Abstract

An endoscope electronic-speckle-pattern interferometer (ESPI) camera system is presented that can be applied to examinations of technical objects as well as for in vitro and in vivo minimal invasive medical diagnostics. Integration of optical fibers for the guidance of a cw-laser beam and an endoscopic imaging system yield a compact ESPI system that opens up new possibilities for highly sensitive interferometric intracavity inspection under handheld conditions. A CCD camera in combination with a fast frame-grabber system allows dynamic image subtractions at a frequency rate of as much as 25 Hz with high fringe contrast. Results from investigations of technical objects and biological objects in vitro and in vivo are obtained. In endoscopic minimal invasive therapy this method could substitute for the missing operator’s tactile contact with the treated tissue by replacing it with visual information (endoscopic taction).

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Hadbawnik, “Holographische endoskopie,” Optik 45, 21–38 (1976), (in German, English abstract).
  2. M. Deiwick, B. G. D. T. Tjan, H. Reul, G. von Bally, H. H. Scheld, “Holographic interferometry and in vitro calcification: comparing pericardial versus porcine bioprosthesis,” J. Heart Valve Dis. 7, 419–427 (1998).
    [PubMed]
  3. G. von Bally, H. I. Bjelkhagen, “Techniques for endoscopic holography,” in Optics in Medicine, Biology and Environmental Research, Optics Within Life Sciences (OWLS I), G. von Bally, S. Khanna, eds. (Elsevier, Amsterdam, 1993), pp. 13–21.
  4. O. Coquoz, R. Conde, F. Talebou, C. Depeursinge, “Performances of endoscopic holography with a multicore optical fiber,” Appl. Opt. 34, 7186–7193 (1995).
    [CrossRef] [PubMed]
  5. M. Facchini, P. Zanetta, “An endoscopic system for DSPI,” Optik 95, 27–30 (1993).
  6. S. Schedin, G. Pedrini, H. J. Tiziani, F. M. Santoyo, “All-fibre pulsed digital holography,” Opt. Commun. 165, 183–188 (1999).
    [CrossRef]
  7. A. A. Dyrseth, “Measurement of plant movement in young and mature plants using electronic speckle pattern interferometry,” Appl. Opt. 35, 3695–3701 (1996).
    [CrossRef] [PubMed]
  8. O. J. Løkberg, K. Høgmoen, O. M. Holje, “Vibration measurement on the human ear drum in vivo,” Appl. Opt. 18, 763–765 (1979).
    [CrossRef] [PubMed]
  9. G. Gülker, K. Hinsch, C. Hölscher, A. Kramer, H. Neunhaber, “Electronic speckle pattern interferometer for in situ deformation monitoring on buildings,” Opt. Eng. 29, 816–820 (1990).
    [CrossRef]
  10. R. Spooren, “Double-pulse subtraction TV holography,” Opt. Eng. 31, 1000–1007 (1992).
    [CrossRef]
  11. G. Pedrini, B. Pfeister, H. Tiziani, “Double pulse-electronic speckle interferometry,” J. Mod. Opt. 40, 89–96 (1993).
    [CrossRef]
  12. T. Kreis, Holographic Interferometry: Principles and Methods, Vol. 1 of Series in Optical Metrology (Akademie Verlag, Berlin, 1996).
  13. T. Kreis, “Digital holograpic interference-phase measurement using the Fourier transform method,” J. Opt. Soc. Am. A 3, 847–855 (1986).
    [CrossRef]
  14. J. Pomarico, R. Torroba, “Digital visibility measurements by Fourier analysis,” Optik 95, 152–154 (1995).

1999 (1)

S. Schedin, G. Pedrini, H. J. Tiziani, F. M. Santoyo, “All-fibre pulsed digital holography,” Opt. Commun. 165, 183–188 (1999).
[CrossRef]

1998 (1)

M. Deiwick, B. G. D. T. Tjan, H. Reul, G. von Bally, H. H. Scheld, “Holographic interferometry and in vitro calcification: comparing pericardial versus porcine bioprosthesis,” J. Heart Valve Dis. 7, 419–427 (1998).
[PubMed]

1996 (1)

1995 (2)

1993 (2)

M. Facchini, P. Zanetta, “An endoscopic system for DSPI,” Optik 95, 27–30 (1993).

G. Pedrini, B. Pfeister, H. Tiziani, “Double pulse-electronic speckle interferometry,” J. Mod. Opt. 40, 89–96 (1993).
[CrossRef]

1992 (1)

R. Spooren, “Double-pulse subtraction TV holography,” Opt. Eng. 31, 1000–1007 (1992).
[CrossRef]

1990 (1)

G. Gülker, K. Hinsch, C. Hölscher, A. Kramer, H. Neunhaber, “Electronic speckle pattern interferometer for in situ deformation monitoring on buildings,” Opt. Eng. 29, 816–820 (1990).
[CrossRef]

1986 (1)

1979 (1)

1976 (1)

D. Hadbawnik, “Holographische endoskopie,” Optik 45, 21–38 (1976), (in German, English abstract).

Bjelkhagen, H. I.

G. von Bally, H. I. Bjelkhagen, “Techniques for endoscopic holography,” in Optics in Medicine, Biology and Environmental Research, Optics Within Life Sciences (OWLS I), G. von Bally, S. Khanna, eds. (Elsevier, Amsterdam, 1993), pp. 13–21.

Conde, R.

Coquoz, O.

Deiwick, M.

M. Deiwick, B. G. D. T. Tjan, H. Reul, G. von Bally, H. H. Scheld, “Holographic interferometry and in vitro calcification: comparing pericardial versus porcine bioprosthesis,” J. Heart Valve Dis. 7, 419–427 (1998).
[PubMed]

Depeursinge, C.

Dyrseth, A. A.

Facchini, M.

M. Facchini, P. Zanetta, “An endoscopic system for DSPI,” Optik 95, 27–30 (1993).

Gülker, G.

G. Gülker, K. Hinsch, C. Hölscher, A. Kramer, H. Neunhaber, “Electronic speckle pattern interferometer for in situ deformation monitoring on buildings,” Opt. Eng. 29, 816–820 (1990).
[CrossRef]

Hadbawnik, D.

D. Hadbawnik, “Holographische endoskopie,” Optik 45, 21–38 (1976), (in German, English abstract).

Hinsch, K.

G. Gülker, K. Hinsch, C. Hölscher, A. Kramer, H. Neunhaber, “Electronic speckle pattern interferometer for in situ deformation monitoring on buildings,” Opt. Eng. 29, 816–820 (1990).
[CrossRef]

Høgmoen, K.

Holje, O. M.

Hölscher, C.

G. Gülker, K. Hinsch, C. Hölscher, A. Kramer, H. Neunhaber, “Electronic speckle pattern interferometer for in situ deformation monitoring on buildings,” Opt. Eng. 29, 816–820 (1990).
[CrossRef]

Kramer, A.

G. Gülker, K. Hinsch, C. Hölscher, A. Kramer, H. Neunhaber, “Electronic speckle pattern interferometer for in situ deformation monitoring on buildings,” Opt. Eng. 29, 816–820 (1990).
[CrossRef]

Kreis, T.

T. Kreis, “Digital holograpic interference-phase measurement using the Fourier transform method,” J. Opt. Soc. Am. A 3, 847–855 (1986).
[CrossRef]

T. Kreis, Holographic Interferometry: Principles and Methods, Vol. 1 of Series in Optical Metrology (Akademie Verlag, Berlin, 1996).

Løkberg, O. J.

Neunhaber, H.

G. Gülker, K. Hinsch, C. Hölscher, A. Kramer, H. Neunhaber, “Electronic speckle pattern interferometer for in situ deformation monitoring on buildings,” Opt. Eng. 29, 816–820 (1990).
[CrossRef]

Pedrini, G.

S. Schedin, G. Pedrini, H. J. Tiziani, F. M. Santoyo, “All-fibre pulsed digital holography,” Opt. Commun. 165, 183–188 (1999).
[CrossRef]

G. Pedrini, B. Pfeister, H. Tiziani, “Double pulse-electronic speckle interferometry,” J. Mod. Opt. 40, 89–96 (1993).
[CrossRef]

Pfeister, B.

G. Pedrini, B. Pfeister, H. Tiziani, “Double pulse-electronic speckle interferometry,” J. Mod. Opt. 40, 89–96 (1993).
[CrossRef]

Pomarico, J.

J. Pomarico, R. Torroba, “Digital visibility measurements by Fourier analysis,” Optik 95, 152–154 (1995).

Reul, H.

M. Deiwick, B. G. D. T. Tjan, H. Reul, G. von Bally, H. H. Scheld, “Holographic interferometry and in vitro calcification: comparing pericardial versus porcine bioprosthesis,” J. Heart Valve Dis. 7, 419–427 (1998).
[PubMed]

Santoyo, F. M.

S. Schedin, G. Pedrini, H. J. Tiziani, F. M. Santoyo, “All-fibre pulsed digital holography,” Opt. Commun. 165, 183–188 (1999).
[CrossRef]

Schedin, S.

S. Schedin, G. Pedrini, H. J. Tiziani, F. M. Santoyo, “All-fibre pulsed digital holography,” Opt. Commun. 165, 183–188 (1999).
[CrossRef]

Scheld, H. H.

M. Deiwick, B. G. D. T. Tjan, H. Reul, G. von Bally, H. H. Scheld, “Holographic interferometry and in vitro calcification: comparing pericardial versus porcine bioprosthesis,” J. Heart Valve Dis. 7, 419–427 (1998).
[PubMed]

Spooren, R.

R. Spooren, “Double-pulse subtraction TV holography,” Opt. Eng. 31, 1000–1007 (1992).
[CrossRef]

Talebou, F.

Tiziani, H.

G. Pedrini, B. Pfeister, H. Tiziani, “Double pulse-electronic speckle interferometry,” J. Mod. Opt. 40, 89–96 (1993).
[CrossRef]

Tiziani, H. J.

S. Schedin, G. Pedrini, H. J. Tiziani, F. M. Santoyo, “All-fibre pulsed digital holography,” Opt. Commun. 165, 183–188 (1999).
[CrossRef]

Tjan, B. G. D. T.

M. Deiwick, B. G. D. T. Tjan, H. Reul, G. von Bally, H. H. Scheld, “Holographic interferometry and in vitro calcification: comparing pericardial versus porcine bioprosthesis,” J. Heart Valve Dis. 7, 419–427 (1998).
[PubMed]

Torroba, R.

J. Pomarico, R. Torroba, “Digital visibility measurements by Fourier analysis,” Optik 95, 152–154 (1995).

von Bally, G.

M. Deiwick, B. G. D. T. Tjan, H. Reul, G. von Bally, H. H. Scheld, “Holographic interferometry and in vitro calcification: comparing pericardial versus porcine bioprosthesis,” J. Heart Valve Dis. 7, 419–427 (1998).
[PubMed]

G. von Bally, H. I. Bjelkhagen, “Techniques for endoscopic holography,” in Optics in Medicine, Biology and Environmental Research, Optics Within Life Sciences (OWLS I), G. von Bally, S. Khanna, eds. (Elsevier, Amsterdam, 1993), pp. 13–21.

Zanetta, P.

M. Facchini, P. Zanetta, “An endoscopic system for DSPI,” Optik 95, 27–30 (1993).

Appl. Opt. (3)

J. Heart Valve Dis. (1)

M. Deiwick, B. G. D. T. Tjan, H. Reul, G. von Bally, H. H. Scheld, “Holographic interferometry and in vitro calcification: comparing pericardial versus porcine bioprosthesis,” J. Heart Valve Dis. 7, 419–427 (1998).
[PubMed]

J. Mod. Opt. (1)

G. Pedrini, B. Pfeister, H. Tiziani, “Double pulse-electronic speckle interferometry,” J. Mod. Opt. 40, 89–96 (1993).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

S. Schedin, G. Pedrini, H. J. Tiziani, F. M. Santoyo, “All-fibre pulsed digital holography,” Opt. Commun. 165, 183–188 (1999).
[CrossRef]

Opt. Eng. (2)

G. Gülker, K. Hinsch, C. Hölscher, A. Kramer, H. Neunhaber, “Electronic speckle pattern interferometer for in situ deformation monitoring on buildings,” Opt. Eng. 29, 816–820 (1990).
[CrossRef]

R. Spooren, “Double-pulse subtraction TV holography,” Opt. Eng. 31, 1000–1007 (1992).
[CrossRef]

Optik (3)

D. Hadbawnik, “Holographische endoskopie,” Optik 45, 21–38 (1976), (in German, English abstract).

M. Facchini, P. Zanetta, “An endoscopic system for DSPI,” Optik 95, 27–30 (1993).

J. Pomarico, R. Torroba, “Digital visibility measurements by Fourier analysis,” Optik 95, 152–154 (1995).

Other (2)

T. Kreis, Holographic Interferometry: Principles and Methods, Vol. 1 of Series in Optical Metrology (Akademie Verlag, Berlin, 1996).

G. von Bally, H. I. Bjelkhagen, “Techniques for endoscopic holography,” in Optics in Medicine, Biology and Environmental Research, Optics Within Life Sciences (OWLS I), G. von Bally, S. Khanna, eds. (Elsevier, Amsterdam, 1993), pp. 13–21.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic setup of the endoscope ESPI camera system.

Fig. 2
Fig. 2

Endoscope ESPI camera system as developed at the Laboratory of Biophysics in cooperation with Karl Storz GmbH & Co., Tuttlingen, Germany (here attached to an otoscope with a Hopkins rod–lens system).

Fig. 3
Fig. 3

Double-pulse exposure scheme in two subsequent video fields or frames.

Fig. 4
Fig. 4

Investigation of technical specimens to find the optimum contrast of the correlation patterns (a) deformation by a point load and (b) tilt of a metal plate.

Fig. 5
Fig. 5

Maximum achieved fringe density N max versus distance s to the observed object. (For further details see text.)

Fig. 6
Fig. 6

Fringe contrast V versus distance s to the observed object. (For further details see text.)

Fig. 7
Fig. 7

Investigation of a technical membrane to find the optimum contrast of the correlation fringes: (a) manual stimulation and (b) acoustical stimulation (by a loudspeaker).

Fig. 8
Fig. 8

Intracavity inspection of a biological specimen in vitro (porcine stomach, mucous membrane): (a) and (c) white-light endoscopic images of the mucous membrane, (b) and (d) correlation fringe patterns of the stimulated areas in (a) and (c).

Fig. 9
Fig. 9

Inspection of a biological specimen in vitro (porcine stomach, mucous membrane): (a) white-light images of healthy tissue and (c) a manipulated rigid area underneath the visible surface, (b) and (d) correlation fringe patterns of the stimulated areas.

Fig. 10
Fig. 10

In vivo investigation of a human hand: (a) fingernail stimulated by a test needle and (b) fingertip. (For further details see text.)

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

IAx, y=Iobx, y+Irefx, y+2Iobx, yIrefx, y1/2cosψx, y,
IBx, y=Iobx, y+Irefx, y+2Iobx, yIrefx, y1/2cosψx, y+Δϕx, y.
Δϕx, y=2πλS·d.
IA-IBx, y=4Iobx, yIrefx, y1/2×sinψx, y+Δϕx, y2sinΔϕx, y2.
V=2aνa0.

Metrics