Abstract

Controllability of group-velocity dispersion (GVD) associated with supermodes of InGaAsP/InP semiconductor coupled-waveguide structures that consist of two dissimilar waveguides was experimentally demonstrated by a change in the spacing between structures. Pulse broadening and pulse compression were conducted to compare the GVD of two coupled waveguides with different spacings. These measurements show that, as the spacing increases, the peak values of the GVD of the coupled waveguide also increase; in contrast, their spectral bandwidths narrow. This experimental result is consistent with the theoretical prediction.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. R. Williams, I. Bennion, K. Sugden, N. J. Doran, “Fiber dispersion compensation using a chirped in-fiber Bragg grating,” Electron. Lett. 30, 985–987 (1994).
    [CrossRef]
  2. B. J. Eggleton, P. A. Krug, L. Poladian, K. A. Ahmed, H.-F. Liu, “Experimental demonstration of compression of dispersed optical pulses by reflection from self-chirped optical fiber Bragg gratings,” Opt. Lett. 19, 877–879 (1994).
    [CrossRef] [PubMed]
  3. N. M. Litchinitser, D. B. Patterson, “Analysis of fiber Bragg gratings for dispersion compensation in reflective and transmissive geometries,” J. Lightwave Technol. 15, 1323–1328 (1997).
    [CrossRef]
  4. F. Ouellette, “All-fiber filter for efficient dispersion compensation,” Opt. Lett. 16, 303–305 (1991).
    [CrossRef] [PubMed]
  5. F. Ouellette, “Limits of chirped pulse compression with an unchirped Bragg grating filter,” Appl. Opt. 29, 4826–4829 (1990).
    [CrossRef] [PubMed]
  6. B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, F. Ouellette, “Dispersion compensation using a fiber grating in transmission,” Electron. Lett. 32, 1610–1611 (1996).
    [CrossRef]
  7. N. M. Litchinister, B. J. Eggleton, D. B. Patterson, “Fiber Bragg gratings for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse recompression,” J. Lightwave Technol. 15, 1303–1313 (1997).
    [CrossRef]
  8. U. Peschel, T. Peschel, F. Lederer, “A compact device for highly efficient dispersion compensation in fiber transmission,” Appl. Phys. Lett. 67, 2111–2113 (1995).
    [CrossRef]
  9. Y. Lee, “Pulse compression using coupled-waveguide structures as highly dispersive elements,” Appl. Phys. Lett. 73, 2715–2717 (1998).
    [CrossRef]
  10. Y. Lee, A. P. Heberle, “Observation of enhanced group velocity dispersion in coupled waveguide structures,” J. Lightwave Technol. 17, 1049–1055 (1999).
    [CrossRef]
  11. Y. Lee, “A semiconductor coupled-waveguide structure as a dispersion compensator,” Jpn. J. Appl. Phys. 39, 1140–1145 (2000).
    [CrossRef]
  12. S. Adachi, “Optical properties of In1–xGaxAsyP1–y alloys,” Phys. Rev. B 39, 12612–12621 (1989).
    [CrossRef]

2000 (1)

Y. Lee, “A semiconductor coupled-waveguide structure as a dispersion compensator,” Jpn. J. Appl. Phys. 39, 1140–1145 (2000).
[CrossRef]

1999 (1)

1998 (1)

Y. Lee, “Pulse compression using coupled-waveguide structures as highly dispersive elements,” Appl. Phys. Lett. 73, 2715–2717 (1998).
[CrossRef]

1997 (2)

N. M. Litchinitser, D. B. Patterson, “Analysis of fiber Bragg gratings for dispersion compensation in reflective and transmissive geometries,” J. Lightwave Technol. 15, 1323–1328 (1997).
[CrossRef]

N. M. Litchinister, B. J. Eggleton, D. B. Patterson, “Fiber Bragg gratings for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse recompression,” J. Lightwave Technol. 15, 1303–1313 (1997).
[CrossRef]

1996 (1)

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, F. Ouellette, “Dispersion compensation using a fiber grating in transmission,” Electron. Lett. 32, 1610–1611 (1996).
[CrossRef]

1995 (1)

U. Peschel, T. Peschel, F. Lederer, “A compact device for highly efficient dispersion compensation in fiber transmission,” Appl. Phys. Lett. 67, 2111–2113 (1995).
[CrossRef]

1994 (2)

1991 (1)

1990 (1)

1989 (1)

S. Adachi, “Optical properties of In1–xGaxAsyP1–y alloys,” Phys. Rev. B 39, 12612–12621 (1989).
[CrossRef]

Adachi, S.

S. Adachi, “Optical properties of In1–xGaxAsyP1–y alloys,” Phys. Rev. B 39, 12612–12621 (1989).
[CrossRef]

Ahmed, K. A.

Bennion, I.

J. A. R. Williams, I. Bennion, K. Sugden, N. J. Doran, “Fiber dispersion compensation using a chirped in-fiber Bragg grating,” Electron. Lett. 30, 985–987 (1994).
[CrossRef]

Brodzeli, Z.

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, F. Ouellette, “Dispersion compensation using a fiber grating in transmission,” Electron. Lett. 32, 1610–1611 (1996).
[CrossRef]

Dhosi, G.

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, F. Ouellette, “Dispersion compensation using a fiber grating in transmission,” Electron. Lett. 32, 1610–1611 (1996).
[CrossRef]

Doran, N. J.

J. A. R. Williams, I. Bennion, K. Sugden, N. J. Doran, “Fiber dispersion compensation using a chirped in-fiber Bragg grating,” Electron. Lett. 30, 985–987 (1994).
[CrossRef]

Eggleton, B. J.

N. M. Litchinister, B. J. Eggleton, D. B. Patterson, “Fiber Bragg gratings for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse recompression,” J. Lightwave Technol. 15, 1303–1313 (1997).
[CrossRef]

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, F. Ouellette, “Dispersion compensation using a fiber grating in transmission,” Electron. Lett. 32, 1610–1611 (1996).
[CrossRef]

B. J. Eggleton, P. A. Krug, L. Poladian, K. A. Ahmed, H.-F. Liu, “Experimental demonstration of compression of dispersed optical pulses by reflection from self-chirped optical fiber Bragg gratings,” Opt. Lett. 19, 877–879 (1994).
[CrossRef] [PubMed]

Heberle, A. P.

Krug, P. A.

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, F. Ouellette, “Dispersion compensation using a fiber grating in transmission,” Electron. Lett. 32, 1610–1611 (1996).
[CrossRef]

B. J. Eggleton, P. A. Krug, L. Poladian, K. A. Ahmed, H.-F. Liu, “Experimental demonstration of compression of dispersed optical pulses by reflection from self-chirped optical fiber Bragg gratings,” Opt. Lett. 19, 877–879 (1994).
[CrossRef] [PubMed]

Lederer, F.

U. Peschel, T. Peschel, F. Lederer, “A compact device for highly efficient dispersion compensation in fiber transmission,” Appl. Phys. Lett. 67, 2111–2113 (1995).
[CrossRef]

Lee, Y.

Y. Lee, “A semiconductor coupled-waveguide structure as a dispersion compensator,” Jpn. J. Appl. Phys. 39, 1140–1145 (2000).
[CrossRef]

Y. Lee, A. P. Heberle, “Observation of enhanced group velocity dispersion in coupled waveguide structures,” J. Lightwave Technol. 17, 1049–1055 (1999).
[CrossRef]

Y. Lee, “Pulse compression using coupled-waveguide structures as highly dispersive elements,” Appl. Phys. Lett. 73, 2715–2717 (1998).
[CrossRef]

Litchinister, N. M.

N. M. Litchinister, B. J. Eggleton, D. B. Patterson, “Fiber Bragg gratings for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse recompression,” J. Lightwave Technol. 15, 1303–1313 (1997).
[CrossRef]

Litchinitser, N. M.

N. M. Litchinitser, D. B. Patterson, “Analysis of fiber Bragg gratings for dispersion compensation in reflective and transmissive geometries,” J. Lightwave Technol. 15, 1323–1328 (1997).
[CrossRef]

Liu, H.-F.

Ouellette, F.

Patterson, D. B.

N. M. Litchinister, B. J. Eggleton, D. B. Patterson, “Fiber Bragg gratings for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse recompression,” J. Lightwave Technol. 15, 1303–1313 (1997).
[CrossRef]

N. M. Litchinitser, D. B. Patterson, “Analysis of fiber Bragg gratings for dispersion compensation in reflective and transmissive geometries,” J. Lightwave Technol. 15, 1323–1328 (1997).
[CrossRef]

Peschel, T.

U. Peschel, T. Peschel, F. Lederer, “A compact device for highly efficient dispersion compensation in fiber transmission,” Appl. Phys. Lett. 67, 2111–2113 (1995).
[CrossRef]

Peschel, U.

U. Peschel, T. Peschel, F. Lederer, “A compact device for highly efficient dispersion compensation in fiber transmission,” Appl. Phys. Lett. 67, 2111–2113 (1995).
[CrossRef]

Poladian, L.

Stephens, T.

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, F. Ouellette, “Dispersion compensation using a fiber grating in transmission,” Electron. Lett. 32, 1610–1611 (1996).
[CrossRef]

Sugden, K.

J. A. R. Williams, I. Bennion, K. Sugden, N. J. Doran, “Fiber dispersion compensation using a chirped in-fiber Bragg grating,” Electron. Lett. 30, 985–987 (1994).
[CrossRef]

Williams, J. A. R.

J. A. R. Williams, I. Bennion, K. Sugden, N. J. Doran, “Fiber dispersion compensation using a chirped in-fiber Bragg grating,” Electron. Lett. 30, 985–987 (1994).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

U. Peschel, T. Peschel, F. Lederer, “A compact device for highly efficient dispersion compensation in fiber transmission,” Appl. Phys. Lett. 67, 2111–2113 (1995).
[CrossRef]

Y. Lee, “Pulse compression using coupled-waveguide structures as highly dispersive elements,” Appl. Phys. Lett. 73, 2715–2717 (1998).
[CrossRef]

Electron. Lett. (2)

J. A. R. Williams, I. Bennion, K. Sugden, N. J. Doran, “Fiber dispersion compensation using a chirped in-fiber Bragg grating,” Electron. Lett. 30, 985–987 (1994).
[CrossRef]

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, F. Ouellette, “Dispersion compensation using a fiber grating in transmission,” Electron. Lett. 32, 1610–1611 (1996).
[CrossRef]

J. Lightwave Technol. (3)

N. M. Litchinister, B. J. Eggleton, D. B. Patterson, “Fiber Bragg gratings for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse recompression,” J. Lightwave Technol. 15, 1303–1313 (1997).
[CrossRef]

N. M. Litchinitser, D. B. Patterson, “Analysis of fiber Bragg gratings for dispersion compensation in reflective and transmissive geometries,” J. Lightwave Technol. 15, 1323–1328 (1997).
[CrossRef]

Y. Lee, A. P. Heberle, “Observation of enhanced group velocity dispersion in coupled waveguide structures,” J. Lightwave Technol. 17, 1049–1055 (1999).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Lee, “A semiconductor coupled-waveguide structure as a dispersion compensator,” Jpn. J. Appl. Phys. 39, 1140–1145 (2000).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. B (1)

S. Adachi, “Optical properties of In1–xGaxAsyP1–y alloys,” Phys. Rev. B 39, 12612–12621 (1989).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Cross-sectional schematic of the coupled-waveguide structures used for the measurements: W = 0.8 and 1.5 µm. (b) Calculated GVD of the supermodes in the coupled waveguides.

Fig. 2
Fig. 2

Schematic view of the basic measurement setup used for pulse broadening and pulse compression.

Fig. 3
Fig. 3

(a) Measured autocorrelation signal of the output pulse from the 0.8-µm coupled waveguide (1-mm length) together with that of the input pulse: F B , broadening factor. (b) Measured autocorrelation signal of the output pulse from the 1.5-µm coupled waveguide (1-mm length) together with that of the input pulse.

Fig. 4
Fig. 4

Measured FWHM (obtained with the pulse-compression measurement) of the autocorrelation (ac) signal as a function of waveguide length.

Fig. 5
Fig. 5

Measured autocorrelation signals (obtained with the pulse-compression measurement) of the output pulses from 0.8- and 1.5-µm coupled waveguides with a 1-mm length. The outermost curve represents the autocorrelation signals of the input pulse. F N denotes the narrowing factor.

Fig. 6
Fig. 6

Calculated FWHM of the autocorrelation (ac) signal as a function of waveguide length.

Fig. 7
Fig. 7

GVD of the coupled waveguides that were calculated with the effective indices of the supermodes in the numerical simulations. λ r denotes the central wavelength of the GVD supermodes.

Metrics