Abstract

We describe a prototype laboratory light-scattering instrument that integrates two approaches to airborne particle characterization: spatial light-scattering analysis and intrinsic fluorescence measurement, with the aim of providing an effective means of classifying biological particles within an ambient aerosol. The system uses a single continuous-wave 266-nm ultraviolet laser to generate both the spatial elastic scatter data (from which an assessment of particle size and shape is made) and the particle intrinsic fluorescence data from particles in the approximate size range of 1–10-µm diameter carried in a sample airflow through the laser beam. Preliminary results suggest that this multiparameter measurement approach can provide an effective means of classifying different particle types and can reduce occurrences of false-positive detection of biological aerosols.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, J. G. Bruno, “Fluorescence particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol. 23, 653–664 (1995).
    [CrossRef]
  2. P. Nachman, G. Chen, R. G. Pinnick, S. C. Hill, R. K. Chang, M. W. Mayo, G. L. Fernandez, “Condition sampling spectrograph detection system for fluorescent measurements of individual airborne biological particles,” Appl. Opt. 35, 1069–1076 (1996).
    [CrossRef] [PubMed]
  3. G. Chen, P. Nachman, R. G. Pinnick, S. C. Hill, R. K. Chang, “Conditional-firing aerosol-fluorescence spectrum analyzer for individual airborne particles with pulsed 266-nm laser excitation,” Opt. Lett. 21, 1307–1309 (1996).
    [CrossRef] [PubMed]
  4. Y. Pan, S. Holler, R. K. Chang, S. C. Hill, R. G. Pinnick, S. Niles, J. R. Bottiger, “Single-shot fluorescence spectra of individual micrometer-sized bioaerosols illuminated by a 351- or 266-nm ultraviolet laser,” Opt. Lett. 24, 116–118 (1999).
    [CrossRef]
  5. P. P. Hairston, J. Ho, F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci. 28, 471–482 (1997).
    [CrossRef] [PubMed]
  6. M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. 30, 174–185 (1999).
    [CrossRef]
  7. S. Holler, Y. Pan, R. K. Chang, J. R. Bottiger, S. C. Hill, D. B. Hillis, “Two-dimensional angular optical scattering for the characterization of airborne microparticles,” Opt. Lett. 23, 1489–1491 (1998).
    [CrossRef]
  8. W. D. Dick, P. J. Ziemann, P.-F. Huang, P. H. McMurray, “Optical shape fraction measurements of submicrometre laboratory and atmospheric aerosols,” Meas. Sci. Technol. 9, 183–196 (1998).
    [CrossRef]
  9. B. Sachweh, H. Barthel, R. Polke, H. Umhauer, H. Buttner, “Particle shape and structure analysis from the spatial intensity pattern of scattered light using different measuring devices,” J. Aerosol Sci. 30, 1257–1270 (1999).
    [CrossRef]
  10. E. Hirst, P. H. Kaye, J. R. Guppy, “Light scattering from nonspherical airborne particles: experimental and theoretical comparisons,” Appl. Opt. 33, 7180–7186 (1994).
    [CrossRef] [PubMed]
  11. E. Hirst, P. H. Kaye, “Experimental and theoretical light scattering profiles from spherical and non-spherical particles,” J. Geophys. Res. D 101, 19,231–19,235 (1996).
    [CrossRef]
  12. P. H. Kaye, “Spatial light scattering as a means of characterising and classifying non-spherical particles,” Meas. Sci. Technol. 9, 141–149 (1998).
    [CrossRef]
  13. P. H. Kaye, K. Alexander-Buckley, E. Hirst, S. Saunders, “A real-time monitoring system for airborne particle shape and size analysis,” J. Geophys. Res. D 101, 19,215–19,221 (1996).
    [CrossRef]
  14. E. Hirst, P. H. Kaye, Z. Wang-Thomas, “Neural-network-based spatial light-scattering instrument for hazardous airborne fiber detection,” Appl. Opt. 36, 6149–6156 (1997).
    [CrossRef] [PubMed]
  15. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

1999

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. 30, 174–185 (1999).
[CrossRef]

B. Sachweh, H. Barthel, R. Polke, H. Umhauer, H. Buttner, “Particle shape and structure analysis from the spatial intensity pattern of scattered light using different measuring devices,” J. Aerosol Sci. 30, 1257–1270 (1999).
[CrossRef]

Y. Pan, S. Holler, R. K. Chang, S. C. Hill, R. G. Pinnick, S. Niles, J. R. Bottiger, “Single-shot fluorescence spectra of individual micrometer-sized bioaerosols illuminated by a 351- or 266-nm ultraviolet laser,” Opt. Lett. 24, 116–118 (1999).
[CrossRef]

1998

S. Holler, Y. Pan, R. K. Chang, J. R. Bottiger, S. C. Hill, D. B. Hillis, “Two-dimensional angular optical scattering for the characterization of airborne microparticles,” Opt. Lett. 23, 1489–1491 (1998).
[CrossRef]

P. H. Kaye, “Spatial light scattering as a means of characterising and classifying non-spherical particles,” Meas. Sci. Technol. 9, 141–149 (1998).
[CrossRef]

W. D. Dick, P. J. Ziemann, P.-F. Huang, P. H. McMurray, “Optical shape fraction measurements of submicrometre laboratory and atmospheric aerosols,” Meas. Sci. Technol. 9, 183–196 (1998).
[CrossRef]

1997

P. P. Hairston, J. Ho, F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci. 28, 471–482 (1997).
[CrossRef] [PubMed]

E. Hirst, P. H. Kaye, Z. Wang-Thomas, “Neural-network-based spatial light-scattering instrument for hazardous airborne fiber detection,” Appl. Opt. 36, 6149–6156 (1997).
[CrossRef] [PubMed]

1996

G. Chen, P. Nachman, R. G. Pinnick, S. C. Hill, R. K. Chang, “Conditional-firing aerosol-fluorescence spectrum analyzer for individual airborne particles with pulsed 266-nm laser excitation,” Opt. Lett. 21, 1307–1309 (1996).
[CrossRef] [PubMed]

P. Nachman, G. Chen, R. G. Pinnick, S. C. Hill, R. K. Chang, M. W. Mayo, G. L. Fernandez, “Condition sampling spectrograph detection system for fluorescent measurements of individual airborne biological particles,” Appl. Opt. 35, 1069–1076 (1996).
[CrossRef] [PubMed]

P. H. Kaye, K. Alexander-Buckley, E. Hirst, S. Saunders, “A real-time monitoring system for airborne particle shape and size analysis,” J. Geophys. Res. D 101, 19,215–19,221 (1996).
[CrossRef]

E. Hirst, P. H. Kaye, “Experimental and theoretical light scattering profiles from spherical and non-spherical particles,” J. Geophys. Res. D 101, 19,231–19,235 (1996).
[CrossRef]

1995

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, J. G. Bruno, “Fluorescence particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol. 23, 653–664 (1995).
[CrossRef]

1994

Alexander-Buckley, K.

P. H. Kaye, K. Alexander-Buckley, E. Hirst, S. Saunders, “A real-time monitoring system for airborne particle shape and size analysis,” J. Geophys. Res. D 101, 19,215–19,221 (1996).
[CrossRef]

Barthel, H.

B. Sachweh, H. Barthel, R. Polke, H. Umhauer, H. Buttner, “Particle shape and structure analysis from the spatial intensity pattern of scattered light using different measuring devices,” J. Aerosol Sci. 30, 1257–1270 (1999).
[CrossRef]

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Bottiger, J. R.

Bruno, J. G.

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, J. G. Bruno, “Fluorescence particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol. 23, 653–664 (1995).
[CrossRef]

Buttner, H.

B. Sachweh, H. Barthel, R. Polke, H. Umhauer, H. Buttner, “Particle shape and structure analysis from the spatial intensity pattern of scattered light using different measuring devices,” J. Aerosol Sci. 30, 1257–1270 (1999).
[CrossRef]

Cary, W. K.

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. 30, 174–185 (1999).
[CrossRef]

Chang, R. K.

Chen, G.

Dick, W. D.

W. D. Dick, P. J. Ziemann, P.-F. Huang, P. H. McMurray, “Optical shape fraction measurements of submicrometre laboratory and atmospheric aerosols,” Meas. Sci. Technol. 9, 183–196 (1998).
[CrossRef]

Eversole, J. D.

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. 30, 174–185 (1999).
[CrossRef]

Fernandez, G. L.

P. Nachman, G. Chen, R. G. Pinnick, S. C. Hill, R. K. Chang, M. W. Mayo, G. L. Fernandez, “Condition sampling spectrograph detection system for fluorescent measurements of individual airborne biological particles,” Appl. Opt. 35, 1069–1076 (1996).
[CrossRef] [PubMed]

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, J. G. Bruno, “Fluorescence particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol. 23, 653–664 (1995).
[CrossRef]

Guppy, J. R.

Hairston, P. P.

P. P. Hairston, J. Ho, F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci. 28, 471–482 (1997).
[CrossRef] [PubMed]

Hardgrove, J. J.

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. 30, 174–185 (1999).
[CrossRef]

Hill, S. C.

Hillis, D. B.

Hirst, E.

E. Hirst, P. H. Kaye, Z. Wang-Thomas, “Neural-network-based spatial light-scattering instrument for hazardous airborne fiber detection,” Appl. Opt. 36, 6149–6156 (1997).
[CrossRef] [PubMed]

E. Hirst, P. H. Kaye, “Experimental and theoretical light scattering profiles from spherical and non-spherical particles,” J. Geophys. Res. D 101, 19,231–19,235 (1996).
[CrossRef]

P. H. Kaye, K. Alexander-Buckley, E. Hirst, S. Saunders, “A real-time monitoring system for airborne particle shape and size analysis,” J. Geophys. Res. D 101, 19,215–19,221 (1996).
[CrossRef]

E. Hirst, P. H. Kaye, J. R. Guppy, “Light scattering from nonspherical airborne particles: experimental and theoretical comparisons,” Appl. Opt. 33, 7180–7186 (1994).
[CrossRef] [PubMed]

Ho, J.

P. P. Hairston, J. Ho, F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci. 28, 471–482 (1997).
[CrossRef] [PubMed]

Holler, S.

Huang, P.-F.

W. D. Dick, P. J. Ziemann, P.-F. Huang, P. H. McMurray, “Optical shape fraction measurements of submicrometre laboratory and atmospheric aerosols,” Meas. Sci. Technol. 9, 183–196 (1998).
[CrossRef]

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Kaye, P. H.

P. H. Kaye, “Spatial light scattering as a means of characterising and classifying non-spherical particles,” Meas. Sci. Technol. 9, 141–149 (1998).
[CrossRef]

E. Hirst, P. H. Kaye, Z. Wang-Thomas, “Neural-network-based spatial light-scattering instrument for hazardous airborne fiber detection,” Appl. Opt. 36, 6149–6156 (1997).
[CrossRef] [PubMed]

E. Hirst, P. H. Kaye, “Experimental and theoretical light scattering profiles from spherical and non-spherical particles,” J. Geophys. Res. D 101, 19,231–19,235 (1996).
[CrossRef]

P. H. Kaye, K. Alexander-Buckley, E. Hirst, S. Saunders, “A real-time monitoring system for airborne particle shape and size analysis,” J. Geophys. Res. D 101, 19,215–19,221 (1996).
[CrossRef]

E. Hirst, P. H. Kaye, J. R. Guppy, “Light scattering from nonspherical airborne particles: experimental and theoretical comparisons,” Appl. Opt. 33, 7180–7186 (1994).
[CrossRef] [PubMed]

Mayo, M. W.

P. Nachman, G. Chen, R. G. Pinnick, S. C. Hill, R. K. Chang, M. W. Mayo, G. L. Fernandez, “Condition sampling spectrograph detection system for fluorescent measurements of individual airborne biological particles,” Appl. Opt. 35, 1069–1076 (1996).
[CrossRef] [PubMed]

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, J. G. Bruno, “Fluorescence particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol. 23, 653–664 (1995).
[CrossRef]

McMurray, P. H.

W. D. Dick, P. J. Ziemann, P.-F. Huang, P. H. McMurray, “Optical shape fraction measurements of submicrometre laboratory and atmospheric aerosols,” Meas. Sci. Technol. 9, 183–196 (1998).
[CrossRef]

Nachman, P.

Niles, S.

Pan, Y.

Pendleton, J. D.

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, J. G. Bruno, “Fluorescence particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol. 23, 653–664 (1995).
[CrossRef]

Pinnick, R. G.

Polke, R.

B. Sachweh, H. Barthel, R. Polke, H. Umhauer, H. Buttner, “Particle shape and structure analysis from the spatial intensity pattern of scattered light using different measuring devices,” J. Aerosol Sci. 30, 1257–1270 (1999).
[CrossRef]

Quant, F. R.

P. P. Hairston, J. Ho, F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci. 28, 471–482 (1997).
[CrossRef] [PubMed]

Roselle, D. C.

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. 30, 174–185 (1999).
[CrossRef]

Sachweh, B.

B. Sachweh, H. Barthel, R. Polke, H. Umhauer, H. Buttner, “Particle shape and structure analysis from the spatial intensity pattern of scattered light using different measuring devices,” J. Aerosol Sci. 30, 1257–1270 (1999).
[CrossRef]

Saunders, S.

P. H. Kaye, K. Alexander-Buckley, E. Hirst, S. Saunders, “A real-time monitoring system for airborne particle shape and size analysis,” J. Geophys. Res. D 101, 19,215–19,221 (1996).
[CrossRef]

Seaver, M.

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. 30, 174–185 (1999).
[CrossRef]

Umhauer, H.

B. Sachweh, H. Barthel, R. Polke, H. Umhauer, H. Buttner, “Particle shape and structure analysis from the spatial intensity pattern of scattered light using different measuring devices,” J. Aerosol Sci. 30, 1257–1270 (1999).
[CrossRef]

Wang-Thomas, Z.

Ziemann, P. J.

W. D. Dick, P. J. Ziemann, P.-F. Huang, P. H. McMurray, “Optical shape fraction measurements of submicrometre laboratory and atmospheric aerosols,” Meas. Sci. Technol. 9, 183–196 (1998).
[CrossRef]

Aerosol Sci. Technol.

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, J. G. Bruno, “Fluorescence particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol. 23, 653–664 (1995).
[CrossRef]

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. 30, 174–185 (1999).
[CrossRef]

Appl. Opt.

J. Aerosol Sci.

P. P. Hairston, J. Ho, F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci. 28, 471–482 (1997).
[CrossRef] [PubMed]

B. Sachweh, H. Barthel, R. Polke, H. Umhauer, H. Buttner, “Particle shape and structure analysis from the spatial intensity pattern of scattered light using different measuring devices,” J. Aerosol Sci. 30, 1257–1270 (1999).
[CrossRef]

J. Geophys. Res. D

E. Hirst, P. H. Kaye, “Experimental and theoretical light scattering profiles from spherical and non-spherical particles,” J. Geophys. Res. D 101, 19,231–19,235 (1996).
[CrossRef]

P. H. Kaye, K. Alexander-Buckley, E. Hirst, S. Saunders, “A real-time monitoring system for airborne particle shape and size analysis,” J. Geophys. Res. D 101, 19,215–19,221 (1996).
[CrossRef]

Meas. Sci. Technol.

P. H. Kaye, “Spatial light scattering as a means of characterising and classifying non-spherical particles,” Meas. Sci. Technol. 9, 141–149 (1998).
[CrossRef]

W. D. Dick, P. J. Ziemann, P.-F. Huang, P. H. McMurray, “Optical shape fraction measurements of submicrometre laboratory and atmospheric aerosols,” Meas. Sci. Technol. 9, 183–196 (1998).
[CrossRef]

Opt. Lett.

Other

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the scattering chamber for the multiparameter scattering fluorescence instrument. The overall length of the chamber is 35 cm.

Fig. 2
Fig. 2

Layout of the 31-pixel detector geometry used in the HPD spatial scattering detector. At the center is an aluminized beam stop. The output of the innermost annulus (2) is used as a particle detect trigger, and the segmented outer rings provide azimuthal scattering data from which an assessment of particle shape is made.

Fig. 3
Fig. 3

Example display screen showing the output of the 24 outer-ring detector pixels resulting from a single gypsum fiber passing through the scattering volume. The vertical orientation of the fiber produces horizontal scattering as indicated by the high values in pixels 12 and 24. Tr, output of the trigger detect pixel 2; Fl, output of the fluorescence PMT detector.

Fig. 4
Fig. 4

(a) Scatter intensity versus Af plot for simulated spherical particle data (produced by uniform illumination of the HPD from a pulsed LED source). Ideally such data should lie entirely along the ordinate (Af = 0) corresponding to perfectly spherical scatterers. (b) As in (a) but with logarithmic scales. The solid curve represents the noise-limited performance of the system in terms of particle shape characterization: Perfectly spherical scatterers would produce data points along this curve, and nonspherical scatterers would result in data points to the right of the curve.

Fig. 5
Fig. 5

Scatter intensity versus Af plots recorded at a 532-nm wavelength for aerosols of water droplets, hematite grains, BG spores, and gypsum dust. The dotted curve again represents the limit of performance for perfectly spherical scatterers.

Fig. 6
Fig. 6

Scatter intensity versus Af plots recorded at a 266-nm wavelength for aerosols of 1-µm PSL, 3-µm PSL, 1.7-µm fluorescent PSL, BG spores, and gypsum dust. The dotted curve again represents the limit of performance for perfectly spherical scatterers.

Fig. 7
Fig. 7

Graph of fluorescence amplitude and scatter intensity versus Af for the same aerosol data as shown in Fig. 6.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Af=ki=1nĒ-Ei21/2Ē,
k=100/nn-1.

Metrics