Abstract

The stimulated Raman-scattering (SRS) gain coefficient has been measured quantitatively for the first time to our knowledge in Yb:Sr5(PO4)3F to be 1.23 ± 0.12 cm/GW at 1053 nm. These data, along with surface and bulk losses, feedback that is due to surface reflections, gain saturation, and bandwidth, have been applied to a quantitative model that predicts the effects of SRS within a laser amplifier system where the laser gain media show SRS gain. Limitations and impact to the laser amplifier performance are discussed, along with possible techniques to reduce SRS loss.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. D. Marshall, L. K. Smith, R. J. Beach, M. A. Emanuel, K. I. Schaffers, J. Skidmore, S. A. Payne, B. H. T. Chai, “Diode-pumped ytterbium-doped Sr5(PO4)3F laser performance,” IEEE J. Quantum Electron. 32, 650–656 (1996).
    [CrossRef]
  2. M. R. Dickinson, L. A. W. Gloster, N. W. Hopps, T. A. King, “Continuous-wave diode-pumped Yb3+:S-FAP laser,” Opt. Commun. 132, 275–278 (1996).
    [CrossRef]
  3. C. Bibeau, I. L. Bass, R. J. Beach, L. K. Smith, C. D. Marshall, S. C. Mitchell, S. A. Payne, “Performance of a Q-switched Yb:Sr5(PO4)3F laser,” in Advanced Solid-State Lasers, Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 19–21.
  4. J. W. Pierce, R. D. Mead, “Yb:S-FAP laser performance,” in Solid-State Lasers VI, R. Scheps, ed., Proc. SPIE2986, 19–28 (1997).
    [CrossRef]
  5. L. Xiao, R. Shuangchen, T. Yhu-Ping, “Mode-locked Yb:S-FAP laser,” Acta Photon. Sin. 26, 1007–1014 (1997).
  6. L. A. W. Gloster, P. Cormont, A. M. Cox, T. A. King, B. H. T. Chai, “Diode-pumped Q-switched Yb:S-FAP laser,” Opt. Commun. 146, 177–180 (1998).
    [CrossRef]
  7. C. D. Marshall, S. A. Payne, L. K. Smith, H. T. Powell, W. F. Krupke, B. H. T. Chai, “1.047-µm Yb:Sr5(PO4)3F energy storage optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 1, 67–77 (1995).
    [CrossRef]
  8. C. D. Orth, S. A. Payne, W. F. Krupke, “A diode pumped solid state laser driver for inertial fusion energy,” Nucl. Fusion 36, 75–116 (1996).
    [CrossRef]
  9. C. Marshall, C. Bibeau, A. Bayramian, R. Beach, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, E. Honea, B. Krupke, J. Lawson, C. Orth, S. Payne, C. Petty, H. Powell, K. Schaffers, J. Skidmore, L. Smith, S. Sutton, S. Telford, “Next-generation laser for inertial confinement fusion,” in Advanced Solid State Lasers, W. R. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 318–325.
  10. L. C. Kravitz, J. D. Kingsley, E. L. Elkin, “Raman and infrared studies of coupled PO4-3 vibrations,” J. Chem. Phys. 49, 4600–4610 (1968).
    [CrossRef]
  11. M. J. Weber, ed., CRC Handbook of Laser Science and Technology, Supplement 2: Optical Materials, (CRC Press, Boca Raton, Fla., 1995), pp. 334–364.
  12. J. T. Verdeyen, Laser Electronics, 3rd ed. (Prentice-Hall, Englewood Cliffs, N.J., 1995), pp. 651–660.
  13. Ref. 11, Vol. 3, Optical Materials Part 1, pp. 283–294.
  14. T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, R. C. Powell, “Raman spectroscopy of crystals for stimulated Raman scattering,” Opt. Mater. 11, 307–314 (1999).
    [CrossRef]
  15. R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992), pp. 287–298, 365–397.
  16. A. K. McQuillan, W. R. L. Clements, B. P. Stiocheff, “Stimulated Raman emission in diamond: spectrum, gain, and angular distribution of intensity,” Phys. Rev. A 1(2), 628–635 (1970).
    [CrossRef]
  17. I. V. Mochalov, “Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2:Nd3+-(KGW:Nd),” Opt. Eng. 36, 1660–1669 (1997).
    [CrossRef]
  18. S. N. Karpukhin, A. I. Stepanov, “Generation of radiation in a resonator under conditions of stimulated Raman scattering in Ba(NO3)2, NaNO3, and CaCO3 crystals,” Sov. J. Quantum Electron. 16, 1027–1031 (1986).
    [CrossRef]
  19. J. R. Murray, J. R. Smith, R. B. Ehrlich, D. T. Kyrazis, C. E. Thompson, T. L. Weiland, R. B. Wilcox, “Experimental observation and suppression of transverse stimulated Brillouin scattering in large optical components,” J. Opt. Soc. Am. B 6, 2402–2411 (1989).
    [CrossRef]
  20. S. A. Akhmanov, Y. E. D’yakov, L. I. Pavlov, “Statistical phenomena in Raman scattering stimulated by a broad-band pump,” Sov. Phys. JETP 39(2), 249–256 (1974).
  21. W. R. Trutna, Y. K. Park, R. L. Byer, “The dependence of Raman gain on pump laser bandwidth,” IEEE J. Quantum Electron. 15, 648–655 (1979).
    [CrossRef]

1999 (1)

T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, R. C. Powell, “Raman spectroscopy of crystals for stimulated Raman scattering,” Opt. Mater. 11, 307–314 (1999).
[CrossRef]

1998 (1)

L. A. W. Gloster, P. Cormont, A. M. Cox, T. A. King, B. H. T. Chai, “Diode-pumped Q-switched Yb:S-FAP laser,” Opt. Commun. 146, 177–180 (1998).
[CrossRef]

1997 (2)

I. V. Mochalov, “Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2:Nd3+-(KGW:Nd),” Opt. Eng. 36, 1660–1669 (1997).
[CrossRef]

L. Xiao, R. Shuangchen, T. Yhu-Ping, “Mode-locked Yb:S-FAP laser,” Acta Photon. Sin. 26, 1007–1014 (1997).

1996 (3)

C. D. Marshall, L. K. Smith, R. J. Beach, M. A. Emanuel, K. I. Schaffers, J. Skidmore, S. A. Payne, B. H. T. Chai, “Diode-pumped ytterbium-doped Sr5(PO4)3F laser performance,” IEEE J. Quantum Electron. 32, 650–656 (1996).
[CrossRef]

M. R. Dickinson, L. A. W. Gloster, N. W. Hopps, T. A. King, “Continuous-wave diode-pumped Yb3+:S-FAP laser,” Opt. Commun. 132, 275–278 (1996).
[CrossRef]

C. D. Orth, S. A. Payne, W. F. Krupke, “A diode pumped solid state laser driver for inertial fusion energy,” Nucl. Fusion 36, 75–116 (1996).
[CrossRef]

1995 (1)

C. D. Marshall, S. A. Payne, L. K. Smith, H. T. Powell, W. F. Krupke, B. H. T. Chai, “1.047-µm Yb:Sr5(PO4)3F energy storage optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 1, 67–77 (1995).
[CrossRef]

1989 (1)

1986 (1)

S. N. Karpukhin, A. I. Stepanov, “Generation of radiation in a resonator under conditions of stimulated Raman scattering in Ba(NO3)2, NaNO3, and CaCO3 crystals,” Sov. J. Quantum Electron. 16, 1027–1031 (1986).
[CrossRef]

1979 (1)

W. R. Trutna, Y. K. Park, R. L. Byer, “The dependence of Raman gain on pump laser bandwidth,” IEEE J. Quantum Electron. 15, 648–655 (1979).
[CrossRef]

1974 (1)

S. A. Akhmanov, Y. E. D’yakov, L. I. Pavlov, “Statistical phenomena in Raman scattering stimulated by a broad-band pump,” Sov. Phys. JETP 39(2), 249–256 (1974).

1970 (1)

A. K. McQuillan, W. R. L. Clements, B. P. Stiocheff, “Stimulated Raman emission in diamond: spectrum, gain, and angular distribution of intensity,” Phys. Rev. A 1(2), 628–635 (1970).
[CrossRef]

1968 (1)

L. C. Kravitz, J. D. Kingsley, E. L. Elkin, “Raman and infrared studies of coupled PO4-3 vibrations,” J. Chem. Phys. 49, 4600–4610 (1968).
[CrossRef]

Akhmanov, S. A.

S. A. Akhmanov, Y. E. D’yakov, L. I. Pavlov, “Statistical phenomena in Raman scattering stimulated by a broad-band pump,” Sov. Phys. JETP 39(2), 249–256 (1974).

Basiev, T. T.

T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, R. C. Powell, “Raman spectroscopy of crystals for stimulated Raman scattering,” Opt. Mater. 11, 307–314 (1999).
[CrossRef]

Bass, I. L.

C. Bibeau, I. L. Bass, R. J. Beach, L. K. Smith, C. D. Marshall, S. C. Mitchell, S. A. Payne, “Performance of a Q-switched Yb:Sr5(PO4)3F laser,” in Advanced Solid-State Lasers, Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 19–21.

Bayramian, A.

C. Marshall, C. Bibeau, A. Bayramian, R. Beach, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, E. Honea, B. Krupke, J. Lawson, C. Orth, S. Payne, C. Petty, H. Powell, K. Schaffers, J. Skidmore, L. Smith, S. Sutton, S. Telford, “Next-generation laser for inertial confinement fusion,” in Advanced Solid State Lasers, W. R. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 318–325.

Beach, R.

C. Marshall, C. Bibeau, A. Bayramian, R. Beach, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, E. Honea, B. Krupke, J. Lawson, C. Orth, S. Payne, C. Petty, H. Powell, K. Schaffers, J. Skidmore, L. Smith, S. Sutton, S. Telford, “Next-generation laser for inertial confinement fusion,” in Advanced Solid State Lasers, W. R. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 318–325.

Beach, R. J.

C. D. Marshall, L. K. Smith, R. J. Beach, M. A. Emanuel, K. I. Schaffers, J. Skidmore, S. A. Payne, B. H. T. Chai, “Diode-pumped ytterbium-doped Sr5(PO4)3F laser performance,” IEEE J. Quantum Electron. 32, 650–656 (1996).
[CrossRef]

C. Bibeau, I. L. Bass, R. J. Beach, L. K. Smith, C. D. Marshall, S. C. Mitchell, S. A. Payne, “Performance of a Q-switched Yb:Sr5(PO4)3F laser,” in Advanced Solid-State Lasers, Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 19–21.

Bibeau, C.

C. Bibeau, I. L. Bass, R. J. Beach, L. K. Smith, C. D. Marshall, S. C. Mitchell, S. A. Payne, “Performance of a Q-switched Yb:Sr5(PO4)3F laser,” in Advanced Solid-State Lasers, Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 19–21.

C. Marshall, C. Bibeau, A. Bayramian, R. Beach, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, E. Honea, B. Krupke, J. Lawson, C. Orth, S. Payne, C. Petty, H. Powell, K. Schaffers, J. Skidmore, L. Smith, S. Sutton, S. Telford, “Next-generation laser for inertial confinement fusion,” in Advanced Solid State Lasers, W. R. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 318–325.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992), pp. 287–298, 365–397.

Byer, R. L.

W. R. Trutna, Y. K. Park, R. L. Byer, “The dependence of Raman gain on pump laser bandwidth,” IEEE J. Quantum Electron. 15, 648–655 (1979).
[CrossRef]

Chai, B. H. T.

L. A. W. Gloster, P. Cormont, A. M. Cox, T. A. King, B. H. T. Chai, “Diode-pumped Q-switched Yb:S-FAP laser,” Opt. Commun. 146, 177–180 (1998).
[CrossRef]

C. D. Marshall, L. K. Smith, R. J. Beach, M. A. Emanuel, K. I. Schaffers, J. Skidmore, S. A. Payne, B. H. T. Chai, “Diode-pumped ytterbium-doped Sr5(PO4)3F laser performance,” IEEE J. Quantum Electron. 32, 650–656 (1996).
[CrossRef]

C. D. Marshall, S. A. Payne, L. K. Smith, H. T. Powell, W. F. Krupke, B. H. T. Chai, “1.047-µm Yb:Sr5(PO4)3F energy storage optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 1, 67–77 (1995).
[CrossRef]

Clements, W. R. L.

A. K. McQuillan, W. R. L. Clements, B. P. Stiocheff, “Stimulated Raman emission in diamond: spectrum, gain, and angular distribution of intensity,” Phys. Rev. A 1(2), 628–635 (1970).
[CrossRef]

Cormont, P.

L. A. W. Gloster, P. Cormont, A. M. Cox, T. A. King, B. H. T. Chai, “Diode-pumped Q-switched Yb:S-FAP laser,” Opt. Commun. 146, 177–180 (1998).
[CrossRef]

Cox, A. M.

L. A. W. Gloster, P. Cormont, A. M. Cox, T. A. King, B. H. T. Chai, “Diode-pumped Q-switched Yb:S-FAP laser,” Opt. Commun. 146, 177–180 (1998).
[CrossRef]

D’yakov, Y. E.

S. A. Akhmanov, Y. E. D’yakov, L. I. Pavlov, “Statistical phenomena in Raman scattering stimulated by a broad-band pump,” Sov. Phys. JETP 39(2), 249–256 (1974).

Dickinson, M. R.

M. R. Dickinson, L. A. W. Gloster, N. W. Hopps, T. A. King, “Continuous-wave diode-pumped Yb3+:S-FAP laser,” Opt. Commun. 132, 275–278 (1996).
[CrossRef]

Ebbers, C.

C. Marshall, C. Bibeau, A. Bayramian, R. Beach, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, E. Honea, B. Krupke, J. Lawson, C. Orth, S. Payne, C. Petty, H. Powell, K. Schaffers, J. Skidmore, L. Smith, S. Sutton, S. Telford, “Next-generation laser for inertial confinement fusion,” in Advanced Solid State Lasers, W. R. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 318–325.

Ehrlich, R. B.

Elkin, E. L.

L. C. Kravitz, J. D. Kingsley, E. L. Elkin, “Raman and infrared studies of coupled PO4-3 vibrations,” J. Chem. Phys. 49, 4600–4610 (1968).
[CrossRef]

Emanuel, M.

C. Marshall, C. Bibeau, A. Bayramian, R. Beach, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, E. Honea, B. Krupke, J. Lawson, C. Orth, S. Payne, C. Petty, H. Powell, K. Schaffers, J. Skidmore, L. Smith, S. Sutton, S. Telford, “Next-generation laser for inertial confinement fusion,” in Advanced Solid State Lasers, W. R. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 318–325.

Emanuel, M. A.

C. D. Marshall, L. K. Smith, R. J. Beach, M. A. Emanuel, K. I. Schaffers, J. Skidmore, S. A. Payne, B. H. T. Chai, “Diode-pumped ytterbium-doped Sr5(PO4)3F laser performance,” IEEE J. Quantum Electron. 32, 650–656 (1996).
[CrossRef]

Freitas, B.

C. Marshall, C. Bibeau, A. Bayramian, R. Beach, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, E. Honea, B. Krupke, J. Lawson, C. Orth, S. Payne, C. Petty, H. Powell, K. Schaffers, J. Skidmore, L. Smith, S. Sutton, S. Telford, “Next-generation laser for inertial confinement fusion,” in Advanced Solid State Lasers, W. R. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 318–325.

Fulkerson, S.

C. Marshall, C. Bibeau, A. Bayramian, R. Beach, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, E. Honea, B. Krupke, J. Lawson, C. Orth, S. Payne, C. Petty, H. Powell, K. Schaffers, J. Skidmore, L. Smith, S. Sutton, S. Telford, “Next-generation laser for inertial confinement fusion,” in Advanced Solid State Lasers, W. R. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 318–325.

Gloster, L. A. W.

L. A. W. Gloster, P. Cormont, A. M. Cox, T. A. King, B. H. T. Chai, “Diode-pumped Q-switched Yb:S-FAP laser,” Opt. Commun. 146, 177–180 (1998).
[CrossRef]

M. R. Dickinson, L. A. W. Gloster, N. W. Hopps, T. A. King, “Continuous-wave diode-pumped Yb3+:S-FAP laser,” Opt. Commun. 132, 275–278 (1996).
[CrossRef]

Honea, E.

C. Marshall, C. Bibeau, A. Bayramian, R. Beach, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, E. Honea, B. Krupke, J. Lawson, C. Orth, S. Payne, C. Petty, H. Powell, K. Schaffers, J. Skidmore, L. Smith, S. Sutton, S. Telford, “Next-generation laser for inertial confinement fusion,” in Advanced Solid State Lasers, W. R. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 318–325.

Hopps, N. W.

M. R. Dickinson, L. A. W. Gloster, N. W. Hopps, T. A. King, “Continuous-wave diode-pumped Yb3+:S-FAP laser,” Opt. Commun. 132, 275–278 (1996).
[CrossRef]

Ivleva, L. I.

T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, R. C. Powell, “Raman spectroscopy of crystals for stimulated Raman scattering,” Opt. Mater. 11, 307–314 (1999).
[CrossRef]

Karpukhin, S. N.

S. N. Karpukhin, A. I. Stepanov, “Generation of radiation in a resonator under conditions of stimulated Raman scattering in Ba(NO3)2, NaNO3, and CaCO3 crystals,” Sov. J. Quantum Electron. 16, 1027–1031 (1986).
[CrossRef]

King, T. A.

L. A. W. Gloster, P. Cormont, A. M. Cox, T. A. King, B. H. T. Chai, “Diode-pumped Q-switched Yb:S-FAP laser,” Opt. Commun. 146, 177–180 (1998).
[CrossRef]

M. R. Dickinson, L. A. W. Gloster, N. W. Hopps, T. A. King, “Continuous-wave diode-pumped Yb3+:S-FAP laser,” Opt. Commun. 132, 275–278 (1996).
[CrossRef]

Kingsley, J. D.

L. C. Kravitz, J. D. Kingsley, E. L. Elkin, “Raman and infrared studies of coupled PO4-3 vibrations,” J. Chem. Phys. 49, 4600–4610 (1968).
[CrossRef]

Kravitz, L. C.

L. C. Kravitz, J. D. Kingsley, E. L. Elkin, “Raman and infrared studies of coupled PO4-3 vibrations,” J. Chem. Phys. 49, 4600–4610 (1968).
[CrossRef]

Krupke, B.

C. Marshall, C. Bibeau, A. Bayramian, R. Beach, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, E. Honea, B. Krupke, J. Lawson, C. Orth, S. Payne, C. Petty, H. Powell, K. Schaffers, J. Skidmore, L. Smith, S. Sutton, S. Telford, “Next-generation laser for inertial confinement fusion,” in Advanced Solid State Lasers, W. R. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 318–325.

Krupke, W. F.

C. D. Orth, S. A. Payne, W. F. Krupke, “A diode pumped solid state laser driver for inertial fusion energy,” Nucl. Fusion 36, 75–116 (1996).
[CrossRef]

C. D. Marshall, S. A. Payne, L. K. Smith, H. T. Powell, W. F. Krupke, B. H. T. Chai, “1.047-µm Yb:Sr5(PO4)3F energy storage optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 1, 67–77 (1995).
[CrossRef]

Kyrazis, D. T.

Lawson, J.

C. Marshall, C. Bibeau, A. Bayramian, R. Beach, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, E. Honea, B. Krupke, J. Lawson, C. Orth, S. Payne, C. Petty, H. Powell, K. Schaffers, J. Skidmore, L. Smith, S. Sutton, S. Telford, “Next-generation laser for inertial confinement fusion,” in Advanced Solid State Lasers, W. R. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 318–325.

Marshall, C.

C. Marshall, C. Bibeau, A. Bayramian, R. Beach, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, E. Honea, B. Krupke, J. Lawson, C. Orth, S. Payne, C. Petty, H. Powell, K. Schaffers, J. Skidmore, L. Smith, S. Sutton, S. Telford, “Next-generation laser for inertial confinement fusion,” in Advanced Solid State Lasers, W. R. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 318–325.

Marshall, C. D.

C. D. Marshall, L. K. Smith, R. J. Beach, M. A. Emanuel, K. I. Schaffers, J. Skidmore, S. A. Payne, B. H. T. Chai, “Diode-pumped ytterbium-doped Sr5(PO4)3F laser performance,” IEEE J. Quantum Electron. 32, 650–656 (1996).
[CrossRef]

C. D. Marshall, S. A. Payne, L. K. Smith, H. T. Powell, W. F. Krupke, B. H. T. Chai, “1.047-µm Yb:Sr5(PO4)3F energy storage optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 1, 67–77 (1995).
[CrossRef]

C. Bibeau, I. L. Bass, R. J. Beach, L. K. Smith, C. D. Marshall, S. C. Mitchell, S. A. Payne, “Performance of a Q-switched Yb:Sr5(PO4)3F laser,” in Advanced Solid-State Lasers, Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 19–21.

McQuillan, A. K.

A. K. McQuillan, W. R. L. Clements, B. P. Stiocheff, “Stimulated Raman emission in diamond: spectrum, gain, and angular distribution of intensity,” Phys. Rev. A 1(2), 628–635 (1970).
[CrossRef]

Mead, R. D.

J. W. Pierce, R. D. Mead, “Yb:S-FAP laser performance,” in Solid-State Lasers VI, R. Scheps, ed., Proc. SPIE2986, 19–28 (1997).
[CrossRef]

Mitchell, S. C.

C. Bibeau, I. L. Bass, R. J. Beach, L. K. Smith, C. D. Marshall, S. C. Mitchell, S. A. Payne, “Performance of a Q-switched Yb:Sr5(PO4)3F laser,” in Advanced Solid-State Lasers, Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 19–21.

Mochalov, I. V.

I. V. Mochalov, “Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2:Nd3+-(KGW:Nd),” Opt. Eng. 36, 1660–1669 (1997).
[CrossRef]

Murray, J. R.

Orth, C.

C. Marshall, C. Bibeau, A. Bayramian, R. Beach, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, E. Honea, B. Krupke, J. Lawson, C. Orth, S. Payne, C. Petty, H. Powell, K. Schaffers, J. Skidmore, L. Smith, S. Sutton, S. Telford, “Next-generation laser for inertial confinement fusion,” in Advanced Solid State Lasers, W. R. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 318–325.

Orth, C. D.

C. D. Orth, S. A. Payne, W. F. Krupke, “A diode pumped solid state laser driver for inertial fusion energy,” Nucl. Fusion 36, 75–116 (1996).
[CrossRef]

Osiko, V. V.

T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, R. C. Powell, “Raman spectroscopy of crystals for stimulated Raman scattering,” Opt. Mater. 11, 307–314 (1999).
[CrossRef]

Park, Y. K.

W. R. Trutna, Y. K. Park, R. L. Byer, “The dependence of Raman gain on pump laser bandwidth,” IEEE J. Quantum Electron. 15, 648–655 (1979).
[CrossRef]

Pavlov, L. I.

S. A. Akhmanov, Y. E. D’yakov, L. I. Pavlov, “Statistical phenomena in Raman scattering stimulated by a broad-band pump,” Sov. Phys. JETP 39(2), 249–256 (1974).

Payne, S.

C. Marshall, C. Bibeau, A. Bayramian, R. Beach, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, E. Honea, B. Krupke, J. Lawson, C. Orth, S. Payne, C. Petty, H. Powell, K. Schaffers, J. Skidmore, L. Smith, S. Sutton, S. Telford, “Next-generation laser for inertial confinement fusion,” in Advanced Solid State Lasers, W. R. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 318–325.

Payne, S. A.

C. D. Orth, S. A. Payne, W. F. Krupke, “A diode pumped solid state laser driver for inertial fusion energy,” Nucl. Fusion 36, 75–116 (1996).
[CrossRef]

C. D. Marshall, L. K. Smith, R. J. Beach, M. A. Emanuel, K. I. Schaffers, J. Skidmore, S. A. Payne, B. H. T. Chai, “Diode-pumped ytterbium-doped Sr5(PO4)3F laser performance,” IEEE J. Quantum Electron. 32, 650–656 (1996).
[CrossRef]

C. D. Marshall, S. A. Payne, L. K. Smith, H. T. Powell, W. F. Krupke, B. H. T. Chai, “1.047-µm Yb:Sr5(PO4)3F energy storage optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 1, 67–77 (1995).
[CrossRef]

C. Bibeau, I. L. Bass, R. J. Beach, L. K. Smith, C. D. Marshall, S. C. Mitchell, S. A. Payne, “Performance of a Q-switched Yb:Sr5(PO4)3F laser,” in Advanced Solid-State Lasers, Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 19–21.

Petty, C.

C. Marshall, C. Bibeau, A. Bayramian, R. Beach, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, E. Honea, B. Krupke, J. Lawson, C. Orth, S. Payne, C. Petty, H. Powell, K. Schaffers, J. Skidmore, L. Smith, S. Sutton, S. Telford, “Next-generation laser for inertial confinement fusion,” in Advanced Solid State Lasers, W. R. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 318–325.

Pierce, J. W.

J. W. Pierce, R. D. Mead, “Yb:S-FAP laser performance,” in Solid-State Lasers VI, R. Scheps, ed., Proc. SPIE2986, 19–28 (1997).
[CrossRef]

Powell, H.

C. Marshall, C. Bibeau, A. Bayramian, R. Beach, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, E. Honea, B. Krupke, J. Lawson, C. Orth, S. Payne, C. Petty, H. Powell, K. Schaffers, J. Skidmore, L. Smith, S. Sutton, S. Telford, “Next-generation laser for inertial confinement fusion,” in Advanced Solid State Lasers, W. R. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 318–325.

Powell, H. T.

C. D. Marshall, S. A. Payne, L. K. Smith, H. T. Powell, W. F. Krupke, B. H. T. Chai, “1.047-µm Yb:Sr5(PO4)3F energy storage optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 1, 67–77 (1995).
[CrossRef]

Powell, R. C.

T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, R. C. Powell, “Raman spectroscopy of crystals for stimulated Raman scattering,” Opt. Mater. 11, 307–314 (1999).
[CrossRef]

Schaffers, K.

C. Marshall, C. Bibeau, A. Bayramian, R. Beach, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, E. Honea, B. Krupke, J. Lawson, C. Orth, S. Payne, C. Petty, H. Powell, K. Schaffers, J. Skidmore, L. Smith, S. Sutton, S. Telford, “Next-generation laser for inertial confinement fusion,” in Advanced Solid State Lasers, W. R. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 318–325.

Schaffers, K. I.

C. D. Marshall, L. K. Smith, R. J. Beach, M. A. Emanuel, K. I. Schaffers, J. Skidmore, S. A. Payne, B. H. T. Chai, “Diode-pumped ytterbium-doped Sr5(PO4)3F laser performance,” IEEE J. Quantum Electron. 32, 650–656 (1996).
[CrossRef]

Shuangchen, R.

L. Xiao, R. Shuangchen, T. Yhu-Ping, “Mode-locked Yb:S-FAP laser,” Acta Photon. Sin. 26, 1007–1014 (1997).

Skidmore, J.

C. D. Marshall, L. K. Smith, R. J. Beach, M. A. Emanuel, K. I. Schaffers, J. Skidmore, S. A. Payne, B. H. T. Chai, “Diode-pumped ytterbium-doped Sr5(PO4)3F laser performance,” IEEE J. Quantum Electron. 32, 650–656 (1996).
[CrossRef]

C. Marshall, C. Bibeau, A. Bayramian, R. Beach, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, E. Honea, B. Krupke, J. Lawson, C. Orth, S. Payne, C. Petty, H. Powell, K. Schaffers, J. Skidmore, L. Smith, S. Sutton, S. Telford, “Next-generation laser for inertial confinement fusion,” in Advanced Solid State Lasers, W. R. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 318–325.

Smith, J. R.

Smith, L.

C. Marshall, C. Bibeau, A. Bayramian, R. Beach, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, E. Honea, B. Krupke, J. Lawson, C. Orth, S. Payne, C. Petty, H. Powell, K. Schaffers, J. Skidmore, L. Smith, S. Sutton, S. Telford, “Next-generation laser for inertial confinement fusion,” in Advanced Solid State Lasers, W. R. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 318–325.

Smith, L. K.

C. D. Marshall, L. K. Smith, R. J. Beach, M. A. Emanuel, K. I. Schaffers, J. Skidmore, S. A. Payne, B. H. T. Chai, “Diode-pumped ytterbium-doped Sr5(PO4)3F laser performance,” IEEE J. Quantum Electron. 32, 650–656 (1996).
[CrossRef]

C. D. Marshall, S. A. Payne, L. K. Smith, H. T. Powell, W. F. Krupke, B. H. T. Chai, “1.047-µm Yb:Sr5(PO4)3F energy storage optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 1, 67–77 (1995).
[CrossRef]

C. Bibeau, I. L. Bass, R. J. Beach, L. K. Smith, C. D. Marshall, S. C. Mitchell, S. A. Payne, “Performance of a Q-switched Yb:Sr5(PO4)3F laser,” in Advanced Solid-State Lasers, Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 19–21.

Sobol, A. A.

T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, R. C. Powell, “Raman spectroscopy of crystals for stimulated Raman scattering,” Opt. Mater. 11, 307–314 (1999).
[CrossRef]

Stepanov, A. I.

S. N. Karpukhin, A. I. Stepanov, “Generation of radiation in a resonator under conditions of stimulated Raman scattering in Ba(NO3)2, NaNO3, and CaCO3 crystals,” Sov. J. Quantum Electron. 16, 1027–1031 (1986).
[CrossRef]

Stiocheff, B. P.

A. K. McQuillan, W. R. L. Clements, B. P. Stiocheff, “Stimulated Raman emission in diamond: spectrum, gain, and angular distribution of intensity,” Phys. Rev. A 1(2), 628–635 (1970).
[CrossRef]

Sutton, S.

C. Marshall, C. Bibeau, A. Bayramian, R. Beach, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, E. Honea, B. Krupke, J. Lawson, C. Orth, S. Payne, C. Petty, H. Powell, K. Schaffers, J. Skidmore, L. Smith, S. Sutton, S. Telford, “Next-generation laser for inertial confinement fusion,” in Advanced Solid State Lasers, W. R. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 318–325.

Telford, S.

C. Marshall, C. Bibeau, A. Bayramian, R. Beach, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, E. Honea, B. Krupke, J. Lawson, C. Orth, S. Payne, C. Petty, H. Powell, K. Schaffers, J. Skidmore, L. Smith, S. Sutton, S. Telford, “Next-generation laser for inertial confinement fusion,” in Advanced Solid State Lasers, W. R. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 318–325.

Thompson, C. E.

Trutna, W. R.

W. R. Trutna, Y. K. Park, R. L. Byer, “The dependence of Raman gain on pump laser bandwidth,” IEEE J. Quantum Electron. 15, 648–655 (1979).
[CrossRef]

Verdeyen, J. T.

J. T. Verdeyen, Laser Electronics, 3rd ed. (Prentice-Hall, Englewood Cliffs, N.J., 1995), pp. 651–660.

Weiland, T. L.

Wilcox, R. B.

Xiao, L.

L. Xiao, R. Shuangchen, T. Yhu-Ping, “Mode-locked Yb:S-FAP laser,” Acta Photon. Sin. 26, 1007–1014 (1997).

Yhu-Ping, T.

L. Xiao, R. Shuangchen, T. Yhu-Ping, “Mode-locked Yb:S-FAP laser,” Acta Photon. Sin. 26, 1007–1014 (1997).

Zverev, P. G.

T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, R. C. Powell, “Raman spectroscopy of crystals for stimulated Raman scattering,” Opt. Mater. 11, 307–314 (1999).
[CrossRef]

Acta Photon. Sin. (1)

L. Xiao, R. Shuangchen, T. Yhu-Ping, “Mode-locked Yb:S-FAP laser,” Acta Photon. Sin. 26, 1007–1014 (1997).

IEEE J. Quantum Electron. (2)

C. D. Marshall, L. K. Smith, R. J. Beach, M. A. Emanuel, K. I. Schaffers, J. Skidmore, S. A. Payne, B. H. T. Chai, “Diode-pumped ytterbium-doped Sr5(PO4)3F laser performance,” IEEE J. Quantum Electron. 32, 650–656 (1996).
[CrossRef]

W. R. Trutna, Y. K. Park, R. L. Byer, “The dependence of Raman gain on pump laser bandwidth,” IEEE J. Quantum Electron. 15, 648–655 (1979).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C. D. Marshall, S. A. Payne, L. K. Smith, H. T. Powell, W. F. Krupke, B. H. T. Chai, “1.047-µm Yb:Sr5(PO4)3F energy storage optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 1, 67–77 (1995).
[CrossRef]

J. Chem. Phys. (1)

L. C. Kravitz, J. D. Kingsley, E. L. Elkin, “Raman and infrared studies of coupled PO4-3 vibrations,” J. Chem. Phys. 49, 4600–4610 (1968).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nucl. Fusion (1)

C. D. Orth, S. A. Payne, W. F. Krupke, “A diode pumped solid state laser driver for inertial fusion energy,” Nucl. Fusion 36, 75–116 (1996).
[CrossRef]

Opt. Commun. (2)

L. A. W. Gloster, P. Cormont, A. M. Cox, T. A. King, B. H. T. Chai, “Diode-pumped Q-switched Yb:S-FAP laser,” Opt. Commun. 146, 177–180 (1998).
[CrossRef]

M. R. Dickinson, L. A. W. Gloster, N. W. Hopps, T. A. King, “Continuous-wave diode-pumped Yb3+:S-FAP laser,” Opt. Commun. 132, 275–278 (1996).
[CrossRef]

Opt. Eng. (1)

I. V. Mochalov, “Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2:Nd3+-(KGW:Nd),” Opt. Eng. 36, 1660–1669 (1997).
[CrossRef]

Opt. Mater. (1)

T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, R. C. Powell, “Raman spectroscopy of crystals for stimulated Raman scattering,” Opt. Mater. 11, 307–314 (1999).
[CrossRef]

Phys. Rev. A (1)

A. K. McQuillan, W. R. L. Clements, B. P. Stiocheff, “Stimulated Raman emission in diamond: spectrum, gain, and angular distribution of intensity,” Phys. Rev. A 1(2), 628–635 (1970).
[CrossRef]

Sov. J. Quantum Electron. (1)

S. N. Karpukhin, A. I. Stepanov, “Generation of radiation in a resonator under conditions of stimulated Raman scattering in Ba(NO3)2, NaNO3, and CaCO3 crystals,” Sov. J. Quantum Electron. 16, 1027–1031 (1986).
[CrossRef]

Sov. Phys. JETP (1)

S. A. Akhmanov, Y. E. D’yakov, L. I. Pavlov, “Statistical phenomena in Raman scattering stimulated by a broad-band pump,” Sov. Phys. JETP 39(2), 249–256 (1974).

Other (7)

R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992), pp. 287–298, 365–397.

M. J. Weber, ed., CRC Handbook of Laser Science and Technology, Supplement 2: Optical Materials, (CRC Press, Boca Raton, Fla., 1995), pp. 334–364.

J. T. Verdeyen, Laser Electronics, 3rd ed. (Prentice-Hall, Englewood Cliffs, N.J., 1995), pp. 651–660.

Ref. 11, Vol. 3, Optical Materials Part 1, pp. 283–294.

C. Bibeau, I. L. Bass, R. J. Beach, L. K. Smith, C. D. Marshall, S. C. Mitchell, S. A. Payne, “Performance of a Q-switched Yb:Sr5(PO4)3F laser,” in Advanced Solid-State Lasers, Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 19–21.

J. W. Pierce, R. D. Mead, “Yb:S-FAP laser performance,” in Solid-State Lasers VI, R. Scheps, ed., Proc. SPIE2986, 19–28 (1997).
[CrossRef]

C. Marshall, C. Bibeau, A. Bayramian, R. Beach, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, E. Honea, B. Krupke, J. Lawson, C. Orth, S. Payne, C. Petty, H. Powell, K. Schaffers, J. Skidmore, L. Smith, S. Sutton, S. Telford, “Next-generation laser for inertial confinement fusion,” in Advanced Solid State Lasers, W. R. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 318–325.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Energy-level diagram of Yb3+ and the Raman transition associated with the laser emission line in the S-FAP host medium.

Fig. 2
Fig. 2

Experimental arrangement for the first measurement of the SRS gain coefficient. HR, high reflector.

Fig. 3
Fig. 3

Output Stokes energy as a function of pump intensity with the experimental data, plotted as circles with approximate error bars, and theoretical fits with values for the SRS gain coefficient between 1.2 and 1.4 cm/GW, as well as a linear fit of the data.

Fig. 4
Fig. 4

Schematic of a simple single-pass amplifier.

Fig. 5
Fig. 5

Normalized SRS intensity versus laser intensity for L = 5 cm, τ = 2 ns, and different surface reflectivities (R).

Fig. 6
Fig. 6

Schematic of the four-pass Mercury amplifier system.

Fig. 7
Fig. 7

Normalized fluence, including all Fresnel losses, as a function of normalized distance through the Mercury amplifier chain (G 0 ∼ 1.5 × 106). Three different front-end input fluences are plotted to show different saturation behaviors.

Fig. 8
Fig. 8

Diagrams of temporal (left) and etalon (right) corrections to the SRS code.

Fig. 9
Fig. 9

Normalized fluence at SRS threshold (defined as 1% conversion) versus temporal pulse width. Traces show narrow-band extraction with the gain media surface reflectivity, R = 0.0025, and the SRS gain coefficient varied.

Fig. 10
Fig. 10

Normalized fluence at SRS threshold (defined as 1% conversion) versus temporal pulse width showing the negligible effect of correcting for pulse length, multiple reflections between slabs within the head, as well as input from SRS earlier in the chain.

Fig. 11
Fig. 11

Normalized fluence at SRS threshold (defined as 1% conversion) versus temporal pulse width. Traces show narrow-band extraction with g = 1.3 cm/GW with the gain media surface reflectivity varied.

Fig. 12
Fig. 12

Normalized fluence at SRS threshold (defined as 1% conversion) versus temporal pulse width. Traces show narrow-band extraction with g = 1.3 cm/GW and R = 0.0025, with the area of extraction (laser beam area) varied.

Fig. 13
Fig. 13

Normalized fluence at SRS threshold (defined as 1% conversion) versus temporal pulse width. The different traces show extraction with g = 1.3 cm/GW and R = 0.0025, with the input bandwidth varied.

Fig. 14
Fig. 14

Gain factor F = G broad/G narrow as a function of the angle between k s and k L . The inset shows this same graph with the same axis on a smaller scale.

Fig. 15
Fig. 15

Possible amplifier head geometry employing wedged slabs to reduce SRS buildup by reducing the number of possible intrahead reflections.

Fig. 16
Fig. 16

Normalized fluence at SRS threshold (defined as 1% conversion) versus temporal pulse width. The different traces show narrow-band extraction with g = 1.3 cm/GW and R = 0.0025, with the total wedge angle Ω varied.

Tables (2)

Tables Icon

Table 1 Raman Spectroscopic Values and Gain Coefficients for S-FAP and Various Other Materialsa

Tables Icon

Table 2 Modeling Parameters

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

IRamanl=hνRamanηRamanlAτp=hνRamanηRaman0Aτp expgνpumpIpumpl,
ηRaman0=Nmodes=NspatialNtemporal,
Nspatial=F2=ApumpλRamanL2,
Ntemporal1,τpGtotalπΔνRamanτpπΔνRamanGtotal,τp  GtotalπΔνRaman,
gν0=NdσdΩ9002λRaman2λpump3πhcn2,
dσdΩ=2π2hnRamanmc4nlaserλRaman4ΩRamanαq2  σλRaman4,
gν0  Nσλpumpn2λRaman2.
gS-FAP0=gmat0NσS-FAPλRamanmat2nmat2λpumpS-FAPNσmatλRamanS-FAP2nS-FAP2λpumpmat.
lnIRamanl=ln1IhνRamanτpπΔνRamangνpumplApumpτpApumpλRamanL2+gνpumplIC+|gνpumpl|I.
GbroadGnarrow=F=121-1+ΔνRΔνPLgLd+141-1+ΔνRΔνpLgLd2+ΔνRLgΔνpLd1/2,
Ldf=c4ΔnΔνp52.4 cm, Ldb=c4nSΔνp0.04 cm,
Lcoh=πΔk=π|kL-kS|.
kL=2πnLλL=2πnLνLc iˆ,  kS=2πnSλScosθiˆ+sinθjˆ=2πnSνSccosθiˆ+sinθjˆ
Ldθ=c2nLΔνL-nSΔνS cosθ2+nSΔνS sinθ21/2.

Metrics