Abstract

Frequency-modulation spectroscopy provides ultrasensitive absorption measurements. The technique is especially adaptable to diode lasers, which can be modulated easily, and has been used extensively in the near-infrared and infrared spectral regions. The availability of blue diode lasers now means that the accessible wavelength region can be increased. We successfully demonstrate wavelength-modulation spectroscopy and two-tone frequency-modulation spectroscopy for the weak second resonance line of potassium at 404.8 nm and for the transition at 405.8 nm in lead, starting from the thermally populated 6p 2 3 P 2 metastable level. Information on the modulation parameters is obtained with a fitting procedure. Experimental signal-to-noise ratios at different absorption levels are compared with theoretical signal-to-noise ratios and show good agreement. Detection sensitivities of 2 × 10-6 and 5 × 10-6 for wavelength and two-tone frequency-modulation spectroscopy, respectively, for a 120-Hz bandwidth are demonstrated.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Werle, R. Mücke, F. D. Amato, T. Lancia, “Near-infrared trace-gas sensor based on room-temperature diode lasers,” Appl. Phys. B 67, 307–315 (1998).
    [CrossRef]
  2. G. Modugno, C. Corsi, M. Gabrysch, M. Inguscio, “Detection of H2S at ppm level using a telecommunication diode laser,” Opt. Commun. 145, 76–80 (1998).
    [CrossRef]
  3. H. Riris, C. B. Carlisle, D. F. McMillen, D. E. Cooper, “Explosives detection with a frequency modulation spectrometer,” Appl. Opt. 35, 4694–4704 (1996).
    [CrossRef] [PubMed]
  4. J. A. Silver, D. J. Kane, P. S. Greenberg, “Quantitative species measurements in microgravity flames with near-IR diode lasers,” Appl. Opt. 34, 2787–2801 (1995).
    [CrossRef] [PubMed]
  5. P. Kauranen, H. M. Hertz, S. Svanberg, “Tomographic imaging of fluid flows by the use of two-tone frequency-modulation spectroscopy,” Opt. Lett. 19, 1489–1491 (1994).
    [CrossRef] [PubMed]
  6. P. Kauranen, I. Harwigsson, B. Jönsson, “Relative vapor pressure measurements using a frequency-modulated tunable diode laser, a tool for water activity determination in solutions,” J. Phys. Chem. 98, 1411–1415 (1994).
    [CrossRef]
  7. E. G. Moses, C. L. Tang, “High sensitivity laser wavelength modulation spectroscopy,” Opt. Lett. 1, 115–117 (1977).
    [CrossRef] [PubMed]
  8. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980).
    [CrossRef] [PubMed]
  9. G. R. Janik, C. B. Carlisle, T. F. Gallagher, “Two-tone frequency-modulation spectroscopy,” J. Opt. Soc. Am. B 3, 1070–1074 (1986).
    [CrossRef]
  10. D. S. Bomse, A. C. Stanton, J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992).
    [CrossRef] [PubMed]
  11. F. S. Pavone, M. Inguscio, “Frequency- and wavelength-modulation spectroscopies: comparison of experimental methods using and AlGaAs diode laser,” Appl. Phys. B 56, 118–122 (1993).
    [CrossRef]
  12. D. E. Cooper, R. U. Martinelli, C. B. Carlisle, H. Riris, D. B. Bour, R. J. Menna, “Measurement of 12CO2: 13CO2 ratios for medical diagnostics with 1.6-µm distributed-feedback semiconductor diode lasers,” Appl. Opt. 32, 6727–6731 (1993).
    [CrossRef] [PubMed]
  13. G. Modugno, C. Corsi, M. Gabrysch, F. Marin, M. Inguscio, “Fundamental noise sources in a high-sensitivity two-tone frequency modulation spectrometer and detection of CO2 at 1.6 µm and 2 µm,” Appl. Phys. B 67, 289–296 (1998).
    [CrossRef]
  14. C. B. Carlisle, D. E. Cooper, H. Preier, “Quantum noise-limited FM spectroscopy with a lead-salt diode laser,” Appl. Opt. 28, 2567–2576 (1989).
    [CrossRef] [PubMed]
  15. C. B. Carlisle, D. E. Cooper, “Tunable-diode-laser frequency-modulation spectroscopy using balanced homodyne detection,” Opt. Lett. 14, 1306–1308 (1989).
    [CrossRef] [PubMed]
  16. P. Werle, F. Slemr, M. Gehrtz, C. Bräuchle, “Quantum-limited FM-spectroscopy with a lead salt diode laser,” Appl. Phys. B 49, 99–108 (1989).
    [CrossRef]
  17. M. Gehrtz, G. C. Bjorklund, E. A. Whittaker, “Quantum-limited laser frequency-modulation spectroscopy,” J. Opt. Soc. Am. B 2, 1510–1526 (1985).
    [CrossRef]
  18. S. Nakamura, G. Fasol, The Blue Laser Diodes (Springer-Verlag, Heidelberg, 1997).
    [CrossRef]
  19. U. Gustafsson, J. Alnis, S. Svanberg, “Atomic spectroscopy with violet laser diodes,” Am. J. Phys. (to be published).
  20. P. Kauranen, V. G. Avetisov, “Determination of absorption line parameters using two-tone frequency-modulation spectroscopy with diode lasers,” Opt. Commun. 106, 213–217 (1994).
    [CrossRef]
  21. V. G. Avetisov, P. Kauranen, “High-resolution absorption measurements using two-tone frequency-modulation spectroscopy with diode lasers,” Appl. Opt. 36, 4043–4054 (1997).
    [CrossRef] [PubMed]
  22. V. G. Avetisov, P. Kauranen, “Two-tone frequency-modulation spectroscopy for quantitative measurements of gaseous species: theoretical, numerical, and experimental investigation of line shapes,” Appl. Opt. 35, 4705–4723 (1996).
    [CrossRef] [PubMed]
  23. E. Arimondo, M. Inguscio, P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49, 31–75 (1977).
    [CrossRef]
  24. D. E. Cooper, R. E. Warren, “Frequency modulation spectroscopy with lead-salt diode lasers: a comparison of single-tone and two-tone techniques,” Appl. Opt. 26, 3726–3732 (1987).
    [CrossRef] [PubMed]
  25. J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992).
    [CrossRef] [PubMed]
  26. J. M. Supplee, E. A. Whittaker, W. Lenth, “Theoretical description of frequency modulation and wavelength modulation spectroscopy,” Appl. Opt. 33, 6294–6302 (1993).
    [CrossRef]
  27. W. Lenth, “High frequency heterodyne spectroscopy with current-modulated diode lasers,” IEEE J. Quantum Electron. QE-20, 1045–1050 (1984).
    [CrossRef]
  28. S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, “Direct frequency modulation in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 582–595 (1982).
    [CrossRef]
  29. M. Osinski, J. Buus, “Linewidth broadening factors in semiconductor lasers: an overview,” IEEE J. Quantum Electron. QE-23, 9–29 (1987).
    [CrossRef]
  30. J. Alnis, U. Gustafsson, G. Somesfalean, S. Svanberg, “Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm,” Appl. Phys. Lett. 76, 1234–1236 (2000).
    [CrossRef]

2000 (1)

J. Alnis, U. Gustafsson, G. Somesfalean, S. Svanberg, “Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm,” Appl. Phys. Lett. 76, 1234–1236 (2000).
[CrossRef]

1998 (3)

P. Werle, R. Mücke, F. D. Amato, T. Lancia, “Near-infrared trace-gas sensor based on room-temperature diode lasers,” Appl. Phys. B 67, 307–315 (1998).
[CrossRef]

G. Modugno, C. Corsi, M. Gabrysch, M. Inguscio, “Detection of H2S at ppm level using a telecommunication diode laser,” Opt. Commun. 145, 76–80 (1998).
[CrossRef]

G. Modugno, C. Corsi, M. Gabrysch, F. Marin, M. Inguscio, “Fundamental noise sources in a high-sensitivity two-tone frequency modulation spectrometer and detection of CO2 at 1.6 µm and 2 µm,” Appl. Phys. B 67, 289–296 (1998).
[CrossRef]

1997 (1)

1996 (2)

1995 (1)

1994 (3)

P. Kauranen, I. Harwigsson, B. Jönsson, “Relative vapor pressure measurements using a frequency-modulated tunable diode laser, a tool for water activity determination in solutions,” J. Phys. Chem. 98, 1411–1415 (1994).
[CrossRef]

P. Kauranen, V. G. Avetisov, “Determination of absorption line parameters using two-tone frequency-modulation spectroscopy with diode lasers,” Opt. Commun. 106, 213–217 (1994).
[CrossRef]

P. Kauranen, H. M. Hertz, S. Svanberg, “Tomographic imaging of fluid flows by the use of two-tone frequency-modulation spectroscopy,” Opt. Lett. 19, 1489–1491 (1994).
[CrossRef] [PubMed]

1993 (3)

1992 (2)

1989 (3)

1987 (2)

D. E. Cooper, R. E. Warren, “Frequency modulation spectroscopy with lead-salt diode lasers: a comparison of single-tone and two-tone techniques,” Appl. Opt. 26, 3726–3732 (1987).
[CrossRef] [PubMed]

M. Osinski, J. Buus, “Linewidth broadening factors in semiconductor lasers: an overview,” IEEE J. Quantum Electron. QE-23, 9–29 (1987).
[CrossRef]

1986 (1)

1985 (1)

1984 (1)

W. Lenth, “High frequency heterodyne spectroscopy with current-modulated diode lasers,” IEEE J. Quantum Electron. QE-20, 1045–1050 (1984).
[CrossRef]

1982 (1)

S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, “Direct frequency modulation in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 582–595 (1982).
[CrossRef]

1980 (1)

1977 (2)

E. G. Moses, C. L. Tang, “High sensitivity laser wavelength modulation spectroscopy,” Opt. Lett. 1, 115–117 (1977).
[CrossRef] [PubMed]

E. Arimondo, M. Inguscio, P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49, 31–75 (1977).
[CrossRef]

Alnis, J.

J. Alnis, U. Gustafsson, G. Somesfalean, S. Svanberg, “Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm,” Appl. Phys. Lett. 76, 1234–1236 (2000).
[CrossRef]

U. Gustafsson, J. Alnis, S. Svanberg, “Atomic spectroscopy with violet laser diodes,” Am. J. Phys. (to be published).

Amato, F. D.

P. Werle, R. Mücke, F. D. Amato, T. Lancia, “Near-infrared trace-gas sensor based on room-temperature diode lasers,” Appl. Phys. B 67, 307–315 (1998).
[CrossRef]

Arimondo, E.

E. Arimondo, M. Inguscio, P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49, 31–75 (1977).
[CrossRef]

Avetisov, V. G.

Bjorklund, G. C.

Bomse, D. S.

Bour, D. B.

Bräuchle, C.

P. Werle, F. Slemr, M. Gehrtz, C. Bräuchle, “Quantum-limited FM-spectroscopy with a lead salt diode laser,” Appl. Phys. B 49, 99–108 (1989).
[CrossRef]

Buus, J.

M. Osinski, J. Buus, “Linewidth broadening factors in semiconductor lasers: an overview,” IEEE J. Quantum Electron. QE-23, 9–29 (1987).
[CrossRef]

Carlisle, C. B.

Cooper, D. E.

Corsi, C.

G. Modugno, C. Corsi, M. Gabrysch, M. Inguscio, “Detection of H2S at ppm level using a telecommunication diode laser,” Opt. Commun. 145, 76–80 (1998).
[CrossRef]

G. Modugno, C. Corsi, M. Gabrysch, F. Marin, M. Inguscio, “Fundamental noise sources in a high-sensitivity two-tone frequency modulation spectrometer and detection of CO2 at 1.6 µm and 2 µm,” Appl. Phys. B 67, 289–296 (1998).
[CrossRef]

Fasol, G.

S. Nakamura, G. Fasol, The Blue Laser Diodes (Springer-Verlag, Heidelberg, 1997).
[CrossRef]

Gabrysch, M.

G. Modugno, C. Corsi, M. Gabrysch, F. Marin, M. Inguscio, “Fundamental noise sources in a high-sensitivity two-tone frequency modulation spectrometer and detection of CO2 at 1.6 µm and 2 µm,” Appl. Phys. B 67, 289–296 (1998).
[CrossRef]

G. Modugno, C. Corsi, M. Gabrysch, M. Inguscio, “Detection of H2S at ppm level using a telecommunication diode laser,” Opt. Commun. 145, 76–80 (1998).
[CrossRef]

Gallagher, T. F.

Gehrtz, M.

P. Werle, F. Slemr, M. Gehrtz, C. Bräuchle, “Quantum-limited FM-spectroscopy with a lead salt diode laser,” Appl. Phys. B 49, 99–108 (1989).
[CrossRef]

M. Gehrtz, G. C. Bjorklund, E. A. Whittaker, “Quantum-limited laser frequency-modulation spectroscopy,” J. Opt. Soc. Am. B 2, 1510–1526 (1985).
[CrossRef]

Greenberg, P. S.

Gustafsson, U.

J. Alnis, U. Gustafsson, G. Somesfalean, S. Svanberg, “Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm,” Appl. Phys. Lett. 76, 1234–1236 (2000).
[CrossRef]

U. Gustafsson, J. Alnis, S. Svanberg, “Atomic spectroscopy with violet laser diodes,” Am. J. Phys. (to be published).

Harwigsson, I.

P. Kauranen, I. Harwigsson, B. Jönsson, “Relative vapor pressure measurements using a frequency-modulated tunable diode laser, a tool for water activity determination in solutions,” J. Phys. Chem. 98, 1411–1415 (1994).
[CrossRef]

Hertz, H. M.

Inguscio, M.

G. Modugno, C. Corsi, M. Gabrysch, M. Inguscio, “Detection of H2S at ppm level using a telecommunication diode laser,” Opt. Commun. 145, 76–80 (1998).
[CrossRef]

G. Modugno, C. Corsi, M. Gabrysch, F. Marin, M. Inguscio, “Fundamental noise sources in a high-sensitivity two-tone frequency modulation spectrometer and detection of CO2 at 1.6 µm and 2 µm,” Appl. Phys. B 67, 289–296 (1998).
[CrossRef]

F. S. Pavone, M. Inguscio, “Frequency- and wavelength-modulation spectroscopies: comparison of experimental methods using and AlGaAs diode laser,” Appl. Phys. B 56, 118–122 (1993).
[CrossRef]

E. Arimondo, M. Inguscio, P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49, 31–75 (1977).
[CrossRef]

Ito, M.

S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, “Direct frequency modulation in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 582–595 (1982).
[CrossRef]

Janik, G. R.

Jönsson, B.

P. Kauranen, I. Harwigsson, B. Jönsson, “Relative vapor pressure measurements using a frequency-modulated tunable diode laser, a tool for water activity determination in solutions,” J. Phys. Chem. 98, 1411–1415 (1994).
[CrossRef]

Kane, D. J.

Kauranen, P.

Kimura, T.

S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, “Direct frequency modulation in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 582–595 (1982).
[CrossRef]

Kobayashi, S.

S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, “Direct frequency modulation in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 582–595 (1982).
[CrossRef]

Lancia, T.

P. Werle, R. Mücke, F. D. Amato, T. Lancia, “Near-infrared trace-gas sensor based on room-temperature diode lasers,” Appl. Phys. B 67, 307–315 (1998).
[CrossRef]

Lenth, W.

J. M. Supplee, E. A. Whittaker, W. Lenth, “Theoretical description of frequency modulation and wavelength modulation spectroscopy,” Appl. Opt. 33, 6294–6302 (1993).
[CrossRef]

W. Lenth, “High frequency heterodyne spectroscopy with current-modulated diode lasers,” IEEE J. Quantum Electron. QE-20, 1045–1050 (1984).
[CrossRef]

Marin, F.

G. Modugno, C. Corsi, M. Gabrysch, F. Marin, M. Inguscio, “Fundamental noise sources in a high-sensitivity two-tone frequency modulation spectrometer and detection of CO2 at 1.6 µm and 2 µm,” Appl. Phys. B 67, 289–296 (1998).
[CrossRef]

Martinelli, R. U.

McMillen, D. F.

Menna, R. J.

Modugno, G.

G. Modugno, C. Corsi, M. Gabrysch, F. Marin, M. Inguscio, “Fundamental noise sources in a high-sensitivity two-tone frequency modulation spectrometer and detection of CO2 at 1.6 µm and 2 µm,” Appl. Phys. B 67, 289–296 (1998).
[CrossRef]

G. Modugno, C. Corsi, M. Gabrysch, M. Inguscio, “Detection of H2S at ppm level using a telecommunication diode laser,” Opt. Commun. 145, 76–80 (1998).
[CrossRef]

Moses, E. G.

Mücke, R.

P. Werle, R. Mücke, F. D. Amato, T. Lancia, “Near-infrared trace-gas sensor based on room-temperature diode lasers,” Appl. Phys. B 67, 307–315 (1998).
[CrossRef]

Nakamura, S.

S. Nakamura, G. Fasol, The Blue Laser Diodes (Springer-Verlag, Heidelberg, 1997).
[CrossRef]

Osinski, M.

M. Osinski, J. Buus, “Linewidth broadening factors in semiconductor lasers: an overview,” IEEE J. Quantum Electron. QE-23, 9–29 (1987).
[CrossRef]

Pavone, F. S.

F. S. Pavone, M. Inguscio, “Frequency- and wavelength-modulation spectroscopies: comparison of experimental methods using and AlGaAs diode laser,” Appl. Phys. B 56, 118–122 (1993).
[CrossRef]

Preier, H.

Riris, H.

Silver, J. A.

Slemr, F.

P. Werle, F. Slemr, M. Gehrtz, C. Bräuchle, “Quantum-limited FM-spectroscopy with a lead salt diode laser,” Appl. Phys. B 49, 99–108 (1989).
[CrossRef]

Somesfalean, G.

J. Alnis, U. Gustafsson, G. Somesfalean, S. Svanberg, “Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm,” Appl. Phys. Lett. 76, 1234–1236 (2000).
[CrossRef]

Stanton, A. C.

Supplee, J. M.

Svanberg, S.

J. Alnis, U. Gustafsson, G. Somesfalean, S. Svanberg, “Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm,” Appl. Phys. Lett. 76, 1234–1236 (2000).
[CrossRef]

P. Kauranen, H. M. Hertz, S. Svanberg, “Tomographic imaging of fluid flows by the use of two-tone frequency-modulation spectroscopy,” Opt. Lett. 19, 1489–1491 (1994).
[CrossRef] [PubMed]

U. Gustafsson, J. Alnis, S. Svanberg, “Atomic spectroscopy with violet laser diodes,” Am. J. Phys. (to be published).

Tang, C. L.

Violino, P.

E. Arimondo, M. Inguscio, P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49, 31–75 (1977).
[CrossRef]

Warren, R. E.

Werle, P.

P. Werle, R. Mücke, F. D. Amato, T. Lancia, “Near-infrared trace-gas sensor based on room-temperature diode lasers,” Appl. Phys. B 67, 307–315 (1998).
[CrossRef]

P. Werle, F. Slemr, M. Gehrtz, C. Bräuchle, “Quantum-limited FM-spectroscopy with a lead salt diode laser,” Appl. Phys. B 49, 99–108 (1989).
[CrossRef]

Whittaker, E. A.

Yamamoto, Y.

S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, “Direct frequency modulation in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 582–595 (1982).
[CrossRef]

Appl. Opt. (10)

D. E. Cooper, R. E. Warren, “Frequency modulation spectroscopy with lead-salt diode lasers: a comparison of single-tone and two-tone techniques,” Appl. Opt. 26, 3726–3732 (1987).
[CrossRef] [PubMed]

C. B. Carlisle, D. E. Cooper, H. Preier, “Quantum noise-limited FM spectroscopy with a lead-salt diode laser,” Appl. Opt. 28, 2567–2576 (1989).
[CrossRef] [PubMed]

J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992).
[CrossRef] [PubMed]

D. S. Bomse, A. C. Stanton, J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992).
[CrossRef] [PubMed]

D. E. Cooper, R. U. Martinelli, C. B. Carlisle, H. Riris, D. B. Bour, R. J. Menna, “Measurement of 12CO2: 13CO2 ratios for medical diagnostics with 1.6-µm distributed-feedback semiconductor diode lasers,” Appl. Opt. 32, 6727–6731 (1993).
[CrossRef] [PubMed]

J. M. Supplee, E. A. Whittaker, W. Lenth, “Theoretical description of frequency modulation and wavelength modulation spectroscopy,” Appl. Opt. 33, 6294–6302 (1993).
[CrossRef]

V. G. Avetisov, P. Kauranen, “High-resolution absorption measurements using two-tone frequency-modulation spectroscopy with diode lasers,” Appl. Opt. 36, 4043–4054 (1997).
[CrossRef] [PubMed]

J. A. Silver, D. J. Kane, P. S. Greenberg, “Quantitative species measurements in microgravity flames with near-IR diode lasers,” Appl. Opt. 34, 2787–2801 (1995).
[CrossRef] [PubMed]

H. Riris, C. B. Carlisle, D. F. McMillen, D. E. Cooper, “Explosives detection with a frequency modulation spectrometer,” Appl. Opt. 35, 4694–4704 (1996).
[CrossRef] [PubMed]

V. G. Avetisov, P. Kauranen, “Two-tone frequency-modulation spectroscopy for quantitative measurements of gaseous species: theoretical, numerical, and experimental investigation of line shapes,” Appl. Opt. 35, 4705–4723 (1996).
[CrossRef] [PubMed]

Appl. Phys. B (4)

F. S. Pavone, M. Inguscio, “Frequency- and wavelength-modulation spectroscopies: comparison of experimental methods using and AlGaAs diode laser,” Appl. Phys. B 56, 118–122 (1993).
[CrossRef]

G. Modugno, C. Corsi, M. Gabrysch, F. Marin, M. Inguscio, “Fundamental noise sources in a high-sensitivity two-tone frequency modulation spectrometer and detection of CO2 at 1.6 µm and 2 µm,” Appl. Phys. B 67, 289–296 (1998).
[CrossRef]

P. Werle, F. Slemr, M. Gehrtz, C. Bräuchle, “Quantum-limited FM-spectroscopy with a lead salt diode laser,” Appl. Phys. B 49, 99–108 (1989).
[CrossRef]

P. Werle, R. Mücke, F. D. Amato, T. Lancia, “Near-infrared trace-gas sensor based on room-temperature diode lasers,” Appl. Phys. B 67, 307–315 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

J. Alnis, U. Gustafsson, G. Somesfalean, S. Svanberg, “Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm,” Appl. Phys. Lett. 76, 1234–1236 (2000).
[CrossRef]

IEEE J. Quantum Electron. (3)

W. Lenth, “High frequency heterodyne spectroscopy with current-modulated diode lasers,” IEEE J. Quantum Electron. QE-20, 1045–1050 (1984).
[CrossRef]

S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, “Direct frequency modulation in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 582–595 (1982).
[CrossRef]

M. Osinski, J. Buus, “Linewidth broadening factors in semiconductor lasers: an overview,” IEEE J. Quantum Electron. QE-23, 9–29 (1987).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. (1)

P. Kauranen, I. Harwigsson, B. Jönsson, “Relative vapor pressure measurements using a frequency-modulated tunable diode laser, a tool for water activity determination in solutions,” J. Phys. Chem. 98, 1411–1415 (1994).
[CrossRef]

Opt. Commun. (2)

G. Modugno, C. Corsi, M. Gabrysch, M. Inguscio, “Detection of H2S at ppm level using a telecommunication diode laser,” Opt. Commun. 145, 76–80 (1998).
[CrossRef]

P. Kauranen, V. G. Avetisov, “Determination of absorption line parameters using two-tone frequency-modulation spectroscopy with diode lasers,” Opt. Commun. 106, 213–217 (1994).
[CrossRef]

Opt. Lett. (4)

Rev. Mod. Phys. (1)

E. Arimondo, M. Inguscio, P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49, 31–75 (1977).
[CrossRef]

Other (2)

S. Nakamura, G. Fasol, The Blue Laser Diodes (Springer-Verlag, Heidelberg, 1997).
[CrossRef]

U. Gustafsson, J. Alnis, S. Svanberg, “Atomic spectroscopy with violet laser diodes,” Am. J. Phys. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for direct absorption spectroscopy, WMS, and TTFMS of potassium and lead vapor in sealed-off cells.

Fig. 2
Fig. 2

(a) Direct absorption and (b) TTFMS spectra of the 4s 2 S 1/2–5p 2 P 3/2 line at 404.8 nm recorded with a rectangular current pulse. (c) Corresponding recording of the Fabry–Perot etalon fringes.

Fig. 3
Fig. 3

Linearized (a) WMS and (b) TTFMS recordings for potassium at two cell temperatures.

Fig. 4
Fig. 4

Linearized (a) WMS and (b) TTFMS recordings of the lead 405.8-nm line. Inset, diagram of the structure of lead.

Fig. 5
Fig. 5

Observed (symbols) and calculated (solid curves) line shapes for (a) WMS and (b) TTFMS of the potassium transition. The modulation parameters are β = 230 and M = 0.045 for WMS and β = 1.0 and M = 0.035 for TTFMS.

Fig. 6
Fig. 6

Experimentally deduced SNR’s for WMS (diamonds) and TTFMS (triangles) for potassium together with theoretical curves calculated from Eq. (1) and the parameter values mentioned in the text.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

SNRP=ist2isn2+ith2+iRAM2+iex2=eηhν22P02|Qα, φ|22 e2ηhν P01+M22NΔf+4kTRL Δf+eηhν22RMσp2+eηhν2Δffb σex2,

Metrics