Abstract

Laser-induced fluorescence (LIF) measurements of seeded nitric oxide and naturally occurring species in a diamond-depositing dc arcjet of hydrogen/argon/methane (0.8:1.0:0.005) at 25 Torr are used to determine the temperature and velocity fields in a gas jet. LIF measurements are also used to demonstrate the importance of gas recirculation on the chemical composition of the arcjet plume. The gas flow in the arcjet plume is supersonic, with a maximum axial speed of 2.6 km/s at the center of the nozzle exit. This axial velocity decreases with radius with a parabolic distribution in the plume. There is no measurable radial velocity in the free stream of the arcjet plume, and the radial expansion of the plume is consistent with diffusion. The maximum temperature at the plume center is 2400 K and varies less than 15% with chamber pressures of 10–50 Torr. The substrate is placed in the arcjet plume normally to the directed velocity, producing a stagnation point. The gas temperature above this stagnation point is observed to rise abruptly as a consequence of the supersonic shock. The radial velocity near the stagnation point becomes significant, and a maximum radial velocity of 1300 m/s is determined.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. F. Bahr, D. V. Bucci, L. S. Schadler, J. A. Last, J. Heberlein, E. Pfender, W. W. Gerberich, “Characterization of dc-jet CVD films on molybdenum,” Diamond Relat. Mater. 5, 1462–1472 (1996).
    [CrossRef]
  2. V. Bohm, V. Buck, M. Liesenfeld, T. Naubert, J. Zeng, “Influence of plasma parameters on the properties of diamond films deposited by the dc arc technique,” Diamond Relat. Mater. 4, 33–42 (1994).
    [CrossRef]
  3. D. W. Park, J. S. Yun, “Structural characterization of diamond thin films prepared by plasma jet,” Thin Solid Films 345, 60–66 (1999).
    [CrossRef]
  4. F. J. Grunthaner, R. Bicknell-Tassius, P. Deelman, P. J. Grunthaner, C. Bryson, E. Snyder, J. L. Giuliani, J. P. Apruzese, P. Kepple, “Ultrahigh vacuum arcjet nitrogen source for selected energy epitaxy of group III nitrides by molecular beam epitaxy,” J. Vac. Sci. Technol. A 16, 1615–1620 (1998).
    [CrossRef]
  5. W. Ho, L. J. Lauhon, S. A. Ustin, “Large area supersonic jet epitaxy of AlN, GaN, and SiC on silicon,” Mater. Res. Soc. Symp. Proc. 449, 227–232 (1997).
  6. I. J. Wysong, J. A. Pobst, “Quantitative two-photon laser-induced fluorescence of hydrogen atoms in a 1-kW arcjet thruster,” Appl. Phys. B. 67, 193–205 (1998).
    [CrossRef]
  7. M. W. Crofton, R. P. Welle, S. W. Janson, R. B. Cohen, “Temperature, velocity and density studies in the 1-kW ammonia arcjet plume by LIF,” paper AIAA-92-3241, presented at the 28th Joint Propulsion Conference, Nashville, Tenn., 6–8 July 1992 (American Institute of Aeronautics and Astronautics, Reston, Va., 1992).
  8. E. A. Brinkman, G. A. Raiche, M. S. Brown, J. B. Jeffries, “Optical diagnostics for temperature measurement in a dc arcjet reactor used for diamond deposition,” Appl. Phys. B 64, 689–697 (1997).
    [CrossRef]
  9. D. G. Fletcher, “Arcjet flow properties determined from laser-induced fluorescence of atomic nitrogen,” Appl. Opt. 38, 1850–1858 (1999).
    [CrossRef]
  10. W. Juchmann, J. Luque, J. B. Jeffries, “Atomic hydrogen concentration in a diamond depositing dc-arcjet determined by calorimetry,” J. Appl. Phys. 81, 8052–8056 (1997).
    [CrossRef]
  11. J. G. Liebeskind, R. K. Hanson, M. A. Cappelli, “Laser-induced fluorescence diagnostic for temperature and velocity measurements in a hydrogen arcjet plume,” Appl. Opt. 32, 6117–6127 (1993).
    [CrossRef] [PubMed]
  12. J. Luque, W. Juchmann, J. B. Jeffries, “Spatial density distributions of C2, C3 and CH radicals by laser-induced fluorescence in a diamond depositing dc-arcjet,” J. Appl. Phys. 82, 2072–2081 (1997).
    [CrossRef]
  13. P. V. Storm, M. A. Cappelli, “Fluorescence velocity measurements in the interior of a hydrogen arcjet nozzle,” AIAA J. 34, 853–855 (1995).
    [CrossRef]
  14. G. A. Raiche, J. B. Jeffries, “Observation and spatial distributions of C3 in a dc arcjet plasma during diamond deposition using laser-induced fluorescence,” Appl. Phys. B 65, 593–597 (1997).
    [CrossRef]
  15. G. A. Raiche, J. B. Jeffries, “Laser-induced fluorescence temperature measurements in a dc-arcjet used for diamond deposition,” Appl. Opt. 32, 4629–4635 (1993).
    [CrossRef] [PubMed]
  16. J. Luque, W. Juchmann, J. B. Jeffries, “Absolute concentration measurements of CH radicals in a diamond-depositing dc-arcjet reactor,” Appl. Opt. 36, 3261–3270 (1997).
    [CrossRef] [PubMed]
  17. P. V. Storm, M. A. Cappelli, “Radiative emission analysis of an expanding hydrogen arc plasma. I. Arc region diagnostics through axial emission,” J. Quant. Spectrosc. Radiat. Transfer 56, 901–918 (1996).
    [CrossRef]
  18. P. V. Storm, M. A. Cappelli, “Radiative emission analysis of an expanding hydrogen arc plasma. II. Plume region diagnostics through radial emission,” J. Quant. Spectrosc. Radiat. Transfer 56, 919–932 (1996).
    [CrossRef]
  19. J. C. Cubertafon, M. Chenevier, A. Campargue, G. Verven, T. Priem, “Emission spectroscopy diagnostics of a d.c. plasma jet diamond reactor,” Diamond Relat. Mater. 4, 350–356 (1995).
    [CrossRef]
  20. J. Luque, W. Juchmann, E. A. Brinkmann, J. B. Jeffries, “Excited state density distributions of H, C, C2, and CH by spatially resolved optical emission in a diamond depositing dc-arcjet reactor,” J. Vac. Sci. Technol. A 16, 397–408 (1998).
    [CrossRef]
  21. S. W. Reeve, W. A. Weimer, “Plasma diagnostics of a direc-current arcjet diamond reactor. II. Optical emission spectroscopy,” J. Vac. Sci. Technol. A 13, 359–367 (1995).
    [CrossRef]
  22. F. Y. Zhang, K. Komurasaki, T. Lida, T. Fujiwara, “Diagnostics of an argon arcjet plume with a diode laser,” Appl. Opt. 38, 1814–1822 (1999).
    [CrossRef]
  23. W. Juchmann, J. Luque, J. Wolfrum, J. B. Jeffries, “Absolute concentration, temperature, and velocity measurements in a diamond depositing dc-arcjet reactor,” Diamond Relat. Mater. 7, 165–169 (1998).
    [CrossRef]
  24. J. Luque, D. R. Crosley, LIFBASE, v. 1.61 [SRI International, MP-99-0099, ( www.sri.com/cem/lifbase ), 1999].
  25. W. Juchmann, J. Luque, J. B. Jeffries, “Two-photon LIF of H atoms in a dc-arcjet,” Appl. Phys. B (to be published).
  26. J. Brzozowski, P. Bunker, N. Elander, P. Erman, “Predissociation effects in the A, B, and C states of CH and the interstellar formation rate of CH via inverse predissociation,” Astrophys. J. 207, 414–424 (1976).
    [CrossRef]
  27. C. Naulin, M. Costes, G. Dorthe, “C2 radicals in a supersonic molecular beam. Radiative lifetime of the d state measured by laser-induced fluorescence,” Chem. Phys. Lett. 143, 496–500 (1988).
    [CrossRef]
  28. K. H. Becker, T. Tatarczyk, J. Radic-Peric, “Lifetime measurements of electronically excited C3 radicals in different vibrational states,” Chem. Phys. Lett. 60, 502–506 (1979).
    [CrossRef]
  29. J. Luque, D. R. Crosley, “Transition probabilities and electronic transition moments of the A–X and D–X systems of nitric oxide,” J. Chem. Phys. 111, 7405–7415 (1999).
    [CrossRef]
  30. P. J. Knowles, H. Werner, P. J. Hay, D. C. Cartwright, “The A–X red and B–X violet systems of the CN radical: accurate multi-reference configuration interaction calculations of the radiative transition probabilities,” J. Chem. Phys. 89, 7334–7343 (1988).
    [CrossRef]
  31. J. Bittner, K. Kohes-Hoinghaus, U. Meier, T. Just, “Quenching of two-photon-excited H (3s, 3d) and O (3p) atoms by rare gas atoms and small molecules,” Chem. Phys. Lett. 143, 571–576 (1988).
    [CrossRef]
  32. W. H. Press, W. T. Vettering, S. A. Teukolsky, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, New York, 1992).
  33. A. J. Dean, R. K. Hanson, C. T. Bowman, “C + NO reaction,” J. Phys. Chem. 95, 3180–3189 (1991).
    [CrossRef]
  34. S. T. Wooldridge, R. K. Hanson, C. T. Bowman, “CN + H2 reaction,” Int. J. Chem. Kinet. 28, 245–258 (1996).
    [CrossRef]
  35. C. D. Moen, H. A. Dwyer, “Numerical simulation of supersonic internal flow for an arc-heated chemical vapor deposition reactor,” AIAA-95-2208, presented at the 26th Fluid Dynamics Conference, San Diego, Calif., 19–22 June 1995 (American Institute for Aeronautics and Astronautics, Reston, Va., 1995), pp. 1–11.
  36. S. W. Reeve, W. A. Weimer, F. M. Cerio, “Gas phase chemistry in a direct current plasma jet diamond reactor,” J. Appl. Phys. 74, 7521–7530 (1993).
    [CrossRef]
  37. C. D. Moen, H. A. Dwyer, “Numerical simulation of chemical kinetics in a supersonic chemical vapor deposition reactor,” paper AIAA-95-1676, presented at the Twelfth Computational Fluid Mechanics Conference, San Diego, Calif., 19–22 June 1995 (American Institute for Aeronautics and Astronautics, Reston, Va., 1995), pp. 1–11.

1999 (4)

D. W. Park, J. S. Yun, “Structural characterization of diamond thin films prepared by plasma jet,” Thin Solid Films 345, 60–66 (1999).
[CrossRef]

D. G. Fletcher, “Arcjet flow properties determined from laser-induced fluorescence of atomic nitrogen,” Appl. Opt. 38, 1850–1858 (1999).
[CrossRef]

F. Y. Zhang, K. Komurasaki, T. Lida, T. Fujiwara, “Diagnostics of an argon arcjet plume with a diode laser,” Appl. Opt. 38, 1814–1822 (1999).
[CrossRef]

J. Luque, D. R. Crosley, “Transition probabilities and electronic transition moments of the A–X and D–X systems of nitric oxide,” J. Chem. Phys. 111, 7405–7415 (1999).
[CrossRef]

1998 (4)

W. Juchmann, J. Luque, J. Wolfrum, J. B. Jeffries, “Absolute concentration, temperature, and velocity measurements in a diamond depositing dc-arcjet reactor,” Diamond Relat. Mater. 7, 165–169 (1998).
[CrossRef]

J. Luque, W. Juchmann, E. A. Brinkmann, J. B. Jeffries, “Excited state density distributions of H, C, C2, and CH by spatially resolved optical emission in a diamond depositing dc-arcjet reactor,” J. Vac. Sci. Technol. A 16, 397–408 (1998).
[CrossRef]

I. J. Wysong, J. A. Pobst, “Quantitative two-photon laser-induced fluorescence of hydrogen atoms in a 1-kW arcjet thruster,” Appl. Phys. B. 67, 193–205 (1998).
[CrossRef]

F. J. Grunthaner, R. Bicknell-Tassius, P. Deelman, P. J. Grunthaner, C. Bryson, E. Snyder, J. L. Giuliani, J. P. Apruzese, P. Kepple, “Ultrahigh vacuum arcjet nitrogen source for selected energy epitaxy of group III nitrides by molecular beam epitaxy,” J. Vac. Sci. Technol. A 16, 1615–1620 (1998).
[CrossRef]

1997 (6)

W. Ho, L. J. Lauhon, S. A. Ustin, “Large area supersonic jet epitaxy of AlN, GaN, and SiC on silicon,” Mater. Res. Soc. Symp. Proc. 449, 227–232 (1997).

E. A. Brinkman, G. A. Raiche, M. S. Brown, J. B. Jeffries, “Optical diagnostics for temperature measurement in a dc arcjet reactor used for diamond deposition,” Appl. Phys. B 64, 689–697 (1997).
[CrossRef]

W. Juchmann, J. Luque, J. B. Jeffries, “Atomic hydrogen concentration in a diamond depositing dc-arcjet determined by calorimetry,” J. Appl. Phys. 81, 8052–8056 (1997).
[CrossRef]

J. Luque, W. Juchmann, J. B. Jeffries, “Spatial density distributions of C2, C3 and CH radicals by laser-induced fluorescence in a diamond depositing dc-arcjet,” J. Appl. Phys. 82, 2072–2081 (1997).
[CrossRef]

G. A. Raiche, J. B. Jeffries, “Observation and spatial distributions of C3 in a dc arcjet plasma during diamond deposition using laser-induced fluorescence,” Appl. Phys. B 65, 593–597 (1997).
[CrossRef]

J. Luque, W. Juchmann, J. B. Jeffries, “Absolute concentration measurements of CH radicals in a diamond-depositing dc-arcjet reactor,” Appl. Opt. 36, 3261–3270 (1997).
[CrossRef] [PubMed]

1996 (4)

P. V. Storm, M. A. Cappelli, “Radiative emission analysis of an expanding hydrogen arc plasma. I. Arc region diagnostics through axial emission,” J. Quant. Spectrosc. Radiat. Transfer 56, 901–918 (1996).
[CrossRef]

P. V. Storm, M. A. Cappelli, “Radiative emission analysis of an expanding hydrogen arc plasma. II. Plume region diagnostics through radial emission,” J. Quant. Spectrosc. Radiat. Transfer 56, 919–932 (1996).
[CrossRef]

D. F. Bahr, D. V. Bucci, L. S. Schadler, J. A. Last, J. Heberlein, E. Pfender, W. W. Gerberich, “Characterization of dc-jet CVD films on molybdenum,” Diamond Relat. Mater. 5, 1462–1472 (1996).
[CrossRef]

S. T. Wooldridge, R. K. Hanson, C. T. Bowman, “CN + H2 reaction,” Int. J. Chem. Kinet. 28, 245–258 (1996).
[CrossRef]

1995 (3)

S. W. Reeve, W. A. Weimer, “Plasma diagnostics of a direc-current arcjet diamond reactor. II. Optical emission spectroscopy,” J. Vac. Sci. Technol. A 13, 359–367 (1995).
[CrossRef]

J. C. Cubertafon, M. Chenevier, A. Campargue, G. Verven, T. Priem, “Emission spectroscopy diagnostics of a d.c. plasma jet diamond reactor,” Diamond Relat. Mater. 4, 350–356 (1995).
[CrossRef]

P. V. Storm, M. A. Cappelli, “Fluorescence velocity measurements in the interior of a hydrogen arcjet nozzle,” AIAA J. 34, 853–855 (1995).
[CrossRef]

1994 (1)

V. Bohm, V. Buck, M. Liesenfeld, T. Naubert, J. Zeng, “Influence of plasma parameters on the properties of diamond films deposited by the dc arc technique,” Diamond Relat. Mater. 4, 33–42 (1994).
[CrossRef]

1993 (3)

1991 (1)

A. J. Dean, R. K. Hanson, C. T. Bowman, “C + NO reaction,” J. Phys. Chem. 95, 3180–3189 (1991).
[CrossRef]

1988 (3)

P. J. Knowles, H. Werner, P. J. Hay, D. C. Cartwright, “The A–X red and B–X violet systems of the CN radical: accurate multi-reference configuration interaction calculations of the radiative transition probabilities,” J. Chem. Phys. 89, 7334–7343 (1988).
[CrossRef]

J. Bittner, K. Kohes-Hoinghaus, U. Meier, T. Just, “Quenching of two-photon-excited H (3s, 3d) and O (3p) atoms by rare gas atoms and small molecules,” Chem. Phys. Lett. 143, 571–576 (1988).
[CrossRef]

C. Naulin, M. Costes, G. Dorthe, “C2 radicals in a supersonic molecular beam. Radiative lifetime of the d state measured by laser-induced fluorescence,” Chem. Phys. Lett. 143, 496–500 (1988).
[CrossRef]

1979 (1)

K. H. Becker, T. Tatarczyk, J. Radic-Peric, “Lifetime measurements of electronically excited C3 radicals in different vibrational states,” Chem. Phys. Lett. 60, 502–506 (1979).
[CrossRef]

1976 (1)

J. Brzozowski, P. Bunker, N. Elander, P. Erman, “Predissociation effects in the A, B, and C states of CH and the interstellar formation rate of CH via inverse predissociation,” Astrophys. J. 207, 414–424 (1976).
[CrossRef]

Apruzese, J. P.

F. J. Grunthaner, R. Bicknell-Tassius, P. Deelman, P. J. Grunthaner, C. Bryson, E. Snyder, J. L. Giuliani, J. P. Apruzese, P. Kepple, “Ultrahigh vacuum arcjet nitrogen source for selected energy epitaxy of group III nitrides by molecular beam epitaxy,” J. Vac. Sci. Technol. A 16, 1615–1620 (1998).
[CrossRef]

Bahr, D. F.

D. F. Bahr, D. V. Bucci, L. S. Schadler, J. A. Last, J. Heberlein, E. Pfender, W. W. Gerberich, “Characterization of dc-jet CVD films on molybdenum,” Diamond Relat. Mater. 5, 1462–1472 (1996).
[CrossRef]

Becker, K. H.

K. H. Becker, T. Tatarczyk, J. Radic-Peric, “Lifetime measurements of electronically excited C3 radicals in different vibrational states,” Chem. Phys. Lett. 60, 502–506 (1979).
[CrossRef]

Bicknell-Tassius, R.

F. J. Grunthaner, R. Bicknell-Tassius, P. Deelman, P. J. Grunthaner, C. Bryson, E. Snyder, J. L. Giuliani, J. P. Apruzese, P. Kepple, “Ultrahigh vacuum arcjet nitrogen source for selected energy epitaxy of group III nitrides by molecular beam epitaxy,” J. Vac. Sci. Technol. A 16, 1615–1620 (1998).
[CrossRef]

Bittner, J.

J. Bittner, K. Kohes-Hoinghaus, U. Meier, T. Just, “Quenching of two-photon-excited H (3s, 3d) and O (3p) atoms by rare gas atoms and small molecules,” Chem. Phys. Lett. 143, 571–576 (1988).
[CrossRef]

Bohm, V.

V. Bohm, V. Buck, M. Liesenfeld, T. Naubert, J. Zeng, “Influence of plasma parameters on the properties of diamond films deposited by the dc arc technique,” Diamond Relat. Mater. 4, 33–42 (1994).
[CrossRef]

Bowman, C. T.

S. T. Wooldridge, R. K. Hanson, C. T. Bowman, “CN + H2 reaction,” Int. J. Chem. Kinet. 28, 245–258 (1996).
[CrossRef]

A. J. Dean, R. K. Hanson, C. T. Bowman, “C + NO reaction,” J. Phys. Chem. 95, 3180–3189 (1991).
[CrossRef]

Brinkman, E. A.

E. A. Brinkman, G. A. Raiche, M. S. Brown, J. B. Jeffries, “Optical diagnostics for temperature measurement in a dc arcjet reactor used for diamond deposition,” Appl. Phys. B 64, 689–697 (1997).
[CrossRef]

Brinkmann, E. A.

J. Luque, W. Juchmann, E. A. Brinkmann, J. B. Jeffries, “Excited state density distributions of H, C, C2, and CH by spatially resolved optical emission in a diamond depositing dc-arcjet reactor,” J. Vac. Sci. Technol. A 16, 397–408 (1998).
[CrossRef]

Brown, M. S.

E. A. Brinkman, G. A. Raiche, M. S. Brown, J. B. Jeffries, “Optical diagnostics for temperature measurement in a dc arcjet reactor used for diamond deposition,” Appl. Phys. B 64, 689–697 (1997).
[CrossRef]

Bryson, C.

F. J. Grunthaner, R. Bicknell-Tassius, P. Deelman, P. J. Grunthaner, C. Bryson, E. Snyder, J. L. Giuliani, J. P. Apruzese, P. Kepple, “Ultrahigh vacuum arcjet nitrogen source for selected energy epitaxy of group III nitrides by molecular beam epitaxy,” J. Vac. Sci. Technol. A 16, 1615–1620 (1998).
[CrossRef]

Brzozowski, J.

J. Brzozowski, P. Bunker, N. Elander, P. Erman, “Predissociation effects in the A, B, and C states of CH and the interstellar formation rate of CH via inverse predissociation,” Astrophys. J. 207, 414–424 (1976).
[CrossRef]

Bucci, D. V.

D. F. Bahr, D. V. Bucci, L. S. Schadler, J. A. Last, J. Heberlein, E. Pfender, W. W. Gerberich, “Characterization of dc-jet CVD films on molybdenum,” Diamond Relat. Mater. 5, 1462–1472 (1996).
[CrossRef]

Buck, V.

V. Bohm, V. Buck, M. Liesenfeld, T. Naubert, J. Zeng, “Influence of plasma parameters on the properties of diamond films deposited by the dc arc technique,” Diamond Relat. Mater. 4, 33–42 (1994).
[CrossRef]

Bunker, P.

J. Brzozowski, P. Bunker, N. Elander, P. Erman, “Predissociation effects in the A, B, and C states of CH and the interstellar formation rate of CH via inverse predissociation,” Astrophys. J. 207, 414–424 (1976).
[CrossRef]

Campargue, A.

J. C. Cubertafon, M. Chenevier, A. Campargue, G. Verven, T. Priem, “Emission spectroscopy diagnostics of a d.c. plasma jet diamond reactor,” Diamond Relat. Mater. 4, 350–356 (1995).
[CrossRef]

Cappelli, M. A.

P. V. Storm, M. A. Cappelli, “Radiative emission analysis of an expanding hydrogen arc plasma. I. Arc region diagnostics through axial emission,” J. Quant. Spectrosc. Radiat. Transfer 56, 901–918 (1996).
[CrossRef]

P. V. Storm, M. A. Cappelli, “Radiative emission analysis of an expanding hydrogen arc plasma. II. Plume region diagnostics through radial emission,” J. Quant. Spectrosc. Radiat. Transfer 56, 919–932 (1996).
[CrossRef]

P. V. Storm, M. A. Cappelli, “Fluorescence velocity measurements in the interior of a hydrogen arcjet nozzle,” AIAA J. 34, 853–855 (1995).
[CrossRef]

J. G. Liebeskind, R. K. Hanson, M. A. Cappelli, “Laser-induced fluorescence diagnostic for temperature and velocity measurements in a hydrogen arcjet plume,” Appl. Opt. 32, 6117–6127 (1993).
[CrossRef] [PubMed]

Cartwright, D. C.

P. J. Knowles, H. Werner, P. J. Hay, D. C. Cartwright, “The A–X red and B–X violet systems of the CN radical: accurate multi-reference configuration interaction calculations of the radiative transition probabilities,” J. Chem. Phys. 89, 7334–7343 (1988).
[CrossRef]

Cerio, F. M.

S. W. Reeve, W. A. Weimer, F. M. Cerio, “Gas phase chemistry in a direct current plasma jet diamond reactor,” J. Appl. Phys. 74, 7521–7530 (1993).
[CrossRef]

Chenevier, M.

J. C. Cubertafon, M. Chenevier, A. Campargue, G. Verven, T. Priem, “Emission spectroscopy diagnostics of a d.c. plasma jet diamond reactor,” Diamond Relat. Mater. 4, 350–356 (1995).
[CrossRef]

Cohen, R. B.

M. W. Crofton, R. P. Welle, S. W. Janson, R. B. Cohen, “Temperature, velocity and density studies in the 1-kW ammonia arcjet plume by LIF,” paper AIAA-92-3241, presented at the 28th Joint Propulsion Conference, Nashville, Tenn., 6–8 July 1992 (American Institute of Aeronautics and Astronautics, Reston, Va., 1992).

Costes, M.

C. Naulin, M. Costes, G. Dorthe, “C2 radicals in a supersonic molecular beam. Radiative lifetime of the d state measured by laser-induced fluorescence,” Chem. Phys. Lett. 143, 496–500 (1988).
[CrossRef]

Crofton, M. W.

M. W. Crofton, R. P. Welle, S. W. Janson, R. B. Cohen, “Temperature, velocity and density studies in the 1-kW ammonia arcjet plume by LIF,” paper AIAA-92-3241, presented at the 28th Joint Propulsion Conference, Nashville, Tenn., 6–8 July 1992 (American Institute of Aeronautics and Astronautics, Reston, Va., 1992).

Crosley, D. R.

J. Luque, D. R. Crosley, “Transition probabilities and electronic transition moments of the A–X and D–X systems of nitric oxide,” J. Chem. Phys. 111, 7405–7415 (1999).
[CrossRef]

J. Luque, D. R. Crosley, LIFBASE, v. 1.61 [SRI International, MP-99-0099, ( www.sri.com/cem/lifbase ), 1999].

Cubertafon, J. C.

J. C. Cubertafon, M. Chenevier, A. Campargue, G. Verven, T. Priem, “Emission spectroscopy diagnostics of a d.c. plasma jet diamond reactor,” Diamond Relat. Mater. 4, 350–356 (1995).
[CrossRef]

Dean, A. J.

A. J. Dean, R. K. Hanson, C. T. Bowman, “C + NO reaction,” J. Phys. Chem. 95, 3180–3189 (1991).
[CrossRef]

Deelman, P.

F. J. Grunthaner, R. Bicknell-Tassius, P. Deelman, P. J. Grunthaner, C. Bryson, E. Snyder, J. L. Giuliani, J. P. Apruzese, P. Kepple, “Ultrahigh vacuum arcjet nitrogen source for selected energy epitaxy of group III nitrides by molecular beam epitaxy,” J. Vac. Sci. Technol. A 16, 1615–1620 (1998).
[CrossRef]

Dorthe, G.

C. Naulin, M. Costes, G. Dorthe, “C2 radicals in a supersonic molecular beam. Radiative lifetime of the d state measured by laser-induced fluorescence,” Chem. Phys. Lett. 143, 496–500 (1988).
[CrossRef]

Dwyer, H. A.

C. D. Moen, H. A. Dwyer, “Numerical simulation of supersonic internal flow for an arc-heated chemical vapor deposition reactor,” AIAA-95-2208, presented at the 26th Fluid Dynamics Conference, San Diego, Calif., 19–22 June 1995 (American Institute for Aeronautics and Astronautics, Reston, Va., 1995), pp. 1–11.

C. D. Moen, H. A. Dwyer, “Numerical simulation of chemical kinetics in a supersonic chemical vapor deposition reactor,” paper AIAA-95-1676, presented at the Twelfth Computational Fluid Mechanics Conference, San Diego, Calif., 19–22 June 1995 (American Institute for Aeronautics and Astronautics, Reston, Va., 1995), pp. 1–11.

Elander, N.

J. Brzozowski, P. Bunker, N. Elander, P. Erman, “Predissociation effects in the A, B, and C states of CH and the interstellar formation rate of CH via inverse predissociation,” Astrophys. J. 207, 414–424 (1976).
[CrossRef]

Erman, P.

J. Brzozowski, P. Bunker, N. Elander, P. Erman, “Predissociation effects in the A, B, and C states of CH and the interstellar formation rate of CH via inverse predissociation,” Astrophys. J. 207, 414–424 (1976).
[CrossRef]

Flannery, B. P.

W. H. Press, W. T. Vettering, S. A. Teukolsky, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, New York, 1992).

Fletcher, D. G.

Fujiwara, T.

Gerberich, W. W.

D. F. Bahr, D. V. Bucci, L. S. Schadler, J. A. Last, J. Heberlein, E. Pfender, W. W. Gerberich, “Characterization of dc-jet CVD films on molybdenum,” Diamond Relat. Mater. 5, 1462–1472 (1996).
[CrossRef]

Giuliani, J. L.

F. J. Grunthaner, R. Bicknell-Tassius, P. Deelman, P. J. Grunthaner, C. Bryson, E. Snyder, J. L. Giuliani, J. P. Apruzese, P. Kepple, “Ultrahigh vacuum arcjet nitrogen source for selected energy epitaxy of group III nitrides by molecular beam epitaxy,” J. Vac. Sci. Technol. A 16, 1615–1620 (1998).
[CrossRef]

Grunthaner, F. J.

F. J. Grunthaner, R. Bicknell-Tassius, P. Deelman, P. J. Grunthaner, C. Bryson, E. Snyder, J. L. Giuliani, J. P. Apruzese, P. Kepple, “Ultrahigh vacuum arcjet nitrogen source for selected energy epitaxy of group III nitrides by molecular beam epitaxy,” J. Vac. Sci. Technol. A 16, 1615–1620 (1998).
[CrossRef]

Grunthaner, P. J.

F. J. Grunthaner, R. Bicknell-Tassius, P. Deelman, P. J. Grunthaner, C. Bryson, E. Snyder, J. L. Giuliani, J. P. Apruzese, P. Kepple, “Ultrahigh vacuum arcjet nitrogen source for selected energy epitaxy of group III nitrides by molecular beam epitaxy,” J. Vac. Sci. Technol. A 16, 1615–1620 (1998).
[CrossRef]

Hanson, R. K.

S. T. Wooldridge, R. K. Hanson, C. T. Bowman, “CN + H2 reaction,” Int. J. Chem. Kinet. 28, 245–258 (1996).
[CrossRef]

J. G. Liebeskind, R. K. Hanson, M. A. Cappelli, “Laser-induced fluorescence diagnostic for temperature and velocity measurements in a hydrogen arcjet plume,” Appl. Opt. 32, 6117–6127 (1993).
[CrossRef] [PubMed]

A. J. Dean, R. K. Hanson, C. T. Bowman, “C + NO reaction,” J. Phys. Chem. 95, 3180–3189 (1991).
[CrossRef]

Hay, P. J.

P. J. Knowles, H. Werner, P. J. Hay, D. C. Cartwright, “The A–X red and B–X violet systems of the CN radical: accurate multi-reference configuration interaction calculations of the radiative transition probabilities,” J. Chem. Phys. 89, 7334–7343 (1988).
[CrossRef]

Heberlein, J.

D. F. Bahr, D. V. Bucci, L. S. Schadler, J. A. Last, J. Heberlein, E. Pfender, W. W. Gerberich, “Characterization of dc-jet CVD films on molybdenum,” Diamond Relat. Mater. 5, 1462–1472 (1996).
[CrossRef]

Ho, W.

W. Ho, L. J. Lauhon, S. A. Ustin, “Large area supersonic jet epitaxy of AlN, GaN, and SiC on silicon,” Mater. Res. Soc. Symp. Proc. 449, 227–232 (1997).

Janson, S. W.

M. W. Crofton, R. P. Welle, S. W. Janson, R. B. Cohen, “Temperature, velocity and density studies in the 1-kW ammonia arcjet plume by LIF,” paper AIAA-92-3241, presented at the 28th Joint Propulsion Conference, Nashville, Tenn., 6–8 July 1992 (American Institute of Aeronautics and Astronautics, Reston, Va., 1992).

Jeffries, J. B.

J. Luque, W. Juchmann, E. A. Brinkmann, J. B. Jeffries, “Excited state density distributions of H, C, C2, and CH by spatially resolved optical emission in a diamond depositing dc-arcjet reactor,” J. Vac. Sci. Technol. A 16, 397–408 (1998).
[CrossRef]

W. Juchmann, J. Luque, J. Wolfrum, J. B. Jeffries, “Absolute concentration, temperature, and velocity measurements in a diamond depositing dc-arcjet reactor,” Diamond Relat. Mater. 7, 165–169 (1998).
[CrossRef]

J. Luque, W. Juchmann, J. B. Jeffries, “Absolute concentration measurements of CH radicals in a diamond-depositing dc-arcjet reactor,” Appl. Opt. 36, 3261–3270 (1997).
[CrossRef] [PubMed]

W. Juchmann, J. Luque, J. B. Jeffries, “Atomic hydrogen concentration in a diamond depositing dc-arcjet determined by calorimetry,” J. Appl. Phys. 81, 8052–8056 (1997).
[CrossRef]

J. Luque, W. Juchmann, J. B. Jeffries, “Spatial density distributions of C2, C3 and CH radicals by laser-induced fluorescence in a diamond depositing dc-arcjet,” J. Appl. Phys. 82, 2072–2081 (1997).
[CrossRef]

G. A. Raiche, J. B. Jeffries, “Observation and spatial distributions of C3 in a dc arcjet plasma during diamond deposition using laser-induced fluorescence,” Appl. Phys. B 65, 593–597 (1997).
[CrossRef]

E. A. Brinkman, G. A. Raiche, M. S. Brown, J. B. Jeffries, “Optical diagnostics for temperature measurement in a dc arcjet reactor used for diamond deposition,” Appl. Phys. B 64, 689–697 (1997).
[CrossRef]

G. A. Raiche, J. B. Jeffries, “Laser-induced fluorescence temperature measurements in a dc-arcjet used for diamond deposition,” Appl. Opt. 32, 4629–4635 (1993).
[CrossRef] [PubMed]

W. Juchmann, J. Luque, J. B. Jeffries, “Two-photon LIF of H atoms in a dc-arcjet,” Appl. Phys. B (to be published).

Juchmann, W.

W. Juchmann, J. Luque, J. Wolfrum, J. B. Jeffries, “Absolute concentration, temperature, and velocity measurements in a diamond depositing dc-arcjet reactor,” Diamond Relat. Mater. 7, 165–169 (1998).
[CrossRef]

J. Luque, W. Juchmann, E. A. Brinkmann, J. B. Jeffries, “Excited state density distributions of H, C, C2, and CH by spatially resolved optical emission in a diamond depositing dc-arcjet reactor,” J. Vac. Sci. Technol. A 16, 397–408 (1998).
[CrossRef]

W. Juchmann, J. Luque, J. B. Jeffries, “Atomic hydrogen concentration in a diamond depositing dc-arcjet determined by calorimetry,” J. Appl. Phys. 81, 8052–8056 (1997).
[CrossRef]

J. Luque, W. Juchmann, J. B. Jeffries, “Spatial density distributions of C2, C3 and CH radicals by laser-induced fluorescence in a diamond depositing dc-arcjet,” J. Appl. Phys. 82, 2072–2081 (1997).
[CrossRef]

J. Luque, W. Juchmann, J. B. Jeffries, “Absolute concentration measurements of CH radicals in a diamond-depositing dc-arcjet reactor,” Appl. Opt. 36, 3261–3270 (1997).
[CrossRef] [PubMed]

W. Juchmann, J. Luque, J. B. Jeffries, “Two-photon LIF of H atoms in a dc-arcjet,” Appl. Phys. B (to be published).

Just, T.

J. Bittner, K. Kohes-Hoinghaus, U. Meier, T. Just, “Quenching of two-photon-excited H (3s, 3d) and O (3p) atoms by rare gas atoms and small molecules,” Chem. Phys. Lett. 143, 571–576 (1988).
[CrossRef]

Kepple, P.

F. J. Grunthaner, R. Bicknell-Tassius, P. Deelman, P. J. Grunthaner, C. Bryson, E. Snyder, J. L. Giuliani, J. P. Apruzese, P. Kepple, “Ultrahigh vacuum arcjet nitrogen source for selected energy epitaxy of group III nitrides by molecular beam epitaxy,” J. Vac. Sci. Technol. A 16, 1615–1620 (1998).
[CrossRef]

Knowles, P. J.

P. J. Knowles, H. Werner, P. J. Hay, D. C. Cartwright, “The A–X red and B–X violet systems of the CN radical: accurate multi-reference configuration interaction calculations of the radiative transition probabilities,” J. Chem. Phys. 89, 7334–7343 (1988).
[CrossRef]

Kohes-Hoinghaus, K.

J. Bittner, K. Kohes-Hoinghaus, U. Meier, T. Just, “Quenching of two-photon-excited H (3s, 3d) and O (3p) atoms by rare gas atoms and small molecules,” Chem. Phys. Lett. 143, 571–576 (1988).
[CrossRef]

Komurasaki, K.

Last, J. A.

D. F. Bahr, D. V. Bucci, L. S. Schadler, J. A. Last, J. Heberlein, E. Pfender, W. W. Gerberich, “Characterization of dc-jet CVD films on molybdenum,” Diamond Relat. Mater. 5, 1462–1472 (1996).
[CrossRef]

Lauhon, L. J.

W. Ho, L. J. Lauhon, S. A. Ustin, “Large area supersonic jet epitaxy of AlN, GaN, and SiC on silicon,” Mater. Res. Soc. Symp. Proc. 449, 227–232 (1997).

Lida, T.

Liebeskind, J. G.

Liesenfeld, M.

V. Bohm, V. Buck, M. Liesenfeld, T. Naubert, J. Zeng, “Influence of plasma parameters on the properties of diamond films deposited by the dc arc technique,” Diamond Relat. Mater. 4, 33–42 (1994).
[CrossRef]

Luque, J.

J. Luque, D. R. Crosley, “Transition probabilities and electronic transition moments of the A–X and D–X systems of nitric oxide,” J. Chem. Phys. 111, 7405–7415 (1999).
[CrossRef]

J. Luque, W. Juchmann, E. A. Brinkmann, J. B. Jeffries, “Excited state density distributions of H, C, C2, and CH by spatially resolved optical emission in a diamond depositing dc-arcjet reactor,” J. Vac. Sci. Technol. A 16, 397–408 (1998).
[CrossRef]

W. Juchmann, J. Luque, J. Wolfrum, J. B. Jeffries, “Absolute concentration, temperature, and velocity measurements in a diamond depositing dc-arcjet reactor,” Diamond Relat. Mater. 7, 165–169 (1998).
[CrossRef]

W. Juchmann, J. Luque, J. B. Jeffries, “Atomic hydrogen concentration in a diamond depositing dc-arcjet determined by calorimetry,” J. Appl. Phys. 81, 8052–8056 (1997).
[CrossRef]

J. Luque, W. Juchmann, J. B. Jeffries, “Spatial density distributions of C2, C3 and CH radicals by laser-induced fluorescence in a diamond depositing dc-arcjet,” J. Appl. Phys. 82, 2072–2081 (1997).
[CrossRef]

J. Luque, W. Juchmann, J. B. Jeffries, “Absolute concentration measurements of CH radicals in a diamond-depositing dc-arcjet reactor,” Appl. Opt. 36, 3261–3270 (1997).
[CrossRef] [PubMed]

W. Juchmann, J. Luque, J. B. Jeffries, “Two-photon LIF of H atoms in a dc-arcjet,” Appl. Phys. B (to be published).

J. Luque, D. R. Crosley, LIFBASE, v. 1.61 [SRI International, MP-99-0099, ( www.sri.com/cem/lifbase ), 1999].

Meier, U.

J. Bittner, K. Kohes-Hoinghaus, U. Meier, T. Just, “Quenching of two-photon-excited H (3s, 3d) and O (3p) atoms by rare gas atoms and small molecules,” Chem. Phys. Lett. 143, 571–576 (1988).
[CrossRef]

Moen, C. D.

C. D. Moen, H. A. Dwyer, “Numerical simulation of supersonic internal flow for an arc-heated chemical vapor deposition reactor,” AIAA-95-2208, presented at the 26th Fluid Dynamics Conference, San Diego, Calif., 19–22 June 1995 (American Institute for Aeronautics and Astronautics, Reston, Va., 1995), pp. 1–11.

C. D. Moen, H. A. Dwyer, “Numerical simulation of chemical kinetics in a supersonic chemical vapor deposition reactor,” paper AIAA-95-1676, presented at the Twelfth Computational Fluid Mechanics Conference, San Diego, Calif., 19–22 June 1995 (American Institute for Aeronautics and Astronautics, Reston, Va., 1995), pp. 1–11.

Naubert, T.

V. Bohm, V. Buck, M. Liesenfeld, T. Naubert, J. Zeng, “Influence of plasma parameters on the properties of diamond films deposited by the dc arc technique,” Diamond Relat. Mater. 4, 33–42 (1994).
[CrossRef]

Naulin, C.

C. Naulin, M. Costes, G. Dorthe, “C2 radicals in a supersonic molecular beam. Radiative lifetime of the d state measured by laser-induced fluorescence,” Chem. Phys. Lett. 143, 496–500 (1988).
[CrossRef]

Park, D. W.

D. W. Park, J. S. Yun, “Structural characterization of diamond thin films prepared by plasma jet,” Thin Solid Films 345, 60–66 (1999).
[CrossRef]

Pfender, E.

D. F. Bahr, D. V. Bucci, L. S. Schadler, J. A. Last, J. Heberlein, E. Pfender, W. W. Gerberich, “Characterization of dc-jet CVD films on molybdenum,” Diamond Relat. Mater. 5, 1462–1472 (1996).
[CrossRef]

Pobst, J. A.

I. J. Wysong, J. A. Pobst, “Quantitative two-photon laser-induced fluorescence of hydrogen atoms in a 1-kW arcjet thruster,” Appl. Phys. B. 67, 193–205 (1998).
[CrossRef]

Press, W. H.

W. H. Press, W. T. Vettering, S. A. Teukolsky, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, New York, 1992).

Priem, T.

J. C. Cubertafon, M. Chenevier, A. Campargue, G. Verven, T. Priem, “Emission spectroscopy diagnostics of a d.c. plasma jet diamond reactor,” Diamond Relat. Mater. 4, 350–356 (1995).
[CrossRef]

Radic-Peric, J.

K. H. Becker, T. Tatarczyk, J. Radic-Peric, “Lifetime measurements of electronically excited C3 radicals in different vibrational states,” Chem. Phys. Lett. 60, 502–506 (1979).
[CrossRef]

Raiche, G. A.

G. A. Raiche, J. B. Jeffries, “Observation and spatial distributions of C3 in a dc arcjet plasma during diamond deposition using laser-induced fluorescence,” Appl. Phys. B 65, 593–597 (1997).
[CrossRef]

E. A. Brinkman, G. A. Raiche, M. S. Brown, J. B. Jeffries, “Optical diagnostics for temperature measurement in a dc arcjet reactor used for diamond deposition,” Appl. Phys. B 64, 689–697 (1997).
[CrossRef]

G. A. Raiche, J. B. Jeffries, “Laser-induced fluorescence temperature measurements in a dc-arcjet used for diamond deposition,” Appl. Opt. 32, 4629–4635 (1993).
[CrossRef] [PubMed]

Reeve, S. W.

S. W. Reeve, W. A. Weimer, “Plasma diagnostics of a direc-current arcjet diamond reactor. II. Optical emission spectroscopy,” J. Vac. Sci. Technol. A 13, 359–367 (1995).
[CrossRef]

S. W. Reeve, W. A. Weimer, F. M. Cerio, “Gas phase chemistry in a direct current plasma jet diamond reactor,” J. Appl. Phys. 74, 7521–7530 (1993).
[CrossRef]

Schadler, L. S.

D. F. Bahr, D. V. Bucci, L. S. Schadler, J. A. Last, J. Heberlein, E. Pfender, W. W. Gerberich, “Characterization of dc-jet CVD films on molybdenum,” Diamond Relat. Mater. 5, 1462–1472 (1996).
[CrossRef]

Snyder, E.

F. J. Grunthaner, R. Bicknell-Tassius, P. Deelman, P. J. Grunthaner, C. Bryson, E. Snyder, J. L. Giuliani, J. P. Apruzese, P. Kepple, “Ultrahigh vacuum arcjet nitrogen source for selected energy epitaxy of group III nitrides by molecular beam epitaxy,” J. Vac. Sci. Technol. A 16, 1615–1620 (1998).
[CrossRef]

Storm, P. V.

P. V. Storm, M. A. Cappelli, “Radiative emission analysis of an expanding hydrogen arc plasma. I. Arc region diagnostics through axial emission,” J. Quant. Spectrosc. Radiat. Transfer 56, 901–918 (1996).
[CrossRef]

P. V. Storm, M. A. Cappelli, “Radiative emission analysis of an expanding hydrogen arc plasma. II. Plume region diagnostics through radial emission,” J. Quant. Spectrosc. Radiat. Transfer 56, 919–932 (1996).
[CrossRef]

P. V. Storm, M. A. Cappelli, “Fluorescence velocity measurements in the interior of a hydrogen arcjet nozzle,” AIAA J. 34, 853–855 (1995).
[CrossRef]

Tatarczyk, T.

K. H. Becker, T. Tatarczyk, J. Radic-Peric, “Lifetime measurements of electronically excited C3 radicals in different vibrational states,” Chem. Phys. Lett. 60, 502–506 (1979).
[CrossRef]

Teukolsky, S. A.

W. H. Press, W. T. Vettering, S. A. Teukolsky, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, New York, 1992).

Ustin, S. A.

W. Ho, L. J. Lauhon, S. A. Ustin, “Large area supersonic jet epitaxy of AlN, GaN, and SiC on silicon,” Mater. Res. Soc. Symp. Proc. 449, 227–232 (1997).

Verven, G.

J. C. Cubertafon, M. Chenevier, A. Campargue, G. Verven, T. Priem, “Emission spectroscopy diagnostics of a d.c. plasma jet diamond reactor,” Diamond Relat. Mater. 4, 350–356 (1995).
[CrossRef]

Vettering, W. T.

W. H. Press, W. T. Vettering, S. A. Teukolsky, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, New York, 1992).

Weimer, W. A.

S. W. Reeve, W. A. Weimer, “Plasma diagnostics of a direc-current arcjet diamond reactor. II. Optical emission spectroscopy,” J. Vac. Sci. Technol. A 13, 359–367 (1995).
[CrossRef]

S. W. Reeve, W. A. Weimer, F. M. Cerio, “Gas phase chemistry in a direct current plasma jet diamond reactor,” J. Appl. Phys. 74, 7521–7530 (1993).
[CrossRef]

Welle, R. P.

M. W. Crofton, R. P. Welle, S. W. Janson, R. B. Cohen, “Temperature, velocity and density studies in the 1-kW ammonia arcjet plume by LIF,” paper AIAA-92-3241, presented at the 28th Joint Propulsion Conference, Nashville, Tenn., 6–8 July 1992 (American Institute of Aeronautics and Astronautics, Reston, Va., 1992).

Werner, H.

P. J. Knowles, H. Werner, P. J. Hay, D. C. Cartwright, “The A–X red and B–X violet systems of the CN radical: accurate multi-reference configuration interaction calculations of the radiative transition probabilities,” J. Chem. Phys. 89, 7334–7343 (1988).
[CrossRef]

Wolfrum, J.

W. Juchmann, J. Luque, J. Wolfrum, J. B. Jeffries, “Absolute concentration, temperature, and velocity measurements in a diamond depositing dc-arcjet reactor,” Diamond Relat. Mater. 7, 165–169 (1998).
[CrossRef]

Wooldridge, S. T.

S. T. Wooldridge, R. K. Hanson, C. T. Bowman, “CN + H2 reaction,” Int. J. Chem. Kinet. 28, 245–258 (1996).
[CrossRef]

Wysong, I. J.

I. J. Wysong, J. A. Pobst, “Quantitative two-photon laser-induced fluorescence of hydrogen atoms in a 1-kW arcjet thruster,” Appl. Phys. B. 67, 193–205 (1998).
[CrossRef]

Yun, J. S.

D. W. Park, J. S. Yun, “Structural characterization of diamond thin films prepared by plasma jet,” Thin Solid Films 345, 60–66 (1999).
[CrossRef]

Zeng, J.

V. Bohm, V. Buck, M. Liesenfeld, T. Naubert, J. Zeng, “Influence of plasma parameters on the properties of diamond films deposited by the dc arc technique,” Diamond Relat. Mater. 4, 33–42 (1994).
[CrossRef]

Zhang, F. Y.

AIAA J. (1)

P. V. Storm, M. A. Cappelli, “Fluorescence velocity measurements in the interior of a hydrogen arcjet nozzle,” AIAA J. 34, 853–855 (1995).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. B (2)

E. A. Brinkman, G. A. Raiche, M. S. Brown, J. B. Jeffries, “Optical diagnostics for temperature measurement in a dc arcjet reactor used for diamond deposition,” Appl. Phys. B 64, 689–697 (1997).
[CrossRef]

G. A. Raiche, J. B. Jeffries, “Observation and spatial distributions of C3 in a dc arcjet plasma during diamond deposition using laser-induced fluorescence,” Appl. Phys. B 65, 593–597 (1997).
[CrossRef]

Appl. Phys. B. (1)

I. J. Wysong, J. A. Pobst, “Quantitative two-photon laser-induced fluorescence of hydrogen atoms in a 1-kW arcjet thruster,” Appl. Phys. B. 67, 193–205 (1998).
[CrossRef]

Astrophys. J. (1)

J. Brzozowski, P. Bunker, N. Elander, P. Erman, “Predissociation effects in the A, B, and C states of CH and the interstellar formation rate of CH via inverse predissociation,” Astrophys. J. 207, 414–424 (1976).
[CrossRef]

Chem. Phys. Lett. (3)

C. Naulin, M. Costes, G. Dorthe, “C2 radicals in a supersonic molecular beam. Radiative lifetime of the d state measured by laser-induced fluorescence,” Chem. Phys. Lett. 143, 496–500 (1988).
[CrossRef]

K. H. Becker, T. Tatarczyk, J. Radic-Peric, “Lifetime measurements of electronically excited C3 radicals in different vibrational states,” Chem. Phys. Lett. 60, 502–506 (1979).
[CrossRef]

J. Bittner, K. Kohes-Hoinghaus, U. Meier, T. Just, “Quenching of two-photon-excited H (3s, 3d) and O (3p) atoms by rare gas atoms and small molecules,” Chem. Phys. Lett. 143, 571–576 (1988).
[CrossRef]

Diamond Relat. Mater. (4)

J. C. Cubertafon, M. Chenevier, A. Campargue, G. Verven, T. Priem, “Emission spectroscopy diagnostics of a d.c. plasma jet diamond reactor,” Diamond Relat. Mater. 4, 350–356 (1995).
[CrossRef]

W. Juchmann, J. Luque, J. Wolfrum, J. B. Jeffries, “Absolute concentration, temperature, and velocity measurements in a diamond depositing dc-arcjet reactor,” Diamond Relat. Mater. 7, 165–169 (1998).
[CrossRef]

D. F. Bahr, D. V. Bucci, L. S. Schadler, J. A. Last, J. Heberlein, E. Pfender, W. W. Gerberich, “Characterization of dc-jet CVD films on molybdenum,” Diamond Relat. Mater. 5, 1462–1472 (1996).
[CrossRef]

V. Bohm, V. Buck, M. Liesenfeld, T. Naubert, J. Zeng, “Influence of plasma parameters on the properties of diamond films deposited by the dc arc technique,” Diamond Relat. Mater. 4, 33–42 (1994).
[CrossRef]

Int. J. Chem. Kinet. (1)

S. T. Wooldridge, R. K. Hanson, C. T. Bowman, “CN + H2 reaction,” Int. J. Chem. Kinet. 28, 245–258 (1996).
[CrossRef]

J. Appl. Phys. (3)

W. Juchmann, J. Luque, J. B. Jeffries, “Atomic hydrogen concentration in a diamond depositing dc-arcjet determined by calorimetry,” J. Appl. Phys. 81, 8052–8056 (1997).
[CrossRef]

J. Luque, W. Juchmann, J. B. Jeffries, “Spatial density distributions of C2, C3 and CH radicals by laser-induced fluorescence in a diamond depositing dc-arcjet,” J. Appl. Phys. 82, 2072–2081 (1997).
[CrossRef]

S. W. Reeve, W. A. Weimer, F. M. Cerio, “Gas phase chemistry in a direct current plasma jet diamond reactor,” J. Appl. Phys. 74, 7521–7530 (1993).
[CrossRef]

J. Chem. Phys. (2)

J. Luque, D. R. Crosley, “Transition probabilities and electronic transition moments of the A–X and D–X systems of nitric oxide,” J. Chem. Phys. 111, 7405–7415 (1999).
[CrossRef]

P. J. Knowles, H. Werner, P. J. Hay, D. C. Cartwright, “The A–X red and B–X violet systems of the CN radical: accurate multi-reference configuration interaction calculations of the radiative transition probabilities,” J. Chem. Phys. 89, 7334–7343 (1988).
[CrossRef]

J. Phys. Chem. (1)

A. J. Dean, R. K. Hanson, C. T. Bowman, “C + NO reaction,” J. Phys. Chem. 95, 3180–3189 (1991).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (2)

P. V. Storm, M. A. Cappelli, “Radiative emission analysis of an expanding hydrogen arc plasma. I. Arc region diagnostics through axial emission,” J. Quant. Spectrosc. Radiat. Transfer 56, 901–918 (1996).
[CrossRef]

P. V. Storm, M. A. Cappelli, “Radiative emission analysis of an expanding hydrogen arc plasma. II. Plume region diagnostics through radial emission,” J. Quant. Spectrosc. Radiat. Transfer 56, 919–932 (1996).
[CrossRef]

J. Vac. Sci. Technol. A (3)

F. J. Grunthaner, R. Bicknell-Tassius, P. Deelman, P. J. Grunthaner, C. Bryson, E. Snyder, J. L. Giuliani, J. P. Apruzese, P. Kepple, “Ultrahigh vacuum arcjet nitrogen source for selected energy epitaxy of group III nitrides by molecular beam epitaxy,” J. Vac. Sci. Technol. A 16, 1615–1620 (1998).
[CrossRef]

J. Luque, W. Juchmann, E. A. Brinkmann, J. B. Jeffries, “Excited state density distributions of H, C, C2, and CH by spatially resolved optical emission in a diamond depositing dc-arcjet reactor,” J. Vac. Sci. Technol. A 16, 397–408 (1998).
[CrossRef]

S. W. Reeve, W. A. Weimer, “Plasma diagnostics of a direc-current arcjet diamond reactor. II. Optical emission spectroscopy,” J. Vac. Sci. Technol. A 13, 359–367 (1995).
[CrossRef]

Mater. Res. Soc. Symp. Proc. (1)

W. Ho, L. J. Lauhon, S. A. Ustin, “Large area supersonic jet epitaxy of AlN, GaN, and SiC on silicon,” Mater. Res. Soc. Symp. Proc. 449, 227–232 (1997).

Thin Solid Films (1)

D. W. Park, J. S. Yun, “Structural characterization of diamond thin films prepared by plasma jet,” Thin Solid Films 345, 60–66 (1999).
[CrossRef]

Other (6)

M. W. Crofton, R. P. Welle, S. W. Janson, R. B. Cohen, “Temperature, velocity and density studies in the 1-kW ammonia arcjet plume by LIF,” paper AIAA-92-3241, presented at the 28th Joint Propulsion Conference, Nashville, Tenn., 6–8 July 1992 (American Institute of Aeronautics and Astronautics, Reston, Va., 1992).

W. H. Press, W. T. Vettering, S. A. Teukolsky, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, New York, 1992).

C. D. Moen, H. A. Dwyer, “Numerical simulation of supersonic internal flow for an arc-heated chemical vapor deposition reactor,” AIAA-95-2208, presented at the 26th Fluid Dynamics Conference, San Diego, Calif., 19–22 June 1995 (American Institute for Aeronautics and Astronautics, Reston, Va., 1995), pp. 1–11.

J. Luque, D. R. Crosley, LIFBASE, v. 1.61 [SRI International, MP-99-0099, ( www.sri.com/cem/lifbase ), 1999].

W. Juchmann, J. Luque, J. B. Jeffries, “Two-photon LIF of H atoms in a dc-arcjet,” Appl. Phys. B (to be published).

C. D. Moen, H. A. Dwyer, “Numerical simulation of chemical kinetics in a supersonic chemical vapor deposition reactor,” paper AIAA-95-1676, presented at the Twelfth Computational Fluid Mechanics Conference, San Diego, Calif., 19–22 June 1995 (American Institute for Aeronautics and Astronautics, Reston, Va., 1995), pp. 1–11.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Experimental setup used for temperature and Doppler velocimetry measurements in the dc arcjet for diamond deposition. (a) Laser path for radial velocity and gas temperature, (b) path for axial velocity. PMT’s, photomultiplier tubes.

Fig. 2
Fig. 2

Excitation-laser-induced fluorescence scan of NO AX(0, 0) at the center of the arcjet plume (r = 0 mm, d = 20 mm). Dashed curve, simulated excitation LIF spectrum24 with a resolution of 0.0022 nm (FWHM); T is the rotational temperature.

Fig. 3
Fig. 3

Comparison of temperature profiles in the arcjet plume measured with LIF of NO AX rotational lines, CH AX vibrational transitions, and CH BX rotational transitions: temperature axial profiles (a) at the center of the plume and (b) at a distance of 20 mm from the nozzle.

Fig. 4
Fig. 4

Radial temperature profile variation with pressure in the chamber measured with a LIF of NO seeded in the AX(0, 0) band.

Fig. 5
Fig. 5

Inverse of the fluorescence lifetime for CN B v′ = 0 and NO A v′ = 0 versus pressure in the arcjet chamber measured at the center of the plume and at 25 mm from the nozzle.

Fig. 6
Fig. 6

Doppler shift observed between excitation of NO AX in the arcjet and a reference cell.

Fig. 7
Fig. 7

Doppler shift velocimetry results in the diamond-depositing arcjet along a picture of the arcjet: radial profiles (a) of the axial velocity measured at the nozzle exit, (b) of radial velocity in the arcjet plume at z = 20 mm, and (c) in the shock-wave structure at 37.5 mm from the nozzle.

Fig. 8
Fig. 8

Variation of the maximum axial velocity at the nozzle exit with background pressure in the chamber.

Fig. 9
Fig. 9

Radial velocity versus distance from the substrate taken at radial positions of 2 and 8 mm from the center of the plume and (right) schematic of the velocity streamlines above the substrate.

Fig. 10
Fig. 10

Excitation LIF scans of the CH BX(0, 0) and CN BX(0, 0) spectral region near 388 nm with and without NO seeding.

Fig. 11
Fig. 11

Radial profiles of CN, CH, C2, and C3 measured by LIF in the arcjet plume at 25 Torr and a distance of 20 mm from the nozzle exit.

Fig. 12
Fig. 12

Number density radial profiles 20 mm downstream from the nozzle measured by LIF showing CH and C3 distributions with methane injected into the plume at the nozzle and added into the chamber at a distance of 20 cm from the plume.

Tables (1)

Tables Icon

Table 1 Quenching Rates and Radiative Lifetimes (Experiment and Literature) Measured by the Authors in the Arcjet Plume during All the Optical Diagnostics Experiments

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

lnIJ2J+1B12=-EJkT+C,
1τ=1τ0+kQP,
v=Δλλ c,
csound2=cpmixcvmix R TM,
C+NO  CN+O,  k1=3.1×10-11 cm3 s-1.
CN+H2  HCN+H,  k2=4.9×10-19T2.45 exp-2240 cal/mol/RT.

Metrics