Math.-Phys. Kl. 69, 262–277 (1917).

Raymund, T. D.

P. A. Bernhardt, R. P. McCoy, K. F. Dymond, J. M. Picone, R. R. Meier, F. Kamalabadi, D. M. Cotton, S. Chakrabarti, J. S. Vickers, A. W. Stephan, L. Kersley, S. E. Pryse, I. K. Walker, J. A. T. Heaton, C. N. Mitchell, P. R. Straus, H. Na, C. Biswas, G. R. Kronschnalbl, T. D. Raymund, “Two dimensional mapping of the plasma density in the upper atmosphere with computerized ionospheric tomography (CIT),” Phys. Plasmas 5, 2010–2021 (1998).
[CrossRef]

J. C. Foster, J. A. Klobuchar, V. E. Kunitsyn, E. D. Tereshchenko, E. S. Andreeva, M. J. Buonsanto, P. Fougere, J. M. Holt, B. Z. Khudukon, W. Pakula, T. D. Raymund, “Russian–American tomography experiment,” Int. J. Imaging Syst. Technol. 5, 148–159 (1994).
[CrossRef]

T. D. Raymund, S. E. Pryse, L. Kersley, J. A. T. Heaton, “Tomographic reconstruction of ionospheric electron density with European incoherent scatter radar verification,” Radio Sci. 28, 811–817 (1993).
[CrossRef]

Rice, R. L.

S. E. Pryse, L. Kersley, R. L. Rice, C. D. Russell, I. K. Walker, “Tomographic imaging of the ionospheric mid-latitude trough,” Ann. Geophys. 11, 144–149 (1993).

Rogers, D.

Russell, C. D.

S. E. Pryse, L. Kersley, R. L. Rice, C. D. Russell, I. K. Walker, “Tomographic imaging of the ionospheric mid-latitude trough,” Ann. Geophys. 11, 144–149 (1993).

Semeter, J. L.

F. Kamalabadi, W. C. Karl, J. L. Semeter, D. M. Cotton, T. A. Cook, S. Chakrabarti, “A statistical framework for space-based EUV ionospheric tomography,” Radio Sci. 34, 437–447 (1999).
[CrossRef]

Siegmund, O. H. W.

Sokolowski, J.

Solomon, S. C.

Stephan, A. W.

P. A. Bernhardt, R. P. McCoy, K. F. Dymond, J. M. Picone, R. R. Meier, F. Kamalabadi, D. M. Cotton, S. Chakrabarti, J. S. Vickers, A. W. Stephan, L. Kersley, S. E. Pryse, I. K. Walker, J. A. T. Heaton, C. N. Mitchell, P. R. Straus, H. Na, C. Biswas, G. R. Kronschnalbl, T. D. Raymund, “Two dimensional mapping of the plasma density in the upper atmosphere with computerized ionospheric tomography (CIT),” Phys. Plasmas 5, 2010–2021 (1998).
[CrossRef]

Straus, P. R.

P. A. Bernhardt, R. P. McCoy, K. F. Dymond, J. M. Picone, R. R. Meier, F. Kamalabadi, D. M. Cotton, S. Chakrabarti, J. S. Vickers, A. W. Stephan, L. Kersley, S. E. Pryse, I. K. Walker, J. A. T. Heaton, C. N. Mitchell, P. R. Straus, H. Na, C. Biswas, G. R. Kronschnalbl, T. D. Raymund, “Two dimensional mapping of the plasma density in the upper atmosphere with computerized ionospheric tomography (CIT),” Phys. Plasmas 5, 2010–2021 (1998).
[CrossRef]

Taylor, V.

T. Cook, V. Taylor, S. Chakrabarti, F. Kamalabadi are preparing a paper to be called “A high resolution ultraviolet spectral imaging system.”

Tereschenko, E. E.

E. S. Andreeva, A. V. Galinov, V. E. Kunitsyn, Y. A. Melnichenko, E. E. Tereschenko, M. A. Filimonov, S. M. Chernyakov, “Radio-tomographic reconstruction of ionization trough in the plasma near the Earth,” J. Exp. Theor. Phys. Lett. 52, 145–148 (1990).

Tereshchenko, E. D.

J. C. Foster, J. A. Klobuchar, V. E. Kunitsyn, E. D. Tereshchenko, E. S. Andreeva, M. J. Buonsanto, P. Fougere, J. M. Holt, B. Z. Khudukon, W. Pakula, T. D. Raymund, “Russian–American tomography experiment,” Int. J. Imaging Syst. Technol. 5, 148–159 (1994).
[CrossRef]

V. E. Kunitsyn, E. D. Tereshchenko, “Tomography of the ionosphere,” Antennas Propag. Mag. 34(5) , 22–32 (1992).
[CrossRef]

V. E. Kunitsyn, E. D. Tereshchenko, Tomography of the Ionosphere (Nauka, Moscow, 1991).

Toft, A. R.

Tom, J.

J. Tom, D. M. Cotton, B. C. Bush, R. Chung, S. Chakrabarti, “Rigid lightweight optical bench for a spaceborne FUV spatial heterodyne interferometer,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy II, O. H. Siegmund, R. E. Roghschild, eds., Proc. SPIE1549, 302–307 (1991).
[CrossRef]

Vallerga, J. V.

Vickers, J. S.

P. A. Bernhardt, R. P. McCoy, K. F. Dymond, J. M. Picone, R. R. Meier, F. Kamalabadi, D. M. Cotton, S. Chakrabarti, J. S. Vickers, A. W. Stephan, L. Kersley, S. E. Pryse, I. K. Walker, J. A. T. Heaton, C. N. Mitchell, P. R. Straus, H. Na, C. Biswas, G. R. Kronschnalbl, T. D. Raymund, “Two dimensional mapping of the plasma density in the upper atmosphere with computerized ionospheric tomography (CIT),” Phys. Plasmas 5, 2010–2021 (1998).
[CrossRef]

J. S. Vickers, D. M. Cotton, T. A. Cook, S. Chakrabarti, “Gas ionization solar spectral monitor (GISSMO),” Opt. Eng. 32, 3126–3131 (1993).
[CrossRef]

Walker, I. K.

P. A. Bernhardt, R. P. McCoy, K. F. Dymond, J. M. Picone, R. R. Meier, F. Kamalabadi, D. M. Cotton, S. Chakrabarti, J. S. Vickers, A. W. Stephan, L. Kersley, S. E. Pryse, I. K. Walker, J. A. T. Heaton, C. N. Mitchell, P. R. Straus, H. Na, C. Biswas, G. R. Kronschnalbl, T. D. Raymund, “Two dimensional mapping of the plasma density in the upper atmosphere with computerized ionospheric tomography (CIT),” Phys. Plasmas 5, 2010–2021 (1998).
[CrossRef]

S. E. Pryse, L. Kersley, R. L. Rice, C. D. Russell, I. K. Walker, “Tomographic imaging of the ionospheric mid-latitude trough,” Ann. Geophys. 11, 144–149 (1993).

Ann. Geophys. (1)

S. E. Pryse, L. Kersley, R. L. Rice, C. D. Russell, I. K. Walker, “Tomographic imaging of the ionospheric mid-latitude trough,” Ann. Geophys. 11, 144–149 (1993).

Antennas Propag. Mag. (1)

V. E. Kunitsyn, E. D. Tereshchenko, “Tomography of the ionosphere,” Antennas Propag. Mag. 34(5) , 22–32 (1992).
[CrossRef]

Appl. Opt. (7)

Can. J. Phys. (1)

I. C. McDade, E. J. Llewellyn, “Inversion techniques for recovering two-dimensional distributions of auroral emission rates from tomographic rocket photometer measurements,” Can. J. Phys. 69, 1059–1068 (1991).
[CrossRef]

IEEE Trans. Nucl. Sci. (1)

R. F. Malina, K. R. Coburn, “Comparative lifetesting results for microchannel plates in windowless EUV photon detectors,” IEEE Trans. Nucl. Sci. NS-31, 404–407 (1984).
[CrossRef]

Int. J. Imaging Syst. Technol. (1)

J. C. Foster, J. A. Klobuchar, V. E. Kunitsyn, E. D. Tereshchenko, E. S. Andreeva, M. J. Buonsanto, P. Fougere, J. M. Holt, B. Z. Khudukon, W. Pakula, T. D. Raymund, “Russian–American tomography experiment,” Int. J. Imaging Syst. Technol. 5, 148–159 (1994).
[CrossRef]

J. Atmos. Terr. Phys. (1)

S. E. Pryse, L. Kersley, “A preliminary experimental test of ionospheric tomography,” J. Atmos. Terr. Phys. 54, 1007–1012 (1992).
[CrossRef]

J. Exp. Theor. Phys. Lett. (1)

E. S. Andreeva, A. V. Galinov, V. E. Kunitsyn, Y. A. Melnichenko, E. E. Tereschenko, M. A. Filimonov, S. M. Chernyakov, “Radio-tomographic reconstruction of ionization trough in the plasma near the Earth,” J. Exp. Theor. Phys. Lett. 52, 145–148 (1990).

J. Geophys. Res. (2)

S. Chakrabarti, F. Paresce, S. Bowyer, R. Kimble, S. Kumar, “The extreme ultraviolet day airglow,” J. Geophys. Res. 88, 4898–4904 (1983).
[CrossRef]

S. Chakrabarti, R. Kimble, S. Bowyer, “Spectroscopy of the EUV (350–1400 Å) nightglow,” J. Geophys. Res. 89, 5660–5664 (1984).
[CrossRef]

Math.-Phys. Kl. (1)

J. Radon, “Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten,” Math.-Phys. Kl. 69, 262–277 (1917).

Opt. Eng. (1)

J. S. Vickers, D. M. Cotton, T. A. Cook, S. Chakrabarti, “Gas ionization solar spectral monitor (GISSMO),” Opt. Eng. 32, 3126–3131 (1993).
[CrossRef]

Phys. Plasmas (1)

P. A. Bernhardt, R. P. McCoy, K. F. Dymond, J. M. Picone, R. R. Meier, F. Kamalabadi, D. M. Cotton, S. Chakrabarti, J. S. Vickers, A. W. Stephan, L. Kersley, S. E. Pryse, I. K. Walker, J. A. T. Heaton, C. N. Mitchell, P. R. Straus, H. Na, C. Biswas, G. R. Kronschnalbl, T. D. Raymund, “Two dimensional mapping of the plasma density in the upper atmosphere with computerized ionospheric tomography (CIT),” Phys. Plasmas 5, 2010–2021 (1998).
[CrossRef]

Planet. Space Sci. (1)

I. C. McDade, N. D. Lloyd, E. J. Llewellyn, “A rocket tomography measurement of the N2+ 3914 Å emission rates within an auroral arc,” Planet. Space Sci. 39, 895–906 (1991).
[CrossRef]

Radio Sci. (2)

F. Kamalabadi, W. C. Karl, J. L. Semeter, D. M. Cotton, T. A. Cook, S. Chakrabarti, “A statistical framework for space-based EUV ionospheric tomography,” Radio Sci. 34, 437–447 (1999).
[CrossRef]

T. D. Raymund, S. E. Pryse, L. Kersley, J. A. T. Heaton, “Tomographic reconstruction of ionospheric electron density with European incoherent scatter radar verification,” Radio Sci. 28, 811–817 (1993).
[CrossRef]

Space Sci. Rev. (1)

J. L. Burch, “IMAGE mission overview,” Space Sci. Rev. 91, 1–14 (2000).
[CrossRef]

Other (3)

T. Cook, V. Taylor, S. Chakrabarti, F. Kamalabadi are preparing a paper to be called “A high resolution ultraviolet spectral imaging system.”

J. Tom, D. M. Cotton, B. C. Bush, R. Chung, S. Chakrabarti, “Rigid lightweight optical bench for a spaceborne FUV spatial heterodyne interferometer,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy II, O. H. Siegmund, R. E. Roghschild, eds., Proc. SPIE1549, 302–307 (1991).
[CrossRef]

V. E. Kunitsyn, E. D. Tereshchenko, Tomography of the Ionosphere (Nauka, Moscow, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Viewing geometry for TESS aboard TERRIERS. For simplicity we have assumed a plane-parallel ionosphere. (a) Viewing angles from the spacecraft as it moves from right to left. If one assumes that the ionosphere radiates at only one point (position 3 just below the orbit), the response recorded in (b) is obtained. The arrow indicates an operation, which in this case is a Radon transform.

Fig. 2
Fig. 2

TERRIERS payload layout. The payload spins about an axis parallel to the Y axis. Two night spectrographs and the day spectrograph view along the -X axis, whereas the remaining two night instruments view along the +X axis. HVPS, high-voltage power supplies; GISSMO, Gas Ionization Solar Spectral Monitor, a secondary instrument; PPI, payload power interface; CSA/PPA, charge-sensitive amplifiers–pulse-position analyzers.

Fig. 3
Fig. 3

Optical layout for the TESS. (a) Three-dimensional view of the design, showing the size in centimeters. (b) Top view, illustrating the dispersion plane. (c) Side view, depicting the imaging capability.

Fig. 4
Fig. 4

Day TESS simulations. (a) Diagram of the focal plane of the dayglow TESS. To illustrate the spectral resolution, we have superimposed a ray trace of three fictitious doublets separated by 1.0 nm. The source consisted of 25 line sources 10° wide and equally spaced 0.4° apart in the imaging direction. The circle indicates the active area of the detector. (b) X and Y histograms for this ray trace, assuming a 150-µm detector resolution.

Fig. 5
Fig. 5

Night TESS simulations. Same as Fig. 4, except for the night instrument design and fictitious doublets separated by 2.0 nm.

Fig. 6
Fig. 6

Initial sensitivities [in counts per second (cps)/Rayleigh] of the four night instruments (TESS A–TESS D) compared with theoretical calculations. The data compare well with the theory except at longer wavelengths (>120 nm) at which the detector quantum efficiencies dropped off faster than did the nominal KBr measurements.

Fig. 7
Fig. 7

Initial sensitivity of the day TESS instrument compared with theoretical calculations. The discrepancy between the data and calculations was due to reduced quantum efficiencies in the detector.

Fig. 8
Fig. 8

TESS readout electronics block diagram. Note that each set of electronics supports two detectors. W, S, Z, wedge, strip, and zig, respectively.

Fig. 9
Fig. 9

Block diagram of the TESS calibration setup. The instrument was placed upon a four-axis manipulator such that light entered its slits for various points in its FOV. The light source was a hollow-cathode discharge lamp feeding a grazing-incidence monochromator. The beam was monitored by a photodiode mounted upon an arm that could swing in and out of the beam.

Fig. 10
Fig. 10

Blaze efficiency of a grating in the TESS for several wavelengths at the 0 and the -1 orders. The curves indicate calculated blaze efficiency curves for comparison. The data indicate a good blaze (as indicated by the depressed zero-order efficiency) near 80 nm. We computed the measured efficiencies by using reflectivity measurements and calculated reflectivities of SiC. The error bars are ±1 σ errors that are due to statistics in the reflectivity measurements of the grating.

Fig. 11
Fig. 11

FOV data for one element of the TESS at 115.2 nm. The ±1σ error bars that are due to counting statistics are much smaller than the symbols shown.

Fig. 12
Fig. 12

TESS spectrograph image of the back wall of the vacuum chamber illuminated by a hollow gas discharge source running with oxygen. We used the key emission features (labeled in nanometers) to confirm the spectral resolution of the instruments and map out distortions in the detector and electronics.

Tables (2)

Tables Icon

Table 1 TERRIERS Measurement Requirements

Tables Icon

Table 2 TESS Parameters

Metrics