Abstract

We propose and demonstrate a new scheme for anamorphic concentration of a big (40 cm × 40 cm) diffuse light source to achieve an extremely high concentration in one lateral direction at the expense of that in the other direction, to preserve the total (two-dimensional) optical brightness. Such anamorphic concentration is achieved by a combination of two conventional two-dimensional concentrators and a properly designed retroreflector array. Our experiments in search of a diffuse white-light source with properties comparable with those of solar radiation have yielded 28-fold improvement of the one-dimensional concentration ratio compared with those of conventional concentrators and 14-fold improvement compared with the one-dimensional thermodynamic limit.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Winston, W. T. Weldford, High Collection Nonimaging Optics (Academic, New York, 1989).
  2. R. Winston, I. M. Bassett, W. T. Welford, R. Winston, “Nonimaging optics for flux concentration,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1989), Vol. 27, pp. 161–226.
  3. I. Pe’er, N. Naftali, A. Yogev, “High-power solar-pumped Nd:YAG laser amplifier for free-space laser communication,” in Nonimaging Optics: Maximum Efficiency Light Transfer IV, R. Winston, ed. Proc. SPIE3139, 194–204 (1997).
  4. E. Hasman, S. Keren, N. Davidson, A. A. Friesem, “Three-dimensional optical metrology with color-coded extended depth of focus,” Opt. Lett. 24, 439–441 (1999).
    [CrossRef]
  5. N. Davidson, L. Khaykovich, E. Hasman, “High-resolution spectrometers for diffuse light using anamorphic concentration,” Opt. Lett. 24, 1835–1837 (1999).
    [CrossRef]
  6. Th. Graf, J. E. Balmer, “High-power Nd:YLF laser end pumped by a diode-laser bar,” Opt. Lett. 18, 1317–1319 (1993).
    [CrossRef] [PubMed]
  7. J. R. Leger, W. C. Goltsos, “Geometric transformation of linear diode-laser arrays for longitudinal pumping of solid state lasers,” IEEE J. Quantum Electron. 28, 1088–1100 (1992).
    [CrossRef]
  8. N. Davidson, A. A. Friesem, “Concentration and collimation of diffuse linear light source,” Appl. Phys. Lett. 62, 334–336 (1993).
    [CrossRef]
  9. S. Yamaguchi, T. Kobayashi, Y. Saito, K. Chiba, “Collimation of emissions from a high-power multistripe laser-diode bar with multiprism array coupling and focusing to a small spot,” Opt. Lett. 20, 898–900 (1995).
    [CrossRef] [PubMed]
  10. B. Ehlers, K. Du, M. Baumann, H.-G. Treusch, P. Loosen, R. Poprawe, “Beam shaping and fiber coupling of high-power diode laser arrays,” in Lasers in Material Processing, L. H. Beckmann, ed., Proc. SPIE3097, 639–644 (1997).
    [CrossRef]
  11. M. Baumann, B. Ehlers, M. Quade, K. Du, H.-G. Treusch, P. Loosen, R. Poprawe, “Compact fiber-coupled high-power diode-laser unit,” in Lasers in Material Processing, L. H. Beckmann, ed., Proc. SPIE3097, 712–716 (1997).
    [CrossRef]
  12. To simplify the notation, we discuss the special case when DX1 = DY1 and αX1 = αY1. The procedure is applicable also to the general case DX1 ≠ DY1 or αX1 ≠ αY1.
  13. Our procedure can be readily extended for broader optimization criteria when the flux concentration can be increased in exchange for a small sacrifice in collection efficiency. This would lead to higher optimal values for the numerical aperture of the PM, depending on the exact trade-off between concentration and efficiency.
  14. Because the actual X width of the beam at the RR plane was measured to be 8.4 mm (FWHM), slightly larger than the theoretical value, we used a 10-mm size for each RR to reduce clipping losses to <2%. This yielded an increase in the beam X size to 10 mm on retroreflection.
  15. M. Brunotte, A. Goetzberger, U. Blieske, “Two-stage concentrator permitting concentration factors up to 300× with one-axis tracing,” Solar Energy 56, 285–300 (1996).
    [CrossRef]

1999

1996

M. Brunotte, A. Goetzberger, U. Blieske, “Two-stage concentrator permitting concentration factors up to 300× with one-axis tracing,” Solar Energy 56, 285–300 (1996).
[CrossRef]

1995

1993

N. Davidson, A. A. Friesem, “Concentration and collimation of diffuse linear light source,” Appl. Phys. Lett. 62, 334–336 (1993).
[CrossRef]

Th. Graf, J. E. Balmer, “High-power Nd:YLF laser end pumped by a diode-laser bar,” Opt. Lett. 18, 1317–1319 (1993).
[CrossRef] [PubMed]

1992

J. R. Leger, W. C. Goltsos, “Geometric transformation of linear diode-laser arrays for longitudinal pumping of solid state lasers,” IEEE J. Quantum Electron. 28, 1088–1100 (1992).
[CrossRef]

Balmer, J. E.

Bassett, I. M.

R. Winston, I. M. Bassett, W. T. Welford, R. Winston, “Nonimaging optics for flux concentration,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1989), Vol. 27, pp. 161–226.

Baumann, M.

B. Ehlers, K. Du, M. Baumann, H.-G. Treusch, P. Loosen, R. Poprawe, “Beam shaping and fiber coupling of high-power diode laser arrays,” in Lasers in Material Processing, L. H. Beckmann, ed., Proc. SPIE3097, 639–644 (1997).
[CrossRef]

M. Baumann, B. Ehlers, M. Quade, K. Du, H.-G. Treusch, P. Loosen, R. Poprawe, “Compact fiber-coupled high-power diode-laser unit,” in Lasers in Material Processing, L. H. Beckmann, ed., Proc. SPIE3097, 712–716 (1997).
[CrossRef]

Blieske, U.

M. Brunotte, A. Goetzberger, U. Blieske, “Two-stage concentrator permitting concentration factors up to 300× with one-axis tracing,” Solar Energy 56, 285–300 (1996).
[CrossRef]

Brunotte, M.

M. Brunotte, A. Goetzberger, U. Blieske, “Two-stage concentrator permitting concentration factors up to 300× with one-axis tracing,” Solar Energy 56, 285–300 (1996).
[CrossRef]

Chiba, K.

Davidson, N.

Du, K.

B. Ehlers, K. Du, M. Baumann, H.-G. Treusch, P. Loosen, R. Poprawe, “Beam shaping and fiber coupling of high-power diode laser arrays,” in Lasers in Material Processing, L. H. Beckmann, ed., Proc. SPIE3097, 639–644 (1997).
[CrossRef]

M. Baumann, B. Ehlers, M. Quade, K. Du, H.-G. Treusch, P. Loosen, R. Poprawe, “Compact fiber-coupled high-power diode-laser unit,” in Lasers in Material Processing, L. H. Beckmann, ed., Proc. SPIE3097, 712–716 (1997).
[CrossRef]

Ehlers, B.

M. Baumann, B. Ehlers, M. Quade, K. Du, H.-G. Treusch, P. Loosen, R. Poprawe, “Compact fiber-coupled high-power diode-laser unit,” in Lasers in Material Processing, L. H. Beckmann, ed., Proc. SPIE3097, 712–716 (1997).
[CrossRef]

B. Ehlers, K. Du, M. Baumann, H.-G. Treusch, P. Loosen, R. Poprawe, “Beam shaping and fiber coupling of high-power diode laser arrays,” in Lasers in Material Processing, L. H. Beckmann, ed., Proc. SPIE3097, 639–644 (1997).
[CrossRef]

Friesem, A. A.

E. Hasman, S. Keren, N. Davidson, A. A. Friesem, “Three-dimensional optical metrology with color-coded extended depth of focus,” Opt. Lett. 24, 439–441 (1999).
[CrossRef]

N. Davidson, A. A. Friesem, “Concentration and collimation of diffuse linear light source,” Appl. Phys. Lett. 62, 334–336 (1993).
[CrossRef]

Goetzberger, A.

M. Brunotte, A. Goetzberger, U. Blieske, “Two-stage concentrator permitting concentration factors up to 300× with one-axis tracing,” Solar Energy 56, 285–300 (1996).
[CrossRef]

Goltsos, W. C.

J. R. Leger, W. C. Goltsos, “Geometric transformation of linear diode-laser arrays for longitudinal pumping of solid state lasers,” IEEE J. Quantum Electron. 28, 1088–1100 (1992).
[CrossRef]

Graf, Th.

Hasman, E.

Keren, S.

Khaykovich, L.

Kobayashi, T.

Leger, J. R.

J. R. Leger, W. C. Goltsos, “Geometric transformation of linear diode-laser arrays for longitudinal pumping of solid state lasers,” IEEE J. Quantum Electron. 28, 1088–1100 (1992).
[CrossRef]

Loosen, P.

B. Ehlers, K. Du, M. Baumann, H.-G. Treusch, P. Loosen, R. Poprawe, “Beam shaping and fiber coupling of high-power diode laser arrays,” in Lasers in Material Processing, L. H. Beckmann, ed., Proc. SPIE3097, 639–644 (1997).
[CrossRef]

M. Baumann, B. Ehlers, M. Quade, K. Du, H.-G. Treusch, P. Loosen, R. Poprawe, “Compact fiber-coupled high-power diode-laser unit,” in Lasers in Material Processing, L. H. Beckmann, ed., Proc. SPIE3097, 712–716 (1997).
[CrossRef]

Naftali, N.

I. Pe’er, N. Naftali, A. Yogev, “High-power solar-pumped Nd:YAG laser amplifier for free-space laser communication,” in Nonimaging Optics: Maximum Efficiency Light Transfer IV, R. Winston, ed. Proc. SPIE3139, 194–204 (1997).

Pe’er, I.

I. Pe’er, N. Naftali, A. Yogev, “High-power solar-pumped Nd:YAG laser amplifier for free-space laser communication,” in Nonimaging Optics: Maximum Efficiency Light Transfer IV, R. Winston, ed. Proc. SPIE3139, 194–204 (1997).

Poprawe, R.

B. Ehlers, K. Du, M. Baumann, H.-G. Treusch, P. Loosen, R. Poprawe, “Beam shaping and fiber coupling of high-power diode laser arrays,” in Lasers in Material Processing, L. H. Beckmann, ed., Proc. SPIE3097, 639–644 (1997).
[CrossRef]

M. Baumann, B. Ehlers, M. Quade, K. Du, H.-G. Treusch, P. Loosen, R. Poprawe, “Compact fiber-coupled high-power diode-laser unit,” in Lasers in Material Processing, L. H. Beckmann, ed., Proc. SPIE3097, 712–716 (1997).
[CrossRef]

Quade, M.

M. Baumann, B. Ehlers, M. Quade, K. Du, H.-G. Treusch, P. Loosen, R. Poprawe, “Compact fiber-coupled high-power diode-laser unit,” in Lasers in Material Processing, L. H. Beckmann, ed., Proc. SPIE3097, 712–716 (1997).
[CrossRef]

Saito, Y.

Treusch, H.-G.

B. Ehlers, K. Du, M. Baumann, H.-G. Treusch, P. Loosen, R. Poprawe, “Beam shaping and fiber coupling of high-power diode laser arrays,” in Lasers in Material Processing, L. H. Beckmann, ed., Proc. SPIE3097, 639–644 (1997).
[CrossRef]

M. Baumann, B. Ehlers, M. Quade, K. Du, H.-G. Treusch, P. Loosen, R. Poprawe, “Compact fiber-coupled high-power diode-laser unit,” in Lasers in Material Processing, L. H. Beckmann, ed., Proc. SPIE3097, 712–716 (1997).
[CrossRef]

Weldford, W. T.

R. Winston, W. T. Weldford, High Collection Nonimaging Optics (Academic, New York, 1989).

Welford, W. T.

R. Winston, I. M. Bassett, W. T. Welford, R. Winston, “Nonimaging optics for flux concentration,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1989), Vol. 27, pp. 161–226.

Winston, R.

R. Winston, I. M. Bassett, W. T. Welford, R. Winston, “Nonimaging optics for flux concentration,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1989), Vol. 27, pp. 161–226.

R. Winston, I. M. Bassett, W. T. Welford, R. Winston, “Nonimaging optics for flux concentration,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1989), Vol. 27, pp. 161–226.

R. Winston, W. T. Weldford, High Collection Nonimaging Optics (Academic, New York, 1989).

Yamaguchi, S.

Yogev, A.

I. Pe’er, N. Naftali, A. Yogev, “High-power solar-pumped Nd:YAG laser amplifier for free-space laser communication,” in Nonimaging Optics: Maximum Efficiency Light Transfer IV, R. Winston, ed. Proc. SPIE3139, 194–204 (1997).

Appl. Phys. Lett.

N. Davidson, A. A. Friesem, “Concentration and collimation of diffuse linear light source,” Appl. Phys. Lett. 62, 334–336 (1993).
[CrossRef]

IEEE J. Quantum Electron.

J. R. Leger, W. C. Goltsos, “Geometric transformation of linear diode-laser arrays for longitudinal pumping of solid state lasers,” IEEE J. Quantum Electron. 28, 1088–1100 (1992).
[CrossRef]

Opt. Lett.

Solar Energy

M. Brunotte, A. Goetzberger, U. Blieske, “Two-stage concentrator permitting concentration factors up to 300× with one-axis tracing,” Solar Energy 56, 285–300 (1996).
[CrossRef]

Other

R. Winston, W. T. Weldford, High Collection Nonimaging Optics (Academic, New York, 1989).

R. Winston, I. M. Bassett, W. T. Welford, R. Winston, “Nonimaging optics for flux concentration,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1989), Vol. 27, pp. 161–226.

I. Pe’er, N. Naftali, A. Yogev, “High-power solar-pumped Nd:YAG laser amplifier for free-space laser communication,” in Nonimaging Optics: Maximum Efficiency Light Transfer IV, R. Winston, ed. Proc. SPIE3139, 194–204 (1997).

B. Ehlers, K. Du, M. Baumann, H.-G. Treusch, P. Loosen, R. Poprawe, “Beam shaping and fiber coupling of high-power diode laser arrays,” in Lasers in Material Processing, L. H. Beckmann, ed., Proc. SPIE3097, 639–644 (1997).
[CrossRef]

M. Baumann, B. Ehlers, M. Quade, K. Du, H.-G. Treusch, P. Loosen, R. Poprawe, “Compact fiber-coupled high-power diode-laser unit,” in Lasers in Material Processing, L. H. Beckmann, ed., Proc. SPIE3097, 712–716 (1997).
[CrossRef]

To simplify the notation, we discuss the special case when DX1 = DY1 and αX1 = αY1. The procedure is applicable also to the general case DX1 ≠ DY1 or αX1 ≠ αY1.

Our procedure can be readily extended for broader optimization criteria when the flux concentration can be increased in exchange for a small sacrifice in collection efficiency. This would lead to higher optimal values for the numerical aperture of the PM, depending on the exact trade-off between concentration and efficiency.

Because the actual X width of the beam at the RR plane was measured to be 8.4 mm (FWHM), slightly larger than the theoretical value, we used a 10-mm size for each RR to reduce clipping losses to <2%. This yielded an increase in the beam X size to 10 mm on retroreflection.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental optical arrangement for one-dimensional concentration of a large (40-cm) diffuse source: D, diffuser; A, aperture, M, mirror; other abbreviations defined in text.

Fig. 2
Fig. 2

Illustrations of spatial and angular light distributions at several planes along the optical axis of the anamorphic concentrator (Fig. 1). The width and the height of the rectangle represent the dimensions of the beam in the X and the Y directions, respectively, and the lengths of the double arrows represent the divergence angles in the respective directions (a) at the input, (b) at the back focal plane of the parabolic reflector, before retroreflection, (c) after retroreflection (a projection of the one-dimensional retroreflector array is also shown for orientation), and (d) at the back focal plane of the cylindrical lens.

Fig. 3
Fig. 3

Perspective drawing of a single square RR from the array shown in Fig. 2(c) composed of two orthogonal reflecting triangles (A and B) tilted at 45° to the X and Y axes, respectively.

Fig. 4
Fig. 4

Sections of the light-intensity distributions imaged with a CCD camera (a) at the focus of the parabolic mirror of Fig. 1 and (b) at the output of the anamorphic concentrator with the arrangement shown in Fig. 1.

Fig. 5
Fig. 5

Measured X cross section of the light-intensity distributions at the output of the large anamorphic concentrator with arrangement shown in Fig. 1 (solid curve) and at the back focal plain of the parabolic mirror of Fig. 1 (dashed curve).

Metrics