Abstract

We compare the effects of spherical aberration on the penetration depth of single-photon and two-photon excitation for instances in which the aberration is caused by the refractive-index mismatch when a beam is focused through an interface. It is shown both theoretically and experimentally that two-photon fluorescence imaging experiences less spherical aberration and can thus propagate to a deeper depth within a thick medium.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, W. W. Webb, “Two photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
    [CrossRef] [PubMed]
  2. P. Török, P. Varga, Z. Laczik, G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. A 12, 325–332 (1995).
    [CrossRef]
  3. P. Török, P. Varga, G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field. I,” J. Opt. Soc. Am. A 12, 2136–2144 (1995).
    [CrossRef]
  4. P. Török, P. Varga, A. Konkol, G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field. II,” J. Opt. Soc. Am. A 13, 2232–2238 (1996).
    [CrossRef]
  5. C. J. R. Sheppard, P. Török, “Effects of specimen refractive index on confocal imaging,” J. Microscopy 185, 366–374 (1997).
    [CrossRef]
  6. P. D. Higdon, P. Török, T. Wilson, “Imaging properties of high aperture multiphoton fluorescence scanning optical microscopes,” J. Microscopy 193, 127–141 (1999).
    [CrossRef]
  7. D. Day, M. Gu, “Effects of refractive-index mismatch on three-dimensional optical data storage density in a two-photon bleaching polymer,” Appl. Opt. 37, 6299–6304 (1998).
    [CrossRef]
  8. S. Hell, E. H. K. Stelzer, “Properties of a 4Pi confocal fluorescence microscope,” J. Opt. Soc. Am. A 9, 2159–2166 (1992).
    [CrossRef]
  9. M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific, Singapore, 1996).

1999 (1)

P. D. Higdon, P. Török, T. Wilson, “Imaging properties of high aperture multiphoton fluorescence scanning optical microscopes,” J. Microscopy 193, 127–141 (1999).
[CrossRef]

1998 (1)

1997 (1)

C. J. R. Sheppard, P. Török, “Effects of specimen refractive index on confocal imaging,” J. Microscopy 185, 366–374 (1997).
[CrossRef]

1996 (1)

1995 (2)

1992 (1)

1990 (1)

W. Denk, J. H. Strickler, W. W. Webb, “Two photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Booker, G. R.

Day, D.

Denk, W.

W. Denk, J. H. Strickler, W. W. Webb, “Two photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Gu, M.

Hell, S.

Higdon, P. D.

P. D. Higdon, P. Török, T. Wilson, “Imaging properties of high aperture multiphoton fluorescence scanning optical microscopes,” J. Microscopy 193, 127–141 (1999).
[CrossRef]

Konkol, A.

Laczik, Z.

Sheppard, C. J. R.

C. J. R. Sheppard, P. Török, “Effects of specimen refractive index on confocal imaging,” J. Microscopy 185, 366–374 (1997).
[CrossRef]

Stelzer, E. H. K.

Strickler, J. H.

W. Denk, J. H. Strickler, W. W. Webb, “Two photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Török, P.

Varga, P.

Webb, W. W.

W. Denk, J. H. Strickler, W. W. Webb, “Two photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Wilson, T.

P. D. Higdon, P. Török, T. Wilson, “Imaging properties of high aperture multiphoton fluorescence scanning optical microscopes,” J. Microscopy 193, 127–141 (1999).
[CrossRef]

Appl. Opt. (1)

J. Microscopy (2)

C. J. R. Sheppard, P. Török, “Effects of specimen refractive index on confocal imaging,” J. Microscopy 185, 366–374 (1997).
[CrossRef]

P. D. Higdon, P. Török, T. Wilson, “Imaging properties of high aperture multiphoton fluorescence scanning optical microscopes,” J. Microscopy 193, 127–141 (1999).
[CrossRef]

J. Opt. Soc. Am. A (4)

Science (1)

W. Denk, J. H. Strickler, W. W. Webb, “Two photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Other (1)

M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific, Singapore, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram of beams being refracted on an interface between two media: (a) n 1 > n 2 and (b) n 1 < n 2.

Fig. 2
Fig. 2

Calculated fluorescence axial response to a thick polymer (a) under 1-photon and (b) under 2-photon excitation.

Fig. 3
Fig. 3

Measured fluorescence axial response to a thick polymer (a) under 1-photon and (b) under 2-photon excitation.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

k0Φθ1, θ2, -d=-k0dn1 cos θ1-n2 cos θ2,
Ir, ϕ, z=|I0|2+4|I1|2 cos2 ϕ+|I2|2+2 cos2ϕReI0I2*.
I1-pr, ϕ, z=Iexr, ϕ, zIfr, ϕ, z,
I2-pr, ϕ, z=Iex2r, ϕ, z.
Id=-d02π0 I1-pr, ϕ, zrdrdϕdz.

Metrics