Abstract

Refractive indices of various H2SO4–H2O, HNO3–H2O, and H2SO4–HNO3–H2O solutions were measured at four wavelengths in the visible (351.0, 533.5, 632.9, and 782.6 nm) over a temperature range from 30 to -60 °C. The temperature dependence has been determined for the first time to the authors’ knowledge. This dependence is of importance for applications to atmospheric aerosols at low temperatures. In particular, it is shown that (1) the molar refractivity of the solutions is independent of temperature, whereas the temperature dependence of the refractive index arises solely through the temperature dependence of the solution’s mass density, (2) the molar refractivities of H2SO4 and HNO3 in a ternary solution may be calculated as the weighted sum of the molar refractivities of two binary solutions evaluated at a concentration that corresponds to the total acid concentration, and (3) the H2O molar refractivity in the solutions may be taken equal to that of pure water. Although the data for the ternary system have been used for this model verification, data for binary H2SO4–H2O and HNO3–H2O solutions were used to improve the accuracy of the modeled refractive indices to better than 0.0017% or 0.15% for concentrations of 5–70 wt. % and wavelengths from the near ultraviolet to the near infrared (0.25–2 µm).

© 2000 Optical Society of America

Full Article  |  PDF Article
Related Articles
Refractive Index Measurements in Fused NaNO3 and KNO3 by a Modified Thermooptic Technique

Silas E. Gustafsson and Ernest Karawacki
Appl. Opt. 14(5) 1105-1110 (1975)

Dispersion of gases in atomic iodine lasers at 1.315 μm

K. M. Swift, L. A. Schlie, and R. D. Rathge
Appl. Opt. 27(21) 4377-4384 (1988)

Refractive index of Y2O3 stabilized cubic zirconia: variation with composition and wavelength

Darwin L. Wood, Kurt Nassau, and T. Y. Kometani
Appl. Opt. 29(16) 2485-2488 (1990)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription