Abstract

The design and performance of a simple, multifunction 1.55-µm continuous-wave (cw) and frequency-modulated cw coherent laser radar system with an output power of 1 W is presented. The system is based on a semiconductor laser source plus an erbium-doped fiber amplifier, a polarization-independent fiber-optic circulator used as the transmit–receive switch, and digital signal processing. The system is shown to be able to perform wind-speed measurements even in clear atmospheric conditions when the visibility exceeds 40 km. The aerosol measurements indicate the potential to use single-particle detection for wind measurements with enhanced sensitivity. The system can perform range and line-of-sight velocity measurements of hard targets at ranges of the order of several kilometers with a range accuracy of a few meters and a velocity accuracy of 0.1 m/s by use of triangular-wave frequency modulation with compensation of the frequency-modulation response of the semiconductor laser. The system also demonstrates a capability for vibration sensing.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Vaughan, K. O. Steinvall, C. Werner, P. H. Flamant, “Coherent laser radar in Europe,” Proc. IEEE 84, 205–226 (1996).
    [Crossref]
  2. R. M. Huffaker, R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996).
    [Crossref]
  3. S. W. Henderson, P. M. Suni, C. P. Hayle, S. M. Hannon, J. R. Magee, D. L. Burns, E. H. Yuen, “Coherent laser radar at 2 µm using solid state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
    [Crossref]
  4. T. J. Kane, J. D. Kmetec, T. J. Wagener, “Flight test of 2-µm diode pumped laser radar system,” in Air Traffic Control Technologies, R. G. Otto, J. Lenz, eds., Proc. SPIE2464, 103–108 (1995).
    [Crossref]
  5. See, e.g., A. L. Kachelmyer, K. I. Schultz, “Laser vibration sensing,” Lincoln Lab. J. 8, 3–28 (1995) and papers in Proceedings of the Tenth Biennial Coherent Laser Radar Technology and Applications Conference, M. J. Kavaya, ed. (Universities Space Research Association, Huntsville, Ala., 1999).
  6. C. Karlsson, F. Olsson, “Linearization of the frequency sweep of a frequency-modulated continuous-wave semiconductor laser radar and the resulting ranging performance,” Appl. Opt. 38, 3376–3386 (1999).
    [Crossref]
  7. M. Harris, “Bistatic laser Doppler wind sensor at 1.5 µm,” in Proceedings of the Tenth Biennial Coherent Laser Radar Technology and Applications Conference, M. J. Kavaya, ed. (Universities Space Research Association, Huntsville, Ala., 1999), p. 277.
  8. R. L. McGann, “Flight test results from a low-power Doppler optical air data sensor,” in Air Traffic Control Technologies, R. G. Otto, J. Lenz, eds., Proc. SPIE2464, 116–124 (1994).
    [Crossref]
  9. M. A. Jarzembski, V. Srivastava, D. M. Chambers, “Lidar calibration technique using laboratory-generated aerosols,” Appl. Opt. 35, 2096–2108 (1996).
    [Crossref] [PubMed]
  10. M. Harris, C. Karlsson, F. Olsson, D. Letalick are preparing a manuscript to be called “Single-particle laser Doppler anemometry at 1.55 µm.”
  11. P. Gatt, S. Hendersson, S. M. Hannon, “High-efficiency autonomous coherent lidar,” in Proceedings of the Tenth Biennial Coherent Laser Radar Technology and Applications Conference, M. J. Kavaya, ed. (Universities Space Research Association, Huntsville, Ala., 1999), pp. 247–250.
  12. J. Y. Wang, “Optimum truncation of a lidar transmitted beam,” Appl. Opt. 27, 4470–4474 (1988).
    [Crossref] [PubMed]
  13. See, e.g., A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  14. D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).
    [Crossref]
  15. H. Kogelnik, “Coupling and conversion coefficients for optical modes,” in Proceedings of the Symposium on Quasi-Optics, Vol. 14 of Microwave Research Institute Symposia Series, J. Fox, ed., (Polytechnic, Brooklyn, N.Y., 1964), pp. 333–347.
  16. M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalick, C. Karlsson, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt. 45, 1567–1581 (1998).
    [Crossref]
  17. M. P. van Exter, S. J. M. Kuppens, J. P. Woerdman, “Excess phase noise in self-heterodyne detection,” IEEE J. Quantum Electron. 28, 580–584 (1992).
    [Crossref]
  18. R. G. Frehlich, M. J. Yadlowsky, “Performance of mean-frequency estimators for Doppler radar and lidar,” J. Atmos. Oceanic Technol. 11, 1217–1230 (1994).
    [Crossref]
  19. R. G. Frehlich, M. J. Kavaya, “Coherent laser radar performance for general atmospheric refractive turbulence,” Appl. Opt. 30, 5325–5352 (1991).
    [Crossref] [PubMed]
  20. R. Passy, N. Gisin, J. P. von der Weid, H. H. Gilgen, “Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources,” J. Lightwave Technol. 12, 1622–1630 (1994).
    [Crossref]
  21. C. M. Sonnenschein, F. A. Horrigan, “Signal-to-noise ratio for coaxial systems that heterodyne backscatter from the atmosphere,” Appl. Opt. 10, 1600–1604 (1971).
    [Crossref] [PubMed]
  22. M. J. Kavaya, P. J. M. Sume, “Continuous wave coherent laser radar: calculation of measurement location and volume,” Appl. Opt. 30, 2634–2642 (1991).
    [Crossref] [PubMed]
  23. See, e.g., D. J. DeFatta, J. G. Lucas, W. S. Hodgkiss, Digital Signal Processing: a System Design Approach (Wiley, New York, 1988).

1999 (1)

1998 (1)

M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalick, C. Karlsson, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt. 45, 1567–1581 (1998).
[Crossref]

1996 (3)

J. M. Vaughan, K. O. Steinvall, C. Werner, P. H. Flamant, “Coherent laser radar in Europe,” Proc. IEEE 84, 205–226 (1996).
[Crossref]

R. M. Huffaker, R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996).
[Crossref]

M. A. Jarzembski, V. Srivastava, D. M. Chambers, “Lidar calibration technique using laboratory-generated aerosols,” Appl. Opt. 35, 2096–2108 (1996).
[Crossref] [PubMed]

1995 (1)

See, e.g., A. L. Kachelmyer, K. I. Schultz, “Laser vibration sensing,” Lincoln Lab. J. 8, 3–28 (1995) and papers in Proceedings of the Tenth Biennial Coherent Laser Radar Technology and Applications Conference, M. J. Kavaya, ed. (Universities Space Research Association, Huntsville, Ala., 1999).

1994 (2)

R. G. Frehlich, M. J. Yadlowsky, “Performance of mean-frequency estimators for Doppler radar and lidar,” J. Atmos. Oceanic Technol. 11, 1217–1230 (1994).
[Crossref]

R. Passy, N. Gisin, J. P. von der Weid, H. H. Gilgen, “Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources,” J. Lightwave Technol. 12, 1622–1630 (1994).
[Crossref]

1993 (1)

S. W. Henderson, P. M. Suni, C. P. Hayle, S. M. Hannon, J. R. Magee, D. L. Burns, E. H. Yuen, “Coherent laser radar at 2 µm using solid state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[Crossref]

1992 (1)

M. P. van Exter, S. J. M. Kuppens, J. P. Woerdman, “Excess phase noise in self-heterodyne detection,” IEEE J. Quantum Electron. 28, 580–584 (1992).
[Crossref]

1991 (2)

1988 (1)

1977 (1)

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).
[Crossref]

1971 (1)

Burns, D. L.

S. W. Henderson, P. M. Suni, C. P. Hayle, S. M. Hannon, J. R. Magee, D. L. Burns, E. H. Yuen, “Coherent laser radar at 2 µm using solid state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[Crossref]

Chambers, D. M.

DeFatta, D. J.

See, e.g., D. J. DeFatta, J. G. Lucas, W. S. Hodgkiss, Digital Signal Processing: a System Design Approach (Wiley, New York, 1988).

Flamant, P. H.

J. M. Vaughan, K. O. Steinvall, C. Werner, P. H. Flamant, “Coherent laser radar in Europe,” Proc. IEEE 84, 205–226 (1996).
[Crossref]

Frehlich, R. G.

R. G. Frehlich, M. J. Yadlowsky, “Performance of mean-frequency estimators for Doppler radar and lidar,” J. Atmos. Oceanic Technol. 11, 1217–1230 (1994).
[Crossref]

R. G. Frehlich, M. J. Kavaya, “Coherent laser radar performance for general atmospheric refractive turbulence,” Appl. Opt. 30, 5325–5352 (1991).
[Crossref] [PubMed]

Gatt, P.

P. Gatt, S. Hendersson, S. M. Hannon, “High-efficiency autonomous coherent lidar,” in Proceedings of the Tenth Biennial Coherent Laser Radar Technology and Applications Conference, M. J. Kavaya, ed. (Universities Space Research Association, Huntsville, Ala., 1999), pp. 247–250.

Gilgen, H. H.

R. Passy, N. Gisin, J. P. von der Weid, H. H. Gilgen, “Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources,” J. Lightwave Technol. 12, 1622–1630 (1994).
[Crossref]

Gisin, N.

R. Passy, N. Gisin, J. P. von der Weid, H. H. Gilgen, “Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources,” J. Lightwave Technol. 12, 1622–1630 (1994).
[Crossref]

Hannon, S. M.

S. W. Henderson, P. M. Suni, C. P. Hayle, S. M. Hannon, J. R. Magee, D. L. Burns, E. H. Yuen, “Coherent laser radar at 2 µm using solid state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[Crossref]

P. Gatt, S. Hendersson, S. M. Hannon, “High-efficiency autonomous coherent lidar,” in Proceedings of the Tenth Biennial Coherent Laser Radar Technology and Applications Conference, M. J. Kavaya, ed. (Universities Space Research Association, Huntsville, Ala., 1999), pp. 247–250.

Hardesty, R. M.

R. M. Huffaker, R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996).
[Crossref]

Harris, M.

M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalick, C. Karlsson, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt. 45, 1567–1581 (1998).
[Crossref]

M. Harris, C. Karlsson, F. Olsson, D. Letalick are preparing a manuscript to be called “Single-particle laser Doppler anemometry at 1.55 µm.”

M. Harris, “Bistatic laser Doppler wind sensor at 1.5 µm,” in Proceedings of the Tenth Biennial Coherent Laser Radar Technology and Applications Conference, M. J. Kavaya, ed. (Universities Space Research Association, Huntsville, Ala., 1999), p. 277.

Hayle, C. P.

S. W. Henderson, P. M. Suni, C. P. Hayle, S. M. Hannon, J. R. Magee, D. L. Burns, E. H. Yuen, “Coherent laser radar at 2 µm using solid state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[Crossref]

Henderson, S. W.

S. W. Henderson, P. M. Suni, C. P. Hayle, S. M. Hannon, J. R. Magee, D. L. Burns, E. H. Yuen, “Coherent laser radar at 2 µm using solid state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[Crossref]

Hendersson, S.

P. Gatt, S. Hendersson, S. M. Hannon, “High-efficiency autonomous coherent lidar,” in Proceedings of the Tenth Biennial Coherent Laser Radar Technology and Applications Conference, M. J. Kavaya, ed. (Universities Space Research Association, Huntsville, Ala., 1999), pp. 247–250.

Hodgkiss, W. S.

See, e.g., D. J. DeFatta, J. G. Lucas, W. S. Hodgkiss, Digital Signal Processing: a System Design Approach (Wiley, New York, 1988).

Horrigan, F. A.

Huffaker, R. M.

R. M. Huffaker, R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996).
[Crossref]

Jarzembski, M. A.

Kachelmyer, A. L.

See, e.g., A. L. Kachelmyer, K. I. Schultz, “Laser vibration sensing,” Lincoln Lab. J. 8, 3–28 (1995) and papers in Proceedings of the Tenth Biennial Coherent Laser Radar Technology and Applications Conference, M. J. Kavaya, ed. (Universities Space Research Association, Huntsville, Ala., 1999).

Kane, T. J.

T. J. Kane, J. D. Kmetec, T. J. Wagener, “Flight test of 2-µm diode pumped laser radar system,” in Air Traffic Control Technologies, R. G. Otto, J. Lenz, eds., Proc. SPIE2464, 103–108 (1995).
[Crossref]

Karlsson, C.

C. Karlsson, F. Olsson, “Linearization of the frequency sweep of a frequency-modulated continuous-wave semiconductor laser radar and the resulting ranging performance,” Appl. Opt. 38, 3376–3386 (1999).
[Crossref]

M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalick, C. Karlsson, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt. 45, 1567–1581 (1998).
[Crossref]

M. Harris, C. Karlsson, F. Olsson, D. Letalick are preparing a manuscript to be called “Single-particle laser Doppler anemometry at 1.55 µm.”

Kavaya, M. J.

Kmetec, J. D.

T. J. Kane, J. D. Kmetec, T. J. Wagener, “Flight test of 2-µm diode pumped laser radar system,” in Air Traffic Control Technologies, R. G. Otto, J. Lenz, eds., Proc. SPIE2464, 103–108 (1995).
[Crossref]

Kogelnik, H.

H. Kogelnik, “Coupling and conversion coefficients for optical modes,” in Proceedings of the Symposium on Quasi-Optics, Vol. 14 of Microwave Research Institute Symposia Series, J. Fox, ed., (Polytechnic, Brooklyn, N.Y., 1964), pp. 333–347.

Kuppens, S. J. M.

M. P. van Exter, S. J. M. Kuppens, J. P. Woerdman, “Excess phase noise in self-heterodyne detection,” IEEE J. Quantum Electron. 28, 580–584 (1992).
[Crossref]

Letalick, D.

M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalick, C. Karlsson, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt. 45, 1567–1581 (1998).
[Crossref]

M. Harris, C. Karlsson, F. Olsson, D. Letalick are preparing a manuscript to be called “Single-particle laser Doppler anemometry at 1.55 µm.”

Lucas, J. G.

See, e.g., D. J. DeFatta, J. G. Lucas, W. S. Hodgkiss, Digital Signal Processing: a System Design Approach (Wiley, New York, 1988).

Magee, J. R.

S. W. Henderson, P. M. Suni, C. P. Hayle, S. M. Hannon, J. R. Magee, D. L. Burns, E. H. Yuen, “Coherent laser radar at 2 µm using solid state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[Crossref]

Marcuse, D.

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).
[Crossref]

McGann, R. L.

R. L. McGann, “Flight test results from a low-power Doppler optical air data sensor,” in Air Traffic Control Technologies, R. G. Otto, J. Lenz, eds., Proc. SPIE2464, 116–124 (1994).
[Crossref]

Olsson, F.

C. Karlsson, F. Olsson, “Linearization of the frequency sweep of a frequency-modulated continuous-wave semiconductor laser radar and the resulting ranging performance,” Appl. Opt. 38, 3376–3386 (1999).
[Crossref]

M. Harris, C. Karlsson, F. Olsson, D. Letalick are preparing a manuscript to be called “Single-particle laser Doppler anemometry at 1.55 µm.”

Passy, R.

R. Passy, N. Gisin, J. P. von der Weid, H. H. Gilgen, “Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources,” J. Lightwave Technol. 12, 1622–1630 (1994).
[Crossref]

Pearson, G. N.

M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalick, C. Karlsson, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt. 45, 1567–1581 (1998).
[Crossref]

Schultz, K. I.

See, e.g., A. L. Kachelmyer, K. I. Schultz, “Laser vibration sensing,” Lincoln Lab. J. 8, 3–28 (1995) and papers in Proceedings of the Tenth Biennial Coherent Laser Radar Technology and Applications Conference, M. J. Kavaya, ed. (Universities Space Research Association, Huntsville, Ala., 1999).

Siegman, A. E.

See, e.g., A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

Sonnenschein, C. M.

Srivastava, V.

Steinvall, K. O.

J. M. Vaughan, K. O. Steinvall, C. Werner, P. H. Flamant, “Coherent laser radar in Europe,” Proc. IEEE 84, 205–226 (1996).
[Crossref]

Sume, P. J. M.

Suni, P. M.

S. W. Henderson, P. M. Suni, C. P. Hayle, S. M. Hannon, J. R. Magee, D. L. Burns, E. H. Yuen, “Coherent laser radar at 2 µm using solid state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[Crossref]

van Exter, M. P.

M. P. van Exter, S. J. M. Kuppens, J. P. Woerdman, “Excess phase noise in self-heterodyne detection,” IEEE J. Quantum Electron. 28, 580–584 (1992).
[Crossref]

Vaughan, J. M.

M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalick, C. Karlsson, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt. 45, 1567–1581 (1998).
[Crossref]

J. M. Vaughan, K. O. Steinvall, C. Werner, P. H. Flamant, “Coherent laser radar in Europe,” Proc. IEEE 84, 205–226 (1996).
[Crossref]

von der Weid, J. P.

R. Passy, N. Gisin, J. P. von der Weid, H. H. Gilgen, “Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources,” J. Lightwave Technol. 12, 1622–1630 (1994).
[Crossref]

Wagener, T. J.

T. J. Kane, J. D. Kmetec, T. J. Wagener, “Flight test of 2-µm diode pumped laser radar system,” in Air Traffic Control Technologies, R. G. Otto, J. Lenz, eds., Proc. SPIE2464, 103–108 (1995).
[Crossref]

Wang, J. Y.

Werner, C.

J. M. Vaughan, K. O. Steinvall, C. Werner, P. H. Flamant, “Coherent laser radar in Europe,” Proc. IEEE 84, 205–226 (1996).
[Crossref]

Woerdman, J. P.

M. P. van Exter, S. J. M. Kuppens, J. P. Woerdman, “Excess phase noise in self-heterodyne detection,” IEEE J. Quantum Electron. 28, 580–584 (1992).
[Crossref]

Yadlowsky, M. J.

R. G. Frehlich, M. J. Yadlowsky, “Performance of mean-frequency estimators for Doppler radar and lidar,” J. Atmos. Oceanic Technol. 11, 1217–1230 (1994).
[Crossref]

Yuen, E. H.

S. W. Henderson, P. M. Suni, C. P. Hayle, S. M. Hannon, J. R. Magee, D. L. Burns, E. H. Yuen, “Coherent laser radar at 2 µm using solid state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[Crossref]

Appl. Opt. (6)

Bell Syst. Tech. J. (1)

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).
[Crossref]

IEEE J. Quantum Electron. (1)

M. P. van Exter, S. J. M. Kuppens, J. P. Woerdman, “Excess phase noise in self-heterodyne detection,” IEEE J. Quantum Electron. 28, 580–584 (1992).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (1)

S. W. Henderson, P. M. Suni, C. P. Hayle, S. M. Hannon, J. R. Magee, D. L. Burns, E. H. Yuen, “Coherent laser radar at 2 µm using solid state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[Crossref]

J. Atmos. Oceanic Technol. (1)

R. G. Frehlich, M. J. Yadlowsky, “Performance of mean-frequency estimators for Doppler radar and lidar,” J. Atmos. Oceanic Technol. 11, 1217–1230 (1994).
[Crossref]

J. Lightwave Technol. (1)

R. Passy, N. Gisin, J. P. von der Weid, H. H. Gilgen, “Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources,” J. Lightwave Technol. 12, 1622–1630 (1994).
[Crossref]

J. Mod. Opt. (1)

M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalick, C. Karlsson, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt. 45, 1567–1581 (1998).
[Crossref]

Lincoln Lab. J. (1)

See, e.g., A. L. Kachelmyer, K. I. Schultz, “Laser vibration sensing,” Lincoln Lab. J. 8, 3–28 (1995) and papers in Proceedings of the Tenth Biennial Coherent Laser Radar Technology and Applications Conference, M. J. Kavaya, ed. (Universities Space Research Association, Huntsville, Ala., 1999).

Proc. IEEE (2)

J. M. Vaughan, K. O. Steinvall, C. Werner, P. H. Flamant, “Coherent laser radar in Europe,” Proc. IEEE 84, 205–226 (1996).
[Crossref]

R. M. Huffaker, R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996).
[Crossref]

Other (8)

T. J. Kane, J. D. Kmetec, T. J. Wagener, “Flight test of 2-µm diode pumped laser radar system,” in Air Traffic Control Technologies, R. G. Otto, J. Lenz, eds., Proc. SPIE2464, 103–108 (1995).
[Crossref]

M. Harris, C. Karlsson, F. Olsson, D. Letalick are preparing a manuscript to be called “Single-particle laser Doppler anemometry at 1.55 µm.”

P. Gatt, S. Hendersson, S. M. Hannon, “High-efficiency autonomous coherent lidar,” in Proceedings of the Tenth Biennial Coherent Laser Radar Technology and Applications Conference, M. J. Kavaya, ed. (Universities Space Research Association, Huntsville, Ala., 1999), pp. 247–250.

M. Harris, “Bistatic laser Doppler wind sensor at 1.5 µm,” in Proceedings of the Tenth Biennial Coherent Laser Radar Technology and Applications Conference, M. J. Kavaya, ed. (Universities Space Research Association, Huntsville, Ala., 1999), p. 277.

R. L. McGann, “Flight test results from a low-power Doppler optical air data sensor,” in Air Traffic Control Technologies, R. G. Otto, J. Lenz, eds., Proc. SPIE2464, 116–124 (1994).
[Crossref]

H. Kogelnik, “Coupling and conversion coefficients for optical modes,” in Proceedings of the Symposium on Quasi-Optics, Vol. 14 of Microwave Research Institute Symposia Series, J. Fox, ed., (Polytechnic, Brooklyn, N.Y., 1964), pp. 333–347.

See, e.g., A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

See, e.g., D. J. DeFatta, J. G. Lucas, W. S. Hodgkiss, Digital Signal Processing: a System Design Approach (Wiley, New York, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Block diagram of the system. Thick lines, optical fibers. Two different semiconductor lasers were used: a DFB diode with a linewidth of 400 kHz (laser 1) and an external-cavity DFB laser with a linewidth of 20 kHz (laser 2). Fiber connectors/physical contacts are indicated with short straight lines, and fiber connectors/angle-polished contacts are indicated with slanted short straight lines. ADC, A–D converter.

Fig. 2
Fig. 2

Angled fiber end and doublet lens of the telescope.

Fig. 3
Fig. 3

CLR signal spectra recorded with a rotating sandblasted aluminum plate as target. (a) Laser 1 (linewidth, 400 kHz) was used. (b) Laser 2 (linewidth, 20 kHz) was used. The system was focused on the aluminum plate. The sampling rate was 250 Msamples/s, the number of samples was 2048, and 1000 spectra were averaged.

Fig. 4
Fig. 4

Optical field vectors of the LO and the stray light. Maximum and minimum excess noise occurs when the mean relative phases (ϕ) are π/2 and 0 rad (plus multiples of π), respectively. δϕ represents the relative phase fluctuation between stray light and the LO, brought about by laser phase noise.

Fig. 5
Fig. 5

Various measured noise floors. The lowest is the detector unit noise and the shot noise obtained with laser 2. The detector unit noise has a slope, resulting in an apparently nonflat shot noise (which is white). The three upper noise curves are obtained with laser 1. See text for details. The sampling rate was 250 Msamples/s, the number of samples was 512, and 1000 spectra were averaged.

Fig. 6
Fig. 6

Calculated SNR (curves) and experimental SNR with FM cw (asterisks). The solid curve corresponds to the SNR equation with parameters as stated in the text. The dashed curve is the same but with no influence of turbulence. The dotted–dashed curve is the result of the solid curve multiplied by 1000 to indicate the increase in effective SNR when 1000 signal spectra are averaged. The straight line at 16.5 dB indicates the often-used threshold for ranging that gives a detection probability of 90% and a false-alarm probability of 10-5.

Fig. 7
Fig. 7

Spectra from a sandblasted aluminum plate at 0.88, 1.53, and 2.42 km with triangular-wave frequency modulation. The modulation parameters were f mod = 1 kHz and Δf = 1.3 GHz. The system was collimated. The sampling rate was 250 Msamples/s, the number of samples was 512, and 4000 spectra were averaged.

Fig. 8
Fig. 8

FMCW (triangular-wave frequency modulation) signal spectra from a white car at 2.4 km (upper) and a cloud at 1.5 km (lower). The sampling rate was 250 MS/s, the number of samples was 512, and 1000 spectra were averaged. The upper curve is offset by 5 dB.

Fig. 9
Fig. 9

Wind measurements obtained on different occasions. The uppermost spectrum was obtained when the system was focused at 100 m. The measured visibility was ≈1 km mainly because of a light drizzle. The middle spectrum (focus 50 m) corresponds to V = 15 km and the lower (focus 100 m) to V = 40+ km (meaning that the visibility exceeded the maximum range of the visibility meter). The sampling rate was 50 Msamples/s, the number of samples was 512, and 400 (4000, 1000) spectra were averaged for the measurements corresponding to V = 1 (15, 40+) km. The two upper spectra are offset by 10 and 20 dB for display purposes.

Fig. 10
Fig. 10

Time- and frequency-domain signals of three single particles at distances of 4, 15, and 50 m. The sampling rate was 50 Msamples/s, and the number of samples was 16,384 for R = 4 m and 15 m and 8192 for R = 50 m.

Fig. 11
Fig. 11

Time- and frequency-domain signals of an aerosol particle at distance of 4 m. A semiconductor laser (laser 1) with an output power of 5 mW was used. The sampling rate was 25 Msamples/s, and the number of samples was 8192.

Fig. 12
Fig. 12

Spectrogram of the signal from a truck with the motor running at 1500 rpm. The sampling rate was 500 ksamples/s, and the number of samples was 131,072.

Tables (1)

Tables Icon

Table 1 Descriptions and Values of Parameters Used in the SNR Equation

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

η=2w1w2w12+w222 exp-2πnw1w22ϕ2w12+w22λ2,
η=exp-4πnw1ϕ2λ2n-1n+12.
ih2=2Sω, τdB,
Sω, τd=2P1P2 exp-τd/τcδω-ωm+2P1P2τcπ1+τc2ω-ωm21-exp-τd/τc×cosω-ωmτd+sinω-ωmτdω-ωmτc,
ih2=22P1P2τcπ1-exp-τdτc1+τdτcB,
ih222P1P2πτd2τc B
SNR=ηaηdetηlinηFMηpolPlasρπArecR2 exp-2αRToptλhcB1+w0238 Hk2Cn2R6/5+πw02λR21-RF.
R=cfh4Δffmod=cf2+f18Δffmod,
σR=cσfh4Δffmod,
SNR=ηaηlinηdetβπPlasToptλ2hcBπ2+arctanπw02λF,

Metrics