Abstract

The first instrumental setup, to our knowledge, that is capable of recording in a few hours the time-resolved Fourier transform (TRFT) interferograms of gas-phase spectra that cover several thousands of inverse centimeters with spectral- and time-resolution limits that are equal, at best, to 2.5 × 10-3 cm-1 and 2 ns, respectively, is reported. It was developed on the stepping-mode Connes-type interferometer of the Laboratoire de Photophysique Moléculaire Université de Paris Sud. Also, for the first time, to our knowledge, these high-resolution TRFT spectra, illustrated with the Doppler-limited emission spectra of the N 2 transitions (BA) and (B′–B) between 5500 and 11 000 cm-1 and of the atomic Ar lines between 1800 and 4000 cm-1, are recorded in the infrared spectral range. To obtain identical results that have the same signal-to-noise ratio, we should have increased the recording time of our unique previous high-information TRFT spectra by approximately 50,000. In other words, one hour is now long enough to obtain what would previously have required six years to record.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. E. Murphy, H. Sakai, “Application of Fourier spectroscopy technique to the study of relaxation phenomena,” in Proceedings of the Aspen International Conference on Fourier Spectroscopy, G. A. Vanasse, A. T. Stair, D. J. Baker, eds. (U.S. Air Force Cambridge Research Laboratory, Bedford, Mass., 1970), , pp. 301–304.
  2. R. E. Murphy, F. H. Cook, H. Sakai, “Time-resolved Fourier spectroscopy,” J. Opt. Soc. Am 65, 600–604 (1975).
    [CrossRef]
  3. R. A. Palmer, G. D. Smith, P. Chen, “Breaking the nanosecond barrier in FTIR time-resolved spectroscopy,” Vib. Spectrosc. 19, 131–141 (1999).
    [CrossRef]
  4. J. Lindner, R. A. Loomis, J. J. Klaassen, S. R. Leone, “A laser photolysis/time-resolved Fourier transform infrared emission study of OH(X2Π, v) produced in the reaction of alkyl radicals with O(3Π),” J. Chem. Phys. 108, 1944–1952 (1998).
    [CrossRef]
  5. C. D. Pibel, E. Sirota, J. Brenner, H.-L. Dai, “Nanosecond time-resolved FTIR emission spectroscopy: monitoring the energy distribution of highly vibrationally excited molecules during collisional deactivation,” J. Chem. Phys. 108, 1297–1300 (1998).
    [CrossRef]
  6. S. Vasenkov, H. Frei, “Time-resolved FT–infrared spectroscopy of visible light-induced alkene oxidation by O2 in a zeolite,” J. Phys. Chem. B 102, 8177–8182 (1998).
    [CrossRef]
  7. P. R. Griffiths, B. L. Hirsche, C. J. Manning, “Ultra-rapid-scanning Fourier transform infrared spectroscopy,” Vib. Spectrosc. 19, 165–176 (1999).
    [CrossRef]
  8. H. Weidner, R. E. Peale, “Event-locked time-resolved Fourier spectroscopy,” Appl. Spectrosc. 51, 1106–1112 (1997).
    [CrossRef]
  9. K. Masutani, H. Sugisawa, A. Yokota, Y. Furukawa, M. Tasumi, “Asynchronous time-resolved Fourier transform infrared spectroscopy,” Appl. Spectrosc. 46, 560–567 (1992).
    [CrossRef]
  10. M. Tasumi, H. Toriumi, W. G. Fateley, eds., Contributions from the International Symposium on Advanced Infrared Spectroscopy (AIRS), Appl. Spectrosc. 47(9), 1297–1539 (1993).
  11. G. Guelachvili, “Light side story,” in Proceedings of the Twelfth International Conference on Fourier Transform Spectroscopy, K. Itoh, M. Tasumi, eds. (Waseda U. Press, Tokyo, 1999), pp. 15–24.
  12. G. Durry, G. Guelachvili, “Wide band high resolution time-resolved spectroscopy,” Vib. Spectrosc. 8, 255–262 (1995).
    [CrossRef]
  13. G. Durry, G. Guelachvili, “High-information time-resolved step-scan Fourier interferometer,” Appl. Opt. 34, 1971–1981 (1995).
    [CrossRef] [PubMed]
  14. G. Durry, “Spectroscopie par transformation de Fourier résolue dans le temps,” Thèse de Doctoraten Science (Spécialité Optique et Photonique, n. d’ordre 3149, Université de Paris-Sud, Paris, 1994).
  15. G. Durry, G. Guelachvili, “N2 (B–A) time-resolved Fourier transform emission spectra from a pulsed microwave discharge,” J. Mol. Spectrosc. 168, 82–91 (1994).
    [CrossRef]
  16. N. Picqué, G. Guelachvili, “High-resolution multimodulation Fourier transform spectroscopy,” Appl. Opt. 38, 1224–1230 (1999).
    [CrossRef]
  17. N. Picqué, “Espèces moléculaires. Approches nouvelles par spectroscopie de Fourier,” Thèse de Doctoraten Science (Spécialité Lasers et Matière, n. d’ordre 5594, Université de Paris-Sud, Paris, 1998).
  18. G. Guelachvili, “Distortion-free interferograms in Fourier transform spectroscopy with nonlinear detectors,” Appl. Opt. 25, 4644–4648 (1986).
    [CrossRef]
  19. A. Faye, N. Picqué, Q. Kou, R. Farrenq, G. Guelachvili, “Time-resolved Doppler-limited Fourier transform emission spectra of 14N2,” presented at the Sixteenth Colloquium on High Resolution Molecular Spectroscopy, Dijon, France, 6–10 September 1999, Poster M1.
  20. N. Picqué, G. Guelachvili, “Instrumental advances in high information time-resolved Fourier transform spectroscopy,” in Proceedings of the Twelfth International Conference on Fourier Transform Spectroscopy, K. Itoh, M. Tasumi, eds. (Waseda U. Press, Tokyo, 1999), pp. 223–224.

1999 (3)

R. A. Palmer, G. D. Smith, P. Chen, “Breaking the nanosecond barrier in FTIR time-resolved spectroscopy,” Vib. Spectrosc. 19, 131–141 (1999).
[CrossRef]

P. R. Griffiths, B. L. Hirsche, C. J. Manning, “Ultra-rapid-scanning Fourier transform infrared spectroscopy,” Vib. Spectrosc. 19, 165–176 (1999).
[CrossRef]

N. Picqué, G. Guelachvili, “High-resolution multimodulation Fourier transform spectroscopy,” Appl. Opt. 38, 1224–1230 (1999).
[CrossRef]

1998 (3)

J. Lindner, R. A. Loomis, J. J. Klaassen, S. R. Leone, “A laser photolysis/time-resolved Fourier transform infrared emission study of OH(X2Π, v) produced in the reaction of alkyl radicals with O(3Π),” J. Chem. Phys. 108, 1944–1952 (1998).
[CrossRef]

C. D. Pibel, E. Sirota, J. Brenner, H.-L. Dai, “Nanosecond time-resolved FTIR emission spectroscopy: monitoring the energy distribution of highly vibrationally excited molecules during collisional deactivation,” J. Chem. Phys. 108, 1297–1300 (1998).
[CrossRef]

S. Vasenkov, H. Frei, “Time-resolved FT–infrared spectroscopy of visible light-induced alkene oxidation by O2 in a zeolite,” J. Phys. Chem. B 102, 8177–8182 (1998).
[CrossRef]

1997 (1)

1995 (2)

G. Durry, G. Guelachvili, “High-information time-resolved step-scan Fourier interferometer,” Appl. Opt. 34, 1971–1981 (1995).
[CrossRef] [PubMed]

G. Durry, G. Guelachvili, “Wide band high resolution time-resolved spectroscopy,” Vib. Spectrosc. 8, 255–262 (1995).
[CrossRef]

1994 (1)

G. Durry, G. Guelachvili, “N2 (B–A) time-resolved Fourier transform emission spectra from a pulsed microwave discharge,” J. Mol. Spectrosc. 168, 82–91 (1994).
[CrossRef]

1993 (1)

1992 (1)

1986 (1)

1975 (1)

R. E. Murphy, F. H. Cook, H. Sakai, “Time-resolved Fourier spectroscopy,” J. Opt. Soc. Am 65, 600–604 (1975).
[CrossRef]

Brenner, J.

C. D. Pibel, E. Sirota, J. Brenner, H.-L. Dai, “Nanosecond time-resolved FTIR emission spectroscopy: monitoring the energy distribution of highly vibrationally excited molecules during collisional deactivation,” J. Chem. Phys. 108, 1297–1300 (1998).
[CrossRef]

Chen, P.

R. A. Palmer, G. D. Smith, P. Chen, “Breaking the nanosecond barrier in FTIR time-resolved spectroscopy,” Vib. Spectrosc. 19, 131–141 (1999).
[CrossRef]

Cook, F. H.

R. E. Murphy, F. H. Cook, H. Sakai, “Time-resolved Fourier spectroscopy,” J. Opt. Soc. Am 65, 600–604 (1975).
[CrossRef]

Dai, H.-L.

C. D. Pibel, E. Sirota, J. Brenner, H.-L. Dai, “Nanosecond time-resolved FTIR emission spectroscopy: monitoring the energy distribution of highly vibrationally excited molecules during collisional deactivation,” J. Chem. Phys. 108, 1297–1300 (1998).
[CrossRef]

Durry, G.

G. Durry, G. Guelachvili, “Wide band high resolution time-resolved spectroscopy,” Vib. Spectrosc. 8, 255–262 (1995).
[CrossRef]

G. Durry, G. Guelachvili, “High-information time-resolved step-scan Fourier interferometer,” Appl. Opt. 34, 1971–1981 (1995).
[CrossRef] [PubMed]

G. Durry, G. Guelachvili, “N2 (B–A) time-resolved Fourier transform emission spectra from a pulsed microwave discharge,” J. Mol. Spectrosc. 168, 82–91 (1994).
[CrossRef]

G. Durry, “Spectroscopie par transformation de Fourier résolue dans le temps,” Thèse de Doctoraten Science (Spécialité Optique et Photonique, n. d’ordre 3149, Université de Paris-Sud, Paris, 1994).

Farrenq, R.

A. Faye, N. Picqué, Q. Kou, R. Farrenq, G. Guelachvili, “Time-resolved Doppler-limited Fourier transform emission spectra of 14N2,” presented at the Sixteenth Colloquium on High Resolution Molecular Spectroscopy, Dijon, France, 6–10 September 1999, Poster M1.

Faye, A.

A. Faye, N. Picqué, Q. Kou, R. Farrenq, G. Guelachvili, “Time-resolved Doppler-limited Fourier transform emission spectra of 14N2,” presented at the Sixteenth Colloquium on High Resolution Molecular Spectroscopy, Dijon, France, 6–10 September 1999, Poster M1.

Frei, H.

S. Vasenkov, H. Frei, “Time-resolved FT–infrared spectroscopy of visible light-induced alkene oxidation by O2 in a zeolite,” J. Phys. Chem. B 102, 8177–8182 (1998).
[CrossRef]

Furukawa, Y.

Griffiths, P. R.

P. R. Griffiths, B. L. Hirsche, C. J. Manning, “Ultra-rapid-scanning Fourier transform infrared spectroscopy,” Vib. Spectrosc. 19, 165–176 (1999).
[CrossRef]

Guelachvili, G.

N. Picqué, G. Guelachvili, “High-resolution multimodulation Fourier transform spectroscopy,” Appl. Opt. 38, 1224–1230 (1999).
[CrossRef]

G. Durry, G. Guelachvili, “Wide band high resolution time-resolved spectroscopy,” Vib. Spectrosc. 8, 255–262 (1995).
[CrossRef]

G. Durry, G. Guelachvili, “High-information time-resolved step-scan Fourier interferometer,” Appl. Opt. 34, 1971–1981 (1995).
[CrossRef] [PubMed]

G. Durry, G. Guelachvili, “N2 (B–A) time-resolved Fourier transform emission spectra from a pulsed microwave discharge,” J. Mol. Spectrosc. 168, 82–91 (1994).
[CrossRef]

G. Guelachvili, “Distortion-free interferograms in Fourier transform spectroscopy with nonlinear detectors,” Appl. Opt. 25, 4644–4648 (1986).
[CrossRef]

N. Picqué, G. Guelachvili, “Instrumental advances in high information time-resolved Fourier transform spectroscopy,” in Proceedings of the Twelfth International Conference on Fourier Transform Spectroscopy, K. Itoh, M. Tasumi, eds. (Waseda U. Press, Tokyo, 1999), pp. 223–224.

G. Guelachvili, “Light side story,” in Proceedings of the Twelfth International Conference on Fourier Transform Spectroscopy, K. Itoh, M. Tasumi, eds. (Waseda U. Press, Tokyo, 1999), pp. 15–24.

A. Faye, N. Picqué, Q. Kou, R. Farrenq, G. Guelachvili, “Time-resolved Doppler-limited Fourier transform emission spectra of 14N2,” presented at the Sixteenth Colloquium on High Resolution Molecular Spectroscopy, Dijon, France, 6–10 September 1999, Poster M1.

Hirsche, B. L.

P. R. Griffiths, B. L. Hirsche, C. J. Manning, “Ultra-rapid-scanning Fourier transform infrared spectroscopy,” Vib. Spectrosc. 19, 165–176 (1999).
[CrossRef]

Klaassen, J. J.

J. Lindner, R. A. Loomis, J. J. Klaassen, S. R. Leone, “A laser photolysis/time-resolved Fourier transform infrared emission study of OH(X2Π, v) produced in the reaction of alkyl radicals with O(3Π),” J. Chem. Phys. 108, 1944–1952 (1998).
[CrossRef]

Kou, Q.

A. Faye, N. Picqué, Q. Kou, R. Farrenq, G. Guelachvili, “Time-resolved Doppler-limited Fourier transform emission spectra of 14N2,” presented at the Sixteenth Colloquium on High Resolution Molecular Spectroscopy, Dijon, France, 6–10 September 1999, Poster M1.

Leone, S. R.

J. Lindner, R. A. Loomis, J. J. Klaassen, S. R. Leone, “A laser photolysis/time-resolved Fourier transform infrared emission study of OH(X2Π, v) produced in the reaction of alkyl radicals with O(3Π),” J. Chem. Phys. 108, 1944–1952 (1998).
[CrossRef]

Lindner, J.

J. Lindner, R. A. Loomis, J. J. Klaassen, S. R. Leone, “A laser photolysis/time-resolved Fourier transform infrared emission study of OH(X2Π, v) produced in the reaction of alkyl radicals with O(3Π),” J. Chem. Phys. 108, 1944–1952 (1998).
[CrossRef]

Loomis, R. A.

J. Lindner, R. A. Loomis, J. J. Klaassen, S. R. Leone, “A laser photolysis/time-resolved Fourier transform infrared emission study of OH(X2Π, v) produced in the reaction of alkyl radicals with O(3Π),” J. Chem. Phys. 108, 1944–1952 (1998).
[CrossRef]

Manning, C. J.

P. R. Griffiths, B. L. Hirsche, C. J. Manning, “Ultra-rapid-scanning Fourier transform infrared spectroscopy,” Vib. Spectrosc. 19, 165–176 (1999).
[CrossRef]

Masutani, K.

Murphy, R. E.

R. E. Murphy, F. H. Cook, H. Sakai, “Time-resolved Fourier spectroscopy,” J. Opt. Soc. Am 65, 600–604 (1975).
[CrossRef]

R. E. Murphy, H. Sakai, “Application of Fourier spectroscopy technique to the study of relaxation phenomena,” in Proceedings of the Aspen International Conference on Fourier Spectroscopy, G. A. Vanasse, A. T. Stair, D. J. Baker, eds. (U.S. Air Force Cambridge Research Laboratory, Bedford, Mass., 1970), , pp. 301–304.

Palmer, R. A.

R. A. Palmer, G. D. Smith, P. Chen, “Breaking the nanosecond barrier in FTIR time-resolved spectroscopy,” Vib. Spectrosc. 19, 131–141 (1999).
[CrossRef]

Peale, R. E.

Pibel, C. D.

C. D. Pibel, E. Sirota, J. Brenner, H.-L. Dai, “Nanosecond time-resolved FTIR emission spectroscopy: monitoring the energy distribution of highly vibrationally excited molecules during collisional deactivation,” J. Chem. Phys. 108, 1297–1300 (1998).
[CrossRef]

Picqué, N.

N. Picqué, G. Guelachvili, “High-resolution multimodulation Fourier transform spectroscopy,” Appl. Opt. 38, 1224–1230 (1999).
[CrossRef]

N. Picqué, G. Guelachvili, “Instrumental advances in high information time-resolved Fourier transform spectroscopy,” in Proceedings of the Twelfth International Conference on Fourier Transform Spectroscopy, K. Itoh, M. Tasumi, eds. (Waseda U. Press, Tokyo, 1999), pp. 223–224.

N. Picqué, “Espèces moléculaires. Approches nouvelles par spectroscopie de Fourier,” Thèse de Doctoraten Science (Spécialité Lasers et Matière, n. d’ordre 5594, Université de Paris-Sud, Paris, 1998).

A. Faye, N. Picqué, Q. Kou, R. Farrenq, G. Guelachvili, “Time-resolved Doppler-limited Fourier transform emission spectra of 14N2,” presented at the Sixteenth Colloquium on High Resolution Molecular Spectroscopy, Dijon, France, 6–10 September 1999, Poster M1.

Sakai, H.

R. E. Murphy, F. H. Cook, H. Sakai, “Time-resolved Fourier spectroscopy,” J. Opt. Soc. Am 65, 600–604 (1975).
[CrossRef]

R. E. Murphy, H. Sakai, “Application of Fourier spectroscopy technique to the study of relaxation phenomena,” in Proceedings of the Aspen International Conference on Fourier Spectroscopy, G. A. Vanasse, A. T. Stair, D. J. Baker, eds. (U.S. Air Force Cambridge Research Laboratory, Bedford, Mass., 1970), , pp. 301–304.

Sirota, E.

C. D. Pibel, E. Sirota, J. Brenner, H.-L. Dai, “Nanosecond time-resolved FTIR emission spectroscopy: monitoring the energy distribution of highly vibrationally excited molecules during collisional deactivation,” J. Chem. Phys. 108, 1297–1300 (1998).
[CrossRef]

Smith, G. D.

R. A. Palmer, G. D. Smith, P. Chen, “Breaking the nanosecond barrier in FTIR time-resolved spectroscopy,” Vib. Spectrosc. 19, 131–141 (1999).
[CrossRef]

Sugisawa, H.

Tasumi, M.

Vasenkov, S.

S. Vasenkov, H. Frei, “Time-resolved FT–infrared spectroscopy of visible light-induced alkene oxidation by O2 in a zeolite,” J. Phys. Chem. B 102, 8177–8182 (1998).
[CrossRef]

Weidner, H.

Yokota, A.

Appl. Opt. (3)

Appl. Spectrosc. (3)

J. Chem. Phys. (2)

J. Lindner, R. A. Loomis, J. J. Klaassen, S. R. Leone, “A laser photolysis/time-resolved Fourier transform infrared emission study of OH(X2Π, v) produced in the reaction of alkyl radicals with O(3Π),” J. Chem. Phys. 108, 1944–1952 (1998).
[CrossRef]

C. D. Pibel, E. Sirota, J. Brenner, H.-L. Dai, “Nanosecond time-resolved FTIR emission spectroscopy: monitoring the energy distribution of highly vibrationally excited molecules during collisional deactivation,” J. Chem. Phys. 108, 1297–1300 (1998).
[CrossRef]

J. Mol. Spectrosc. (1)

G. Durry, G. Guelachvili, “N2 (B–A) time-resolved Fourier transform emission spectra from a pulsed microwave discharge,” J. Mol. Spectrosc. 168, 82–91 (1994).
[CrossRef]

J. Opt. Soc. Am (1)

R. E. Murphy, F. H. Cook, H. Sakai, “Time-resolved Fourier spectroscopy,” J. Opt. Soc. Am 65, 600–604 (1975).
[CrossRef]

J. Phys. Chem. B (1)

S. Vasenkov, H. Frei, “Time-resolved FT–infrared spectroscopy of visible light-induced alkene oxidation by O2 in a zeolite,” J. Phys. Chem. B 102, 8177–8182 (1998).
[CrossRef]

Vib. Spectrosc. (3)

P. R. Griffiths, B. L. Hirsche, C. J. Manning, “Ultra-rapid-scanning Fourier transform infrared spectroscopy,” Vib. Spectrosc. 19, 165–176 (1999).
[CrossRef]

R. A. Palmer, G. D. Smith, P. Chen, “Breaking the nanosecond barrier in FTIR time-resolved spectroscopy,” Vib. Spectrosc. 19, 131–141 (1999).
[CrossRef]

G. Durry, G. Guelachvili, “Wide band high resolution time-resolved spectroscopy,” Vib. Spectrosc. 8, 255–262 (1995).
[CrossRef]

Other (6)

G. Durry, “Spectroscopie par transformation de Fourier résolue dans le temps,” Thèse de Doctoraten Science (Spécialité Optique et Photonique, n. d’ordre 3149, Université de Paris-Sud, Paris, 1994).

G. Guelachvili, “Light side story,” in Proceedings of the Twelfth International Conference on Fourier Transform Spectroscopy, K. Itoh, M. Tasumi, eds. (Waseda U. Press, Tokyo, 1999), pp. 15–24.

N. Picqué, “Espèces moléculaires. Approches nouvelles par spectroscopie de Fourier,” Thèse de Doctoraten Science (Spécialité Lasers et Matière, n. d’ordre 5594, Université de Paris-Sud, Paris, 1998).

A. Faye, N. Picqué, Q. Kou, R. Farrenq, G. Guelachvili, “Time-resolved Doppler-limited Fourier transform emission spectra of 14N2,” presented at the Sixteenth Colloquium on High Resolution Molecular Spectroscopy, Dijon, France, 6–10 September 1999, Poster M1.

N. Picqué, G. Guelachvili, “Instrumental advances in high information time-resolved Fourier transform spectroscopy,” in Proceedings of the Twelfth International Conference on Fourier Transform Spectroscopy, K. Itoh, M. Tasumi, eds. (Waseda U. Press, Tokyo, 1999), pp. 223–224.

R. E. Murphy, H. Sakai, “Application of Fourier spectroscopy technique to the study of relaxation phenomena,” in Proceedings of the Aspen International Conference on Fourier Spectroscopy, G. A. Vanasse, A. T. Stair, D. J. Baker, eds. (U.S. Air Force Cambridge Research Laboratory, Bedford, Mass., 1970), , pp. 301–304.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the TRFT experiment. See Subsection 2.B for details.

Fig. 2
Fig. 2

Upper diagram: Steady-state white-light source time component of an interferogram expanded around 5 µm as obtained with an InSb detector. This test source was used to validate the dynamic-range solutions because the intensity of the interferogram strongly decreases with the path difference. The time resolution is 3.2 µs. We practiced 128 co-additions, which led to a total measurement time of 1 ms for this entire time component. Lower diagram: A comparison between the resultant white-light source time-component spectrum (lower trace) with a 1-cm-1 unapodized resolution and a spectrum recorded under identical source conditions with the steady-state acquisition channel (upper trace). Each sample of the steady-state acquisition interferogram was measured for 29 ms and digitized with 16 bits.

Fig. 3
Fig. 3

N2 (B′–B) and (BA) transitions: Shown is a representation of the 128 time components of spectrum 247 with an unapodized spectral resolution that was limited to 40 cm-1 and a time resolution of 1.6 µs. The spectral range extends from 5500 to 11 000 cm-1. The sequence of the first 90 time components is shown. The bottom row shows the time-component sequence from 121 to 126.

Fig. 4
Fig. 4

Time component 27 of Fig. 3. The low-resolution shape of the spectrum is retraced in the upper part of the figure. Zoomed-in views of selected parts of the B3Σ u -B 3Π g rovibronic transitions of N2 are shown in the middle and the lower parts of the figure with an apodized spectral resolution of 28 × 10-3 cm-1. The time spent to measure this time component of the spectrum was 51 ms. The time evolution of the boxed-in part of the lower trace is shown in Fig. 5.

Fig. 5
Fig. 5

Three-dimensional representation of the 2-cm-1 portion shown in the box in the lower trace of Fig. 4 with a 1.6-µs time resolution and a 28 × 10-3 cm-1 apodized spectral resolution. All 128 time components are shown in the figure.

Fig. 6
Fig. 6

Portion of the time-resolved spectrum about 2500 cm-1 that shows the behavior of the Ar atomic lines as the polarity of the discharge changes. For the sake of clarity only one time component over five spaced 1 µs from each other is drawn.

Fig. 7
Fig. 7

Two portions of the Δv = 0 band of the electronic transition B 3Π g A 3Σ u + of N2 from a time component of the current validation experiment (upper traces) and a time component from Ref. 15 (lower traces) under identical source-power conditions are shown. The spectral resolution is Doppler limited; the time resolution is 0.8 µs in our study and 3.2 µs in Ref. 15.

Tables (2)

Tables Icon

Table 1 Recording Conditions for the High-Information Time-Resolved Spectra Described Herein

Tables Icon

Table 2 Recording Conditions with the Same Interferometer That Was Used in the Time-Resolved Experiment of Ref. 15 and Spectrum 237 under Identical Source and Detector Conditions

Metrics