Abstract

Laser-induced fluorescence and excitation spectra of formaldehyde in the AX 41 0 band at 370 nm are recorded in the primary flame front of a Bunsen flame. An examination of partition functions shows that this excitation can minimize temperature bias for formaldehyde in situ diagnostic measurements.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Barnard, J. N. Bradley, Flame and Combustion (Chapman & Hall, New York, 1985); I. Glassman, Combustion (Academic, New York, 1987).
  2. J. E. Harrington, K. C. Smyth, “Laser induced fluorescence measurements of formaldehyde in a methane/air diffusion flame,” Chem. Phys. Lett. 202, 196–202 (1993).
    [CrossRef]
  3. N. L. Garland, (SRI International, Menlo Park, Calif., 1984); D. C. Moule, A. D. Walsh, “Ultraviolet spectrum and excited states of formaldehyde,” Chem. Rev. 75, 67–85 (1975); R. G. Miller, E. K. C. Lee, “Photochemistry of formaldehyde,” J. Chem. Phys. 68, 4448–4464 (1978); J. C. D. Brand, “The electronic spectrum of formaldehyde,” J. Chem. Soc.858–872 (1956).
  4. R. Bombach, B. Kappeli, “Simultaneous visualization of transient species in flames by planar laser induced fluorescence using a single laser system,” Appl. Phys. B 68, 251–255 (1999).
    [CrossRef]
  5. R. J. H. Klein-Douwel, J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “CH and CH2O in atmospheric pressure methane/air Bunsen flames,” Western States Section Combustion Institute paper 99F-12 (Combustion Institute, Pittsburgh, Pa., 1999).
  6. J. C. D. Brand, “A coriolis perturbation in the ultraviolet spectrum of formaldehyde,” Trans. Faraday Soc. 46, 805–811 (1950); P. J. Dyke, “The a band of formaldehyde and the relation between the ultraviolet absorption and fluorescence systems,” J. Chem. Phys. 20, 811–818 (1952); J. H. Callomon, K. K. Innes, “Magnetic dipole transition in the electronic spectrum of formaldehyde,” J. Mol. Spectrosc. 10, 166–181 (1963).
    [CrossRef]
  7. K. Shibuya, R. A. Harger, E. K. C. Lee, “Single vibronic level fluorescence emission spectroscopy and radiative lifetimes of H2CO(A1A2):40 and 41,” J. Chem. Phys. 69, 751–757 (1978).
    [CrossRef]

1999 (1)

R. Bombach, B. Kappeli, “Simultaneous visualization of transient species in flames by planar laser induced fluorescence using a single laser system,” Appl. Phys. B 68, 251–255 (1999).
[CrossRef]

1993 (1)

J. E. Harrington, K. C. Smyth, “Laser induced fluorescence measurements of formaldehyde in a methane/air diffusion flame,” Chem. Phys. Lett. 202, 196–202 (1993).
[CrossRef]

1978 (1)

K. Shibuya, R. A. Harger, E. K. C. Lee, “Single vibronic level fluorescence emission spectroscopy and radiative lifetimes of H2CO(A1A2):40 and 41,” J. Chem. Phys. 69, 751–757 (1978).
[CrossRef]

1950 (1)

J. C. D. Brand, “A coriolis perturbation in the ultraviolet spectrum of formaldehyde,” Trans. Faraday Soc. 46, 805–811 (1950); P. J. Dyke, “The a band of formaldehyde and the relation between the ultraviolet absorption and fluorescence systems,” J. Chem. Phys. 20, 811–818 (1952); J. H. Callomon, K. K. Innes, “Magnetic dipole transition in the electronic spectrum of formaldehyde,” J. Mol. Spectrosc. 10, 166–181 (1963).
[CrossRef]

Barnard, J. A.

J. A. Barnard, J. N. Bradley, Flame and Combustion (Chapman & Hall, New York, 1985); I. Glassman, Combustion (Academic, New York, 1987).

Bombach, R.

R. Bombach, B. Kappeli, “Simultaneous visualization of transient species in flames by planar laser induced fluorescence using a single laser system,” Appl. Phys. B 68, 251–255 (1999).
[CrossRef]

Bradley, J. N.

J. A. Barnard, J. N. Bradley, Flame and Combustion (Chapman & Hall, New York, 1985); I. Glassman, Combustion (Academic, New York, 1987).

Brand, J. C. D.

J. C. D. Brand, “A coriolis perturbation in the ultraviolet spectrum of formaldehyde,” Trans. Faraday Soc. 46, 805–811 (1950); P. J. Dyke, “The a band of formaldehyde and the relation between the ultraviolet absorption and fluorescence systems,” J. Chem. Phys. 20, 811–818 (1952); J. H. Callomon, K. K. Innes, “Magnetic dipole transition in the electronic spectrum of formaldehyde,” J. Mol. Spectrosc. 10, 166–181 (1963).
[CrossRef]

Crosley, D. R.

R. J. H. Klein-Douwel, J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “CH and CH2O in atmospheric pressure methane/air Bunsen flames,” Western States Section Combustion Institute paper 99F-12 (Combustion Institute, Pittsburgh, Pa., 1999).

Garland, N. L.

N. L. Garland, (SRI International, Menlo Park, Calif., 1984); D. C. Moule, A. D. Walsh, “Ultraviolet spectrum and excited states of formaldehyde,” Chem. Rev. 75, 67–85 (1975); R. G. Miller, E. K. C. Lee, “Photochemistry of formaldehyde,” J. Chem. Phys. 68, 4448–4464 (1978); J. C. D. Brand, “The electronic spectrum of formaldehyde,” J. Chem. Soc.858–872 (1956).

Harger, R. A.

K. Shibuya, R. A. Harger, E. K. C. Lee, “Single vibronic level fluorescence emission spectroscopy and radiative lifetimes of H2CO(A1A2):40 and 41,” J. Chem. Phys. 69, 751–757 (1978).
[CrossRef]

Harrington, J. E.

J. E. Harrington, K. C. Smyth, “Laser induced fluorescence measurements of formaldehyde in a methane/air diffusion flame,” Chem. Phys. Lett. 202, 196–202 (1993).
[CrossRef]

Jeffries, J. B.

R. J. H. Klein-Douwel, J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “CH and CH2O in atmospheric pressure methane/air Bunsen flames,” Western States Section Combustion Institute paper 99F-12 (Combustion Institute, Pittsburgh, Pa., 1999).

Kappeli, B.

R. Bombach, B. Kappeli, “Simultaneous visualization of transient species in flames by planar laser induced fluorescence using a single laser system,” Appl. Phys. B 68, 251–255 (1999).
[CrossRef]

Klein-Douwel, R. J. H.

R. J. H. Klein-Douwel, J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “CH and CH2O in atmospheric pressure methane/air Bunsen flames,” Western States Section Combustion Institute paper 99F-12 (Combustion Institute, Pittsburgh, Pa., 1999).

Lee, E. K. C.

K. Shibuya, R. A. Harger, E. K. C. Lee, “Single vibronic level fluorescence emission spectroscopy and radiative lifetimes of H2CO(A1A2):40 and 41,” J. Chem. Phys. 69, 751–757 (1978).
[CrossRef]

Luque, J.

R. J. H. Klein-Douwel, J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “CH and CH2O in atmospheric pressure methane/air Bunsen flames,” Western States Section Combustion Institute paper 99F-12 (Combustion Institute, Pittsburgh, Pa., 1999).

Shibuya, K.

K. Shibuya, R. A. Harger, E. K. C. Lee, “Single vibronic level fluorescence emission spectroscopy and radiative lifetimes of H2CO(A1A2):40 and 41,” J. Chem. Phys. 69, 751–757 (1978).
[CrossRef]

Smith, G. P.

R. J. H. Klein-Douwel, J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “CH and CH2O in atmospheric pressure methane/air Bunsen flames,” Western States Section Combustion Institute paper 99F-12 (Combustion Institute, Pittsburgh, Pa., 1999).

Smyth, K. C.

J. E. Harrington, K. C. Smyth, “Laser induced fluorescence measurements of formaldehyde in a methane/air diffusion flame,” Chem. Phys. Lett. 202, 196–202 (1993).
[CrossRef]

Appl. Phys. B (1)

R. Bombach, B. Kappeli, “Simultaneous visualization of transient species in flames by planar laser induced fluorescence using a single laser system,” Appl. Phys. B 68, 251–255 (1999).
[CrossRef]

Chem. Phys. Lett. (1)

J. E. Harrington, K. C. Smyth, “Laser induced fluorescence measurements of formaldehyde in a methane/air diffusion flame,” Chem. Phys. Lett. 202, 196–202 (1993).
[CrossRef]

J. Chem. Phys. (1)

K. Shibuya, R. A. Harger, E. K. C. Lee, “Single vibronic level fluorescence emission spectroscopy and radiative lifetimes of H2CO(A1A2):40 and 41,” J. Chem. Phys. 69, 751–757 (1978).
[CrossRef]

Trans. Faraday Soc. (1)

J. C. D. Brand, “A coriolis perturbation in the ultraviolet spectrum of formaldehyde,” Trans. Faraday Soc. 46, 805–811 (1950); P. J. Dyke, “The a band of formaldehyde and the relation between the ultraviolet absorption and fluorescence systems,” J. Chem. Phys. 20, 811–818 (1952); J. H. Callomon, K. K. Innes, “Magnetic dipole transition in the electronic spectrum of formaldehyde,” J. Mol. Spectrosc. 10, 166–181 (1963).
[CrossRef]

Other (3)

J. A. Barnard, J. N. Bradley, Flame and Combustion (Chapman & Hall, New York, 1985); I. Glassman, Combustion (Academic, New York, 1987).

N. L. Garland, (SRI International, Menlo Park, Calif., 1984); D. C. Moule, A. D. Walsh, “Ultraviolet spectrum and excited states of formaldehyde,” Chem. Rev. 75, 67–85 (1975); R. G. Miller, E. K. C. Lee, “Photochemistry of formaldehyde,” J. Chem. Phys. 68, 4448–4464 (1978); J. C. D. Brand, “The electronic spectrum of formaldehyde,” J. Chem. Soc.858–872 (1956).

R. J. H. Klein-Douwel, J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “CH and CH2O in atmospheric pressure methane/air Bunsen flames,” Western States Section Combustion Institute paper 99F-12 (Combustion Institute, Pittsburgh, Pa., 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Formaldehyde LIF excitation spectrum, with broadband fluorescence detection, in an atmospheric-pressure methane–air Bunsen flame. Rotational assignments in the AX 41 0 band are shown in the (bottom) enlargement of the K″ = 2 subband region at higher resolution.

Fig. 2
Fig. 2

Formaldehyde-dispersed fluorescence spectrum following laser excitation of the A-state ground vibrational level in an atmospheric-pressure methane–air Bunsen flame by use of the 41 0 K = 3 ← 2 R(6) transition. The likely fluorescing vibronic transitions are labeled.

Fig. 3
Fig. 3

Planar LIF on-axis images of formaldehyde in Bunsen flames with inner-cone stoichiometries of (bottom) 3.0 and (top) 1.36. Broadband fluorescence was detected beyond 380 nm following excitation at 368.2 nm (K = 6 head), with subtraction of the off-resonance signal excited by the shorter laser wavelength. Zero height is the top of the 16.5-mm-diameter burner tube.

Tables (1)

Tables Icon

Table 1 Temperature Dependence of the Formaldehyde Populations

Metrics