Abstract

A two-channel monochromatic illuminator with only one diffraction grating and an original scanning system has been designed for multiple applications. This scanning system consists of two rotational plane mirrors that reflect light diffracted by a concave diffraction grating to the ±1 orders of the spectrum. The light reflected by the mirrors goes to two exit slits that correspond to two channels of the device. The positions of the centers of rotation of the mirrors are selected to produce minimal deviation of the direction of the light reflected during the scanning. The aberration characteristics of some variations in the optical mounting of the device made by use of spherical and toroidal holographic diffraction gratings recorded in stigmatic and astigmatic beams, the possibilities for application of the device for measuring the color sensitivity of the human eye, and the possibilities for measuring the efficiency of concave diffraction gratings, are also discussed.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. I. Malishev, Introduction to Experimental Spectroscopy (Nauka, Moscow, 1979), Chap. 3, pp. 254–274.
  2. L. V. Katsnel’son, E. A. Sokolova, “Determination of the spread function of an infrared monochromator having a concave diffraction grating,” Sov. J. Opt. Technol. 53, 231–233 (1986).
  3. E. A. Sokolova, Yu. I. Brainin, A. B. Ioannisiani, “Blazed holographic diffraction gratings,” (Soviet Institute of Technical and Scientific Information, Moscow, 1984).
  4. H. Noda, T. Namioka, M. Seya, “Geometric theory of the grating,” J. Opt. Soc. Am. 64, 1031–1048 (1974).
    [CrossRef]
  5. Y. V. Bazshanov, “Connection between the parameters of ruled and holographic concave diffraction gratings,” Sov. J. Opt. Technol. 46, 1–3 (1979).
  6. E. A. Sokolova, S. D. A. Reyes Cortes, “Calculation and mathematical model computer experiments with optical mountings for recording and using holographic diffraction gratings,” in Optical Organic and Semiconductor Inorganic Materials, E. A. Silinsh, A. Medvid, A. R. Lusis, A. O. Ozols, eds., Proc. SPIE2968, 311–316 (1997).
    [CrossRef]
  7. A. V. Luizov, Light and Colour (Energoatomizdat, Leningrad, 1989), Chap. 17, p. 190.
  8. R. Fletcher, J. Voke, Defective Colour Vision (Adam Hilger, Bristol, UK, 1985), Chap. 14, pp. 513–516.
  9. M. C. Hutley, Diffraction Gratings, 2nd ed. (Academic, San Diego, Calif., 1990), Chap. 5, pp. 156–173.
  10. D. J. Michels, “Change of blaze wavelength as a function of position on the surface of a concave grating,” J. Opt. Soc. Am. 64, 662–666 (1974).
    [CrossRef]
  11. M. Nevière, W. R. Hunter, “Analysis of the changes in efficiency across the ruled area of a concave diffraction grating,” Appl. Opt. 19, 2059–2065 (1980).
    [CrossRef] [PubMed]
  12. M. C. Hutley, W. R. Hunter, “Variation of blaze of concave diffraction gratings,” Appl. Opt. 20, 245–250 (1981).
    [CrossRef] [PubMed]
  13. V. K. Prokofiev, “Relative efficiency distribution on the surface of concave diffraction grating with angle of blaze,” News Crimea Astron. Observ. 64, 198–200 (1981).
  14. E. G. Loewen, “Diffraction gratings, ruled and holographic,” in Applied Optics and Optical Engineering, R. Shannon, ed. (Academic, New York, 1983), Vol. IX, Chap. 2, pp. 33–71.
    [CrossRef]
  15. S. A. Masalov, E. A. Yakovlev, “Reflection characteristics of echellett in polarized light for autocollimation mounting,” Opt. Spectrosc. (USSR), 43, 1129–1137 (1977).
  16. I. J. Wilson, L. C. Botten, R. C. McPhedran, “First, second and third order blazers of diffraction gratings,” J. Opt. (Paris) 8, 214–229 (1977).
    [CrossRef]
  17. E. G. Loewen, M. Nevière, D. Maystre, “Grating efficiency theory as it applies to blazed and holographic gratings,” Appl. Opt. 16, 2711–2721 (1977).
    [CrossRef] [PubMed]

1986 (1)

L. V. Katsnel’son, E. A. Sokolova, “Determination of the spread function of an infrared monochromator having a concave diffraction grating,” Sov. J. Opt. Technol. 53, 231–233 (1986).

1981 (2)

M. C. Hutley, W. R. Hunter, “Variation of blaze of concave diffraction gratings,” Appl. Opt. 20, 245–250 (1981).
[CrossRef] [PubMed]

V. K. Prokofiev, “Relative efficiency distribution on the surface of concave diffraction grating with angle of blaze,” News Crimea Astron. Observ. 64, 198–200 (1981).

1980 (1)

1979 (1)

Y. V. Bazshanov, “Connection between the parameters of ruled and holographic concave diffraction gratings,” Sov. J. Opt. Technol. 46, 1–3 (1979).

1977 (3)

S. A. Masalov, E. A. Yakovlev, “Reflection characteristics of echellett in polarized light for autocollimation mounting,” Opt. Spectrosc. (USSR), 43, 1129–1137 (1977).

I. J. Wilson, L. C. Botten, R. C. McPhedran, “First, second and third order blazers of diffraction gratings,” J. Opt. (Paris) 8, 214–229 (1977).
[CrossRef]

E. G. Loewen, M. Nevière, D. Maystre, “Grating efficiency theory as it applies to blazed and holographic gratings,” Appl. Opt. 16, 2711–2721 (1977).
[CrossRef] [PubMed]

1974 (2)

D. J. Michels, “Change of blaze wavelength as a function of position on the surface of a concave grating,” J. Opt. Soc. Am. 64, 662–666 (1974).
[CrossRef]

H. Noda, T. Namioka, M. Seya, “Geometric theory of the grating,” J. Opt. Soc. Am. 64, 1031–1048 (1974).
[CrossRef]

Bazshanov, Y. V.

Y. V. Bazshanov, “Connection between the parameters of ruled and holographic concave diffraction gratings,” Sov. J. Opt. Technol. 46, 1–3 (1979).

Botten, L. C.

I. J. Wilson, L. C. Botten, R. C. McPhedran, “First, second and third order blazers of diffraction gratings,” J. Opt. (Paris) 8, 214–229 (1977).
[CrossRef]

Brainin, Yu. I.

E. A. Sokolova, Yu. I. Brainin, A. B. Ioannisiani, “Blazed holographic diffraction gratings,” (Soviet Institute of Technical and Scientific Information, Moscow, 1984).

Fletcher, R.

R. Fletcher, J. Voke, Defective Colour Vision (Adam Hilger, Bristol, UK, 1985), Chap. 14, pp. 513–516.

Hunter, W. R.

Hutley, M. C.

M. C. Hutley, W. R. Hunter, “Variation of blaze of concave diffraction gratings,” Appl. Opt. 20, 245–250 (1981).
[CrossRef] [PubMed]

M. C. Hutley, Diffraction Gratings, 2nd ed. (Academic, San Diego, Calif., 1990), Chap. 5, pp. 156–173.

Ioannisiani, A. B.

E. A. Sokolova, Yu. I. Brainin, A. B. Ioannisiani, “Blazed holographic diffraction gratings,” (Soviet Institute of Technical and Scientific Information, Moscow, 1984).

Katsnel’son, L. V.

L. V. Katsnel’son, E. A. Sokolova, “Determination of the spread function of an infrared monochromator having a concave diffraction grating,” Sov. J. Opt. Technol. 53, 231–233 (1986).

Loewen, E. G.

E. G. Loewen, M. Nevière, D. Maystre, “Grating efficiency theory as it applies to blazed and holographic gratings,” Appl. Opt. 16, 2711–2721 (1977).
[CrossRef] [PubMed]

E. G. Loewen, “Diffraction gratings, ruled and holographic,” in Applied Optics and Optical Engineering, R. Shannon, ed. (Academic, New York, 1983), Vol. IX, Chap. 2, pp. 33–71.
[CrossRef]

Luizov, A. V.

A. V. Luizov, Light and Colour (Energoatomizdat, Leningrad, 1989), Chap. 17, p. 190.

Malishev, V. I.

V. I. Malishev, Introduction to Experimental Spectroscopy (Nauka, Moscow, 1979), Chap. 3, pp. 254–274.

Masalov, S. A.

S. A. Masalov, E. A. Yakovlev, “Reflection characteristics of echellett in polarized light for autocollimation mounting,” Opt. Spectrosc. (USSR), 43, 1129–1137 (1977).

Maystre, D.

E. G. Loewen, M. Nevière, D. Maystre, “Grating efficiency theory as it applies to blazed and holographic gratings,” Appl. Opt. 16, 2711–2721 (1977).
[CrossRef] [PubMed]

McPhedran, R. C.

I. J. Wilson, L. C. Botten, R. C. McPhedran, “First, second and third order blazers of diffraction gratings,” J. Opt. (Paris) 8, 214–229 (1977).
[CrossRef]

Michels, D. J.

D. J. Michels, “Change of blaze wavelength as a function of position on the surface of a concave grating,” J. Opt. Soc. Am. 64, 662–666 (1974).
[CrossRef]

Namioka, T.

Nevière, M.

M. Nevière, W. R. Hunter, “Analysis of the changes in efficiency across the ruled area of a concave diffraction grating,” Appl. Opt. 19, 2059–2065 (1980).
[CrossRef] [PubMed]

E. G. Loewen, M. Nevière, D. Maystre, “Grating efficiency theory as it applies to blazed and holographic gratings,” Appl. Opt. 16, 2711–2721 (1977).
[CrossRef] [PubMed]

Noda, H.

Prokofiev, V. K.

V. K. Prokofiev, “Relative efficiency distribution on the surface of concave diffraction grating with angle of blaze,” News Crimea Astron. Observ. 64, 198–200 (1981).

Reyes Cortes, S. D. A.

E. A. Sokolova, S. D. A. Reyes Cortes, “Calculation and mathematical model computer experiments with optical mountings for recording and using holographic diffraction gratings,” in Optical Organic and Semiconductor Inorganic Materials, E. A. Silinsh, A. Medvid, A. R. Lusis, A. O. Ozols, eds., Proc. SPIE2968, 311–316 (1997).
[CrossRef]

Seya, M.

Sokolova, E. A.

L. V. Katsnel’son, E. A. Sokolova, “Determination of the spread function of an infrared monochromator having a concave diffraction grating,” Sov. J. Opt. Technol. 53, 231–233 (1986).

E. A. Sokolova, Yu. I. Brainin, A. B. Ioannisiani, “Blazed holographic diffraction gratings,” (Soviet Institute of Technical and Scientific Information, Moscow, 1984).

E. A. Sokolova, S. D. A. Reyes Cortes, “Calculation and mathematical model computer experiments with optical mountings for recording and using holographic diffraction gratings,” in Optical Organic and Semiconductor Inorganic Materials, E. A. Silinsh, A. Medvid, A. R. Lusis, A. O. Ozols, eds., Proc. SPIE2968, 311–316 (1997).
[CrossRef]

Voke, J.

R. Fletcher, J. Voke, Defective Colour Vision (Adam Hilger, Bristol, UK, 1985), Chap. 14, pp. 513–516.

Wilson, I. J.

I. J. Wilson, L. C. Botten, R. C. McPhedran, “First, second and third order blazers of diffraction gratings,” J. Opt. (Paris) 8, 214–229 (1977).
[CrossRef]

Yakovlev, E. A.

S. A. Masalov, E. A. Yakovlev, “Reflection characteristics of echellett in polarized light for autocollimation mounting,” Opt. Spectrosc. (USSR), 43, 1129–1137 (1977).

Appl. Opt. (1)

E. G. Loewen, M. Nevière, D. Maystre, “Grating efficiency theory as it applies to blazed and holographic gratings,” Appl. Opt. 16, 2711–2721 (1977).
[CrossRef] [PubMed]

Appl. Opt. (2)

J. Opt. Soc. Am. (1)

D. J. Michels, “Change of blaze wavelength as a function of position on the surface of a concave grating,” J. Opt. Soc. Am. 64, 662–666 (1974).
[CrossRef]

J. Opt. (Paris) (1)

I. J. Wilson, L. C. Botten, R. C. McPhedran, “First, second and third order blazers of diffraction gratings,” J. Opt. (Paris) 8, 214–229 (1977).
[CrossRef]

J. Opt. Soc. Am. (1)

News Crimea Astron. Observ. (1)

V. K. Prokofiev, “Relative efficiency distribution on the surface of concave diffraction grating with angle of blaze,” News Crimea Astron. Observ. 64, 198–200 (1981).

Opt. Spectrosc. (USSR) (1)

S. A. Masalov, E. A. Yakovlev, “Reflection characteristics of echellett in polarized light for autocollimation mounting,” Opt. Spectrosc. (USSR), 43, 1129–1137 (1977).

Sov. J. Opt. Technol. (2)

Y. V. Bazshanov, “Connection between the parameters of ruled and holographic concave diffraction gratings,” Sov. J. Opt. Technol. 46, 1–3 (1979).

L. V. Katsnel’son, E. A. Sokolova, “Determination of the spread function of an infrared monochromator having a concave diffraction grating,” Sov. J. Opt. Technol. 53, 231–233 (1986).

Other (7)

E. A. Sokolova, Yu. I. Brainin, A. B. Ioannisiani, “Blazed holographic diffraction gratings,” (Soviet Institute of Technical and Scientific Information, Moscow, 1984).

V. I. Malishev, Introduction to Experimental Spectroscopy (Nauka, Moscow, 1979), Chap. 3, pp. 254–274.

E. A. Sokolova, S. D. A. Reyes Cortes, “Calculation and mathematical model computer experiments with optical mountings for recording and using holographic diffraction gratings,” in Optical Organic and Semiconductor Inorganic Materials, E. A. Silinsh, A. Medvid, A. R. Lusis, A. O. Ozols, eds., Proc. SPIE2968, 311–316 (1997).
[CrossRef]

A. V. Luizov, Light and Colour (Energoatomizdat, Leningrad, 1989), Chap. 17, p. 190.

R. Fletcher, J. Voke, Defective Colour Vision (Adam Hilger, Bristol, UK, 1985), Chap. 14, pp. 513–516.

M. C. Hutley, Diffraction Gratings, 2nd ed. (Academic, San Diego, Calif., 1990), Chap. 5, pp. 156–173.

E. G. Loewen, “Diffraction gratings, ruled and holographic,” in Applied Optics and Optical Engineering, R. Shannon, ed. (Academic, New York, 1983), Vol. IX, Chap. 2, pp. 33–71.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Geometric relation among the elements of the illuminator.

Fig. 2
Fig. 2

Dependence of the angle of reflection γ on the angle of diffraction β.

Fig. 3
Fig. 3

Principal optical mounting of the device.

Fig. 4
Fig. 4

Dependence of defocusing Δr′ = r f ′ - r′ on the angle of diffraction.

Fig. 5
Fig. 5

Computer-generated spot diagrams and instrument functions for two wavelengths for the grating with equidistant grooves illuminated from its center of curvature.

Fig. 6
Fig. 6

Dependence of F 300 on the angle of diffraction.

Fig. 7
Fig. 7

Computer-generated spot diagrams and instrument functions for four wavelengths for the case of minimized defocusing and meridional coma aberrations.

Fig. 8
Fig. 8

Spectral distribution of F 120.

Fig. 9
Fig. 9

Computer-generated spot diagrams and instrument functions for the grating recorded in astigmatic beams.

Fig. 10
Fig. 10

Principal mounting for recording of the grating in astigmatic beams.

Fig. 11
Fig. 11

Spectral distribution of F 020.

Fig. 12
Fig. 12

Computer-generated spot diagrams and instrument functions for the grating recorded in astigmatic beams in astigmatic illumination.

Fig. 13
Fig. 13

Computer-generated spot diagrams and instrument functions for the toroidal grating recorded in stigmatic beams.

Fig. 14
Fig. 14

Optical mounting of the second part of the device, located after the exit slits of the monochromatic illuminator, showing modification for measuring the color sensitivity of the human eye.

Fig. 15
Fig. 15

Optical mounting of the second part of the device, located after the exit slits of the monochromatic illuminator, showing modification for measuring the efficiency of concave diffraction gratings.

Fig. 16
Fig. 16

Photograph of the mounting for measuring the efficiency of gratings with radii of curvature of 100–125 mm.

Fig. 17
Fig. 17

Experimental efficiency curves for a mechanically ruled diffraction grating with 1200 grooves/mm, a blaze angle of 18° in its center, a radius of curvature of 125 mm, and ruled area of 36 mm × 36 mm.

Tables (1)

Tables Icon

Table 1 Average Values of the Minimal Difference Δλ That Can Be Recognized by the Human Eye for Different Parts of the Spectrum for High Brightness and Large Fields

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

sin   β = m λ / d ,
m λ = d   sin 2 φ + γ .
r f = R   cos   β ,
r = r b 1 + r b   cos   γ sin   γ - sin   β / sin β + γ .
β r f - r 2 d β = min
r f = cos 2   β / cos   β + 1 / R - 1 / r ,
d = d 0 1 + ν y 2 ,
ν = - 3 A 300 / 2 R 2
β   F 300 2 d β = min ,
F 300 = 3 F y 3 y = 0
F 300 = sin   β ( - A 300 + R   cos   β - r b 1 + R   cos   β + r b   cos   γ sin   β - sin   γ / sin β + γ / r b 1 + r b   cos   γ sin   γ - sin   β / sin β + γ ) 2 ) ,
F 300 = ρ C   cos   δ 1   sin   δ 1 ρ C   cos   δ 1 - 1 - ρ D   cos   δ 2   sin   δ 2 ρ D   cos   δ 2 - 1 - A 300 λ 0 / d ,
ρ C = ρ D = ρ ,     cos   δ 1 = cos   δ 2 = cos   δ ,     sin   δ 1 = - sin   δ 2 ;
F 300 = 2 ρ   cos   δ   sin   δ ρ   cos   δ - 1 - A 300 λ 0 / d .
F 300 = 0 ,     2   sin   δ = λ 0 / d
F 020 = ρ - cos   δ - ρ + cos   δ - A 020 λ 0 / d = 0 ,     A 020 = 0 .
F 120 = 2 ρ   sin   δ ρ - cos   δ - A 120 λ 0 / d .
F 120 = ρ   sin   β ρ - cos   β - A 120   sin   β ,
β   F 120 2 d β = min
r m - r s = R   cos   α 1 - sec   2 α ,
r m - r s = - R   sin   δ   tan   2 δ ,
F 020 = ρ - 1 + ρ - cos   β ,
β   F 020 2 d β = min

Metrics