Abstract

Measurements of soot properties by means of laser-induced incandescence (LII) and combined scattering–extinction were performed in well-characterized premixed ethylene–air flames. In particular, the possibility of using LII as a tool for quantitative particle sizing was investigated. Particle sizes were evaluated from the temporal decay of the LII signal combined with heat balance modeling of laser-heated particles, and these sizes were compared with the particle sizes deduced from scattering–extinction measurements based on isotropic sphere theory. The correspondence was good early in the soot-formation process but less good at later stages, possibly because aggregation to clusters began to occur. A critical analysis has been made of how uncertainties in different parameters, both experimental and in the model, affect the evaluated particle sizes for LII. A sensitivity analysis of the LII model identified the ambient-flame temperature as a major source of uncertainty in the evaluated particle size, a conclusion that was supported by an analysis based on temporal LII profiles.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Eckbreth, “Effects of laser-modulated particulate incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4479 (1977).
    [CrossRef]
  2. L. A. Melton, “Soot diagnostics based on laser heating,” Appl. Opt. 23, 2201–2208 (1984).
    [CrossRef] [PubMed]
  3. R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452 (1994).
    [CrossRef]
  4. C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1994).
    [CrossRef]
  5. B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
    [CrossRef]
  6. P.-E. Bengtsson, M. Aldén, “Soot-visualization strategies using laser techniques,” Appl. Phys. B 60, 51–59 (1995).
    [CrossRef]
  7. T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 43, 7083–7091 (1995).
    [CrossRef]
  8. R. L. Vander Wal, D. L. Dietrich, “Laser-induced incandescence applied to droplet combustion,” Appl. Opt. 3, 1103–1107 (1995).
  9. S. Will, S. Schraml, A. Leipertz, “Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence,” Opt. Lett. 22, 2342–2344 (1995).
    [CrossRef]
  10. C. R. Shaddix, K. C. Smyth, “Laser-induced incandescencemeasurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
    [CrossRef]
  11. R. L. Vander Wal, “Onset of carbonization, spatial location via simultaneous LIF–LII and characterization via TEM,” Combust. Sci. Technol. 118, 343–360 (1996).
    [CrossRef]
  12. R. L. Vander Wal, “Soot precursor material: visualization via simultaneous LIF–LII and characterization via TEM,” in 26th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 2269–2275.
    [CrossRef]
  13. B. Mewes, J. M. Seitzman, “Soot volume fraction and particle size measurements with laser-induced incandescence,” Appl. Opt. 36, 709–717 (1997).
    [CrossRef] [PubMed]
  14. R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Optical and microscopy investigations of soot structure alterations by laser-induced incandescence,” Appl. Phys. B 67, 115–123 (1998).
    [CrossRef]
  15. M. Braun-Unkhoff, A. Chrysostomou, P. Frank, E. Gutheil, R. Lückerath, W. Stricker, “Experimental and numerical study on soot formation in laminar high pressure flames,” in 27th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 1565–1572.
    [CrossRef]
  16. S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence (LII),” in 26th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 2277–2284.
  17. S. Will, S. Schraml, K. Bader, A. Leipertz, “Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence,” Appl. Opt. 24, 5647–5658 (1998).
    [CrossRef]
  18. R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Can soot primary size be determined using laser-induced incandescence,” Combust. Flame 116, 291–296 (1999).
    [CrossRef]
  19. J. E. Dec, “A conceptual model of DI diesel combustion based on laser-sheet imaging,” in 1997 SAE International Congress and Exposition, Detroit, 24–27 1997 (Society of Automotive Engineers, Warrendale, PA 15096), paper 970873.
  20. M. E. Case, D. L. Hofeldt, “Soot mass concentration measurements in diesel engine exhaust using laser-induced incandescence,” Aerosol Sci. Technol. 25, 46–60 (1996).
    [CrossRef]
  21. A. D’Alesso, A. Di Lorenzo, A. Borghese, F. Beretta, S. Masi, “Study of the soot nucleation zone of rich methane-oxygen flames,” in 16th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1977), pp. 695–708.
    [CrossRef]
  22. R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
    [CrossRef]
  23. P.-E. Bengtsson, M. Aldén, “Application of a pulsed laser for soot measurements in premixed flames,” Appl. Phys. B 48, 155–164 (1989).
    [CrossRef]
  24. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic Press, New York, 1969).
  25. R. L. Vander Wal, K. A. Jensen, “Laser-induced incandescence: excitation intensity,” Appl. Opt. 37, 1607–1615 (1998).
    [CrossRef]
  26. J. D. Black, “Laser induced incandescence measurements of particles in aero-engine exhausts,” in Environmental Sensing and Applications, M. Carleer, M. Hilton, T. Lamp, R. Reuter, G. M. Russwurm, K. Schaefer, K. Weber, K. Weitkamp, J. P. Wolf, L. Woppowa, eds., Proc. SPIE3821, 209–215 (1999).
    [CrossRef]
  27. R. L. Vander Wal, “Laser-induced incandescence: detection issues,” Appl. Opt. 35, 6548–6559 (1996).
    [CrossRef] [PubMed]
  28. J. E. Dec, A. O. zur Loye, D. L. Siebers, “Soot distribution in a D.I. Diesel engine using 2-D laser-induced incandescence imaging,” in 1991 SAE International Congress and Exposition, Detroit, 25 February–1 March 1991 (Society of Automotive Engineers, Warrendale, PA 15096), paper 910224.
  29. P. N. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993).
    [CrossRef]
  30. P. Roth, A. V. Filippov, “In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission,” J. Aerosol Sci. 27, 95–104 (1996).
    [CrossRef]
  31. D. R. Snelling, G. J. Smallwood, Ö. L. Gülder, “Soot measurement with laser-induced incandescence,” presented at the International Energy Agency XIX Task Leaders Meeting on Energy Conservation and Emissions Reduction in Combustion, Capri, Italy, 14–17 September 1997.
  32. S. Prucker, W. Meier, W. Stricker, “A flat flame burner as calibration source for combustion research: temperature and species concentrations of premixed H2/air flames,” Rev. Sci. Instrum. 65, 2908–2911 (1994).
    [CrossRef]
  33. R. L. Vander Wal, “Calibration and comparison of laser-induced incandescence with cavity ring-down,” in 27th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 59–67.
    [CrossRef]
  34. E. D. Landolt-Börnstein, ed., “Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik (Springer-Verlag, Berlin, 1962).
  35. T. T. Charalampopoulus, H. Chang, B. Stagg, “The effects of temperature and composition on the complex refractive index of flame soot,” Fuel 68, 1173–1179 (1989).
    [CrossRef]
  36. F. Xu, B. Sunderland, G. M. Faeth, “Soot formation in laminar premixed ethylene/air flames at atmospheric pressure,” Combust. Flame 108, 471–493 (1997).
    [CrossRef]
  37. W. H. Dalzell, A. F. Sarofim, “Optical constants of soot and their application to heat-flux calculations,” J. Heat Transf. 91, 100–104 (1969).
    [CrossRef]
  38. P.-E. Bengtsson, L. Martinsson, M. Aldén, “Rotational CARS thermometry in sooting flames,” Combust. Sci. Technol. 81, 129–140 (1992).
    [CrossRef]
  39. L. Martinsson, P.-E. Bengtsson, M. Aldén, S. Kroll, “A test of different rotational Raman linewidth models: accuracy of rotational coherent anti-Stokes Raman scattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99, 2466–2477 (1993).
    [CrossRef]
  40. K. C. Smyth, C. R. Shaddix, “The elusive history of m = 1.57 - 0.56i for the refractive index of soot,” Combust. Flame 107, 314–320 (1996).
    [CrossRef]
  41. T. T. Charalampopoulus, J. D. Felske, “Refractive indices of soot particles deduced from in-situ laser light scattering measurements,” Combust. Flame 68, 283–294 (1987).
    [CrossRef]
  42. R. A. Dobbins, R. J. Santoro, H. G. Semerijan, “Interpretation of optical measurements of soot in flames,” Prog. Astronaut. Aeronaut. 92, 208–237 (1984).
  43. Ü. Ö. Köylü, C. S. McEnally, D. E. Rosner, L. D. Pfefferle, “Simultaneous measurements of soot volume fraction and particle size/microstructures in flames using a thermophoretic sampling technique,” Combust. Flame 110, 494–507 (1997).
    [CrossRef]
  44. S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, “Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII),” Combust. Flame 120, 439–450 (2000).
    [CrossRef]

2000 (1)

S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, “Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII),” Combust. Flame 120, 439–450 (2000).
[CrossRef]

1999 (1)

R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Can soot primary size be determined using laser-induced incandescence,” Combust. Flame 116, 291–296 (1999).
[CrossRef]

1998 (3)

R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Optical and microscopy investigations of soot structure alterations by laser-induced incandescence,” Appl. Phys. B 67, 115–123 (1998).
[CrossRef]

S. Will, S. Schraml, K. Bader, A. Leipertz, “Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence,” Appl. Opt. 24, 5647–5658 (1998).
[CrossRef]

R. L. Vander Wal, K. A. Jensen, “Laser-induced incandescence: excitation intensity,” Appl. Opt. 37, 1607–1615 (1998).
[CrossRef]

1997 (3)

F. Xu, B. Sunderland, G. M. Faeth, “Soot formation in laminar premixed ethylene/air flames at atmospheric pressure,” Combust. Flame 108, 471–493 (1997).
[CrossRef]

Ü. Ö. Köylü, C. S. McEnally, D. E. Rosner, L. D. Pfefferle, “Simultaneous measurements of soot volume fraction and particle size/microstructures in flames using a thermophoretic sampling technique,” Combust. Flame 110, 494–507 (1997).
[CrossRef]

B. Mewes, J. M. Seitzman, “Soot volume fraction and particle size measurements with laser-induced incandescence,” Appl. Opt. 36, 709–717 (1997).
[CrossRef] [PubMed]

1996 (6)

M. E. Case, D. L. Hofeldt, “Soot mass concentration measurements in diesel engine exhaust using laser-induced incandescence,” Aerosol Sci. Technol. 25, 46–60 (1996).
[CrossRef]

C. R. Shaddix, K. C. Smyth, “Laser-induced incandescencemeasurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

R. L. Vander Wal, “Onset of carbonization, spatial location via simultaneous LIF–LII and characterization via TEM,” Combust. Sci. Technol. 118, 343–360 (1996).
[CrossRef]

K. C. Smyth, C. R. Shaddix, “The elusive history of m = 1.57 - 0.56i for the refractive index of soot,” Combust. Flame 107, 314–320 (1996).
[CrossRef]

R. L. Vander Wal, “Laser-induced incandescence: detection issues,” Appl. Opt. 35, 6548–6559 (1996).
[CrossRef] [PubMed]

P. Roth, A. V. Filippov, “In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission,” J. Aerosol Sci. 27, 95–104 (1996).
[CrossRef]

1995 (4)

P.-E. Bengtsson, M. Aldén, “Soot-visualization strategies using laser techniques,” Appl. Phys. B 60, 51–59 (1995).
[CrossRef]

T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 43, 7083–7091 (1995).
[CrossRef]

R. L. Vander Wal, D. L. Dietrich, “Laser-induced incandescence applied to droplet combustion,” Appl. Opt. 3, 1103–1107 (1995).

S. Will, S. Schraml, A. Leipertz, “Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence,” Opt. Lett. 22, 2342–2344 (1995).
[CrossRef]

1994 (4)

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

S. Prucker, W. Meier, W. Stricker, “A flat flame burner as calibration source for combustion research: temperature and species concentrations of premixed H2/air flames,” Rev. Sci. Instrum. 65, 2908–2911 (1994).
[CrossRef]

1993 (2)

P. N. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993).
[CrossRef]

L. Martinsson, P.-E. Bengtsson, M. Aldén, S. Kroll, “A test of different rotational Raman linewidth models: accuracy of rotational coherent anti-Stokes Raman scattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99, 2466–2477 (1993).
[CrossRef]

1992 (1)

P.-E. Bengtsson, L. Martinsson, M. Aldén, “Rotational CARS thermometry in sooting flames,” Combust. Sci. Technol. 81, 129–140 (1992).
[CrossRef]

1989 (2)

T. T. Charalampopoulus, H. Chang, B. Stagg, “The effects of temperature and composition on the complex refractive index of flame soot,” Fuel 68, 1173–1179 (1989).
[CrossRef]

P.-E. Bengtsson, M. Aldén, “Application of a pulsed laser for soot measurements in premixed flames,” Appl. Phys. B 48, 155–164 (1989).
[CrossRef]

1987 (1)

T. T. Charalampopoulus, J. D. Felske, “Refractive indices of soot particles deduced from in-situ laser light scattering measurements,” Combust. Flame 68, 283–294 (1987).
[CrossRef]

1984 (2)

R. A. Dobbins, R. J. Santoro, H. G. Semerijan, “Interpretation of optical measurements of soot in flames,” Prog. Astronaut. Aeronaut. 92, 208–237 (1984).

L. A. Melton, “Soot diagnostics based on laser heating,” Appl. Opt. 23, 2201–2208 (1984).
[CrossRef] [PubMed]

1983 (1)

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

1977 (1)

A. C. Eckbreth, “Effects of laser-modulated particulate incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4479 (1977).
[CrossRef]

1969 (1)

W. H. Dalzell, A. F. Sarofim, “Optical constants of soot and their application to heat-flux calculations,” J. Heat Transf. 91, 100–104 (1969).
[CrossRef]

Aldén, M.

P.-E. Bengtsson, M. Aldén, “Soot-visualization strategies using laser techniques,” Appl. Phys. B 60, 51–59 (1995).
[CrossRef]

L. Martinsson, P.-E. Bengtsson, M. Aldén, S. Kroll, “A test of different rotational Raman linewidth models: accuracy of rotational coherent anti-Stokes Raman scattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99, 2466–2477 (1993).
[CrossRef]

P.-E. Bengtsson, L. Martinsson, M. Aldén, “Rotational CARS thermometry in sooting flames,” Combust. Sci. Technol. 81, 129–140 (1992).
[CrossRef]

P.-E. Bengtsson, M. Aldén, “Application of a pulsed laser for soot measurements in premixed flames,” Appl. Phys. B 48, 155–164 (1989).
[CrossRef]

Bader, K.

S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, “Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII),” Combust. Flame 120, 439–450 (2000).
[CrossRef]

S. Will, S. Schraml, K. Bader, A. Leipertz, “Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence,” Appl. Opt. 24, 5647–5658 (1998).
[CrossRef]

Bengtsson, P.-E.

P.-E. Bengtsson, M. Aldén, “Soot-visualization strategies using laser techniques,” Appl. Phys. B 60, 51–59 (1995).
[CrossRef]

L. Martinsson, P.-E. Bengtsson, M. Aldén, S. Kroll, “A test of different rotational Raman linewidth models: accuracy of rotational coherent anti-Stokes Raman scattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99, 2466–2477 (1993).
[CrossRef]

P.-E. Bengtsson, L. Martinsson, M. Aldén, “Rotational CARS thermometry in sooting flames,” Combust. Sci. Technol. 81, 129–140 (1992).
[CrossRef]

P.-E. Bengtsson, M. Aldén, “Application of a pulsed laser for soot measurements in premixed flames,” Appl. Phys. B 48, 155–164 (1989).
[CrossRef]

Beretta, F.

A. D’Alesso, A. Di Lorenzo, A. Borghese, F. Beretta, S. Masi, “Study of the soot nucleation zone of rich methane-oxygen flames,” in 16th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1977), pp. 695–708.
[CrossRef]

Black, J. D.

J. D. Black, “Laser induced incandescence measurements of particles in aero-engine exhausts,” in Environmental Sensing and Applications, M. Carleer, M. Hilton, T. Lamp, R. Reuter, G. M. Russwurm, K. Schaefer, K. Weber, K. Weitkamp, J. P. Wolf, L. Woppowa, eds., Proc. SPIE3821, 209–215 (1999).
[CrossRef]

Borghese, A.

A. D’Alesso, A. Di Lorenzo, A. Borghese, F. Beretta, S. Masi, “Study of the soot nucleation zone of rich methane-oxygen flames,” in 16th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1977), pp. 695–708.
[CrossRef]

Braun-Unkhoff, M.

M. Braun-Unkhoff, A. Chrysostomou, P. Frank, E. Gutheil, R. Lückerath, W. Stricker, “Experimental and numerical study on soot formation in laminar high pressure flames,” in 27th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 1565–1572.
[CrossRef]

Case, M. E.

M. E. Case, D. L. Hofeldt, “Soot mass concentration measurements in diesel engine exhaust using laser-induced incandescence,” Aerosol Sci. Technol. 25, 46–60 (1996).
[CrossRef]

Chang, H.

T. T. Charalampopoulus, H. Chang, B. Stagg, “The effects of temperature and composition on the complex refractive index of flame soot,” Fuel 68, 1173–1179 (1989).
[CrossRef]

Charalampopoulus, T. T.

T. T. Charalampopoulus, H. Chang, B. Stagg, “The effects of temperature and composition on the complex refractive index of flame soot,” Fuel 68, 1173–1179 (1989).
[CrossRef]

T. T. Charalampopoulus, J. D. Felske, “Refractive indices of soot particles deduced from in-situ laser light scattering measurements,” Combust. Flame 68, 283–294 (1987).
[CrossRef]

Chrysostomou, A.

M. Braun-Unkhoff, A. Chrysostomou, P. Frank, E. Gutheil, R. Lückerath, W. Stricker, “Experimental and numerical study on soot formation in laminar high pressure flames,” in 27th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 1565–1572.
[CrossRef]

D’Alesso, A.

A. D’Alesso, A. Di Lorenzo, A. Borghese, F. Beretta, S. Masi, “Study of the soot nucleation zone of rich methane-oxygen flames,” in 16th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1977), pp. 695–708.
[CrossRef]

Dalzell, W. H.

W. H. Dalzell, A. F. Sarofim, “Optical constants of soot and their application to heat-flux calculations,” J. Heat Transf. 91, 100–104 (1969).
[CrossRef]

Dankers, S.

S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, “Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII),” Combust. Flame 120, 439–450 (2000).
[CrossRef]

Dec, J. E.

J. E. Dec, A. O. zur Loye, D. L. Siebers, “Soot distribution in a D.I. Diesel engine using 2-D laser-induced incandescence imaging,” in 1991 SAE International Congress and Exposition, Detroit, 25 February–1 March 1991 (Society of Automotive Engineers, Warrendale, PA 15096), paper 910224.

J. E. Dec, “A conceptual model of DI diesel combustion based on laser-sheet imaging,” in 1997 SAE International Congress and Exposition, Detroit, 24–27 1997 (Society of Automotive Engineers, Warrendale, PA 15096), paper 970873.

Di Lorenzo, A.

A. D’Alesso, A. Di Lorenzo, A. Borghese, F. Beretta, S. Masi, “Study of the soot nucleation zone of rich methane-oxygen flames,” in 16th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1977), pp. 695–708.
[CrossRef]

Dietrich, D. L.

R. L. Vander Wal, D. L. Dietrich, “Laser-induced incandescence applied to droplet combustion,” Appl. Opt. 3, 1103–1107 (1995).

Dobbins, R. A.

R. A. Dobbins, R. J. Santoro, H. G. Semerijan, “Interpretation of optical measurements of soot in flames,” Prog. Astronaut. Aeronaut. 92, 208–237 (1984).

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, “Effects of laser-modulated particulate incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4479 (1977).
[CrossRef]

Faeth, G. M.

F. Xu, B. Sunderland, G. M. Faeth, “Soot formation in laminar premixed ethylene/air flames at atmospheric pressure,” Combust. Flame 108, 471–493 (1997).
[CrossRef]

Felske, J. D.

T. T. Charalampopoulus, J. D. Felske, “Refractive indices of soot particles deduced from in-situ laser light scattering measurements,” Combust. Flame 68, 283–294 (1987).
[CrossRef]

Filippov, A. V.

P. Roth, A. V. Filippov, “In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission,” J. Aerosol Sci. 27, 95–104 (1996).
[CrossRef]

Frank, P.

M. Braun-Unkhoff, A. Chrysostomou, P. Frank, E. Gutheil, R. Lückerath, W. Stricker, “Experimental and numerical study on soot formation in laminar high pressure flames,” in 27th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 1565–1572.
[CrossRef]

Greenhalgh, D. A.

P. N. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993).
[CrossRef]

Gülder, Ö. L.

D. R. Snelling, G. J. Smallwood, Ö. L. Gülder, “Soot measurement with laser-induced incandescence,” presented at the International Energy Agency XIX Task Leaders Meeting on Energy Conservation and Emissions Reduction in Combustion, Capri, Italy, 14–17 September 1997.

Gupta, S.

T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 43, 7083–7091 (1995).
[CrossRef]

Gutheil, E.

M. Braun-Unkhoff, A. Chrysostomou, P. Frank, E. Gutheil, R. Lückerath, W. Stricker, “Experimental and numerical study on soot formation in laminar high pressure flames,” in 27th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 1565–1572.
[CrossRef]

Harrington, J. E.

C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

Hofeldt, D. L.

M. E. Case, D. L. Hofeldt, “Soot mass concentration measurements in diesel engine exhaust using laser-induced incandescence,” Aerosol Sci. Technol. 25, 46–60 (1996).
[CrossRef]

Jensen, K. A.

Kerker, M.

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic Press, New York, 1969).

Köylü, Ü. Ö.

Ü. Ö. Köylü, C. S. McEnally, D. E. Rosner, L. D. Pfefferle, “Simultaneous measurements of soot volume fraction and particle size/microstructures in flames using a thermophoretic sampling technique,” Combust. Flame 110, 494–507 (1997).
[CrossRef]

Kroll, S.

L. Martinsson, P.-E. Bengtsson, M. Aldén, S. Kroll, “A test of different rotational Raman linewidth models: accuracy of rotational coherent anti-Stokes Raman scattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99, 2466–2477 (1993).
[CrossRef]

Lee, T.-W.

B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

Leipertz, A.

S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, “Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII),” Combust. Flame 120, 439–450 (2000).
[CrossRef]

S. Will, S. Schraml, K. Bader, A. Leipertz, “Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence,” Appl. Opt. 24, 5647–5658 (1998).
[CrossRef]

S. Will, S. Schraml, A. Leipertz, “Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence,” Opt. Lett. 22, 2342–2344 (1995).
[CrossRef]

S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence (LII),” in 26th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 2277–2284.

Lückerath, R.

M. Braun-Unkhoff, A. Chrysostomou, P. Frank, E. Gutheil, R. Lückerath, W. Stricker, “Experimental and numerical study on soot formation in laminar high pressure flames,” in 27th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 1565–1572.
[CrossRef]

Martinsson, L.

L. Martinsson, P.-E. Bengtsson, M. Aldén, S. Kroll, “A test of different rotational Raman linewidth models: accuracy of rotational coherent anti-Stokes Raman scattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99, 2466–2477 (1993).
[CrossRef]

P.-E. Bengtsson, L. Martinsson, M. Aldén, “Rotational CARS thermometry in sooting flames,” Combust. Sci. Technol. 81, 129–140 (1992).
[CrossRef]

Masi, S.

A. D’Alesso, A. Di Lorenzo, A. Borghese, F. Beretta, S. Masi, “Study of the soot nucleation zone of rich methane-oxygen flames,” in 16th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1977), pp. 695–708.
[CrossRef]

McEnally, C. S.

Ü. Ö. Köylü, C. S. McEnally, D. E. Rosner, L. D. Pfefferle, “Simultaneous measurements of soot volume fraction and particle size/microstructures in flames using a thermophoretic sampling technique,” Combust. Flame 110, 494–507 (1997).
[CrossRef]

Meier, W.

S. Prucker, W. Meier, W. Stricker, “A flat flame burner as calibration source for combustion research: temperature and species concentrations of premixed H2/air flames,” Rev. Sci. Instrum. 65, 2908–2911 (1994).
[CrossRef]

Melton, L. A.

Mewes, B.

Ni, T.

T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 43, 7083–7091 (1995).
[CrossRef]

B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

Pfefferle, L. D.

Ü. Ö. Köylü, C. S. McEnally, D. E. Rosner, L. D. Pfefferle, “Simultaneous measurements of soot volume fraction and particle size/microstructures in flames using a thermophoretic sampling technique,” Combust. Flame 110, 494–507 (1997).
[CrossRef]

Pinson, J. A.

T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 43, 7083–7091 (1995).
[CrossRef]

Prucker, S.

S. Prucker, W. Meier, W. Stricker, “A flat flame burner as calibration source for combustion research: temperature and species concentrations of premixed H2/air flames,” Rev. Sci. Instrum. 65, 2908–2911 (1994).
[CrossRef]

Quay, B.

B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

Rosner, D. E.

Ü. Ö. Köylü, C. S. McEnally, D. E. Rosner, L. D. Pfefferle, “Simultaneous measurements of soot volume fraction and particle size/microstructures in flames using a thermophoretic sampling technique,” Combust. Flame 110, 494–507 (1997).
[CrossRef]

Roth, P.

P. Roth, A. V. Filippov, “In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission,” J. Aerosol Sci. 27, 95–104 (1996).
[CrossRef]

Santoro, R. J.

T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 43, 7083–7091 (1995).
[CrossRef]

B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

R. A. Dobbins, R. J. Santoro, H. G. Semerijan, “Interpretation of optical measurements of soot in flames,” Prog. Astronaut. Aeronaut. 92, 208–237 (1984).

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

Sarofim, A. F.

W. H. Dalzell, A. F. Sarofim, “Optical constants of soot and their application to heat-flux calculations,” J. Heat Transf. 91, 100–104 (1969).
[CrossRef]

Schraml, S.

S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, “Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII),” Combust. Flame 120, 439–450 (2000).
[CrossRef]

S. Will, S. Schraml, K. Bader, A. Leipertz, “Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence,” Appl. Opt. 24, 5647–5658 (1998).
[CrossRef]

S. Will, S. Schraml, A. Leipertz, “Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence,” Opt. Lett. 22, 2342–2344 (1995).
[CrossRef]

S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence (LII),” in 26th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 2277–2284.

Seitzman, J. M.

Semerijan, H. G.

R. A. Dobbins, R. J. Santoro, H. G. Semerijan, “Interpretation of optical measurements of soot in flames,” Prog. Astronaut. Aeronaut. 92, 208–237 (1984).

Semerjian, H. G.

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

Shaddix, C. R.

C. R. Shaddix, K. C. Smyth, “Laser-induced incandescencemeasurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

K. C. Smyth, C. R. Shaddix, “The elusive history of m = 1.57 - 0.56i for the refractive index of soot,” Combust. Flame 107, 314–320 (1996).
[CrossRef]

C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

Siebers, D. L.

J. E. Dec, A. O. zur Loye, D. L. Siebers, “Soot distribution in a D.I. Diesel engine using 2-D laser-induced incandescence imaging,” in 1991 SAE International Congress and Exposition, Detroit, 25 February–1 March 1991 (Society of Automotive Engineers, Warrendale, PA 15096), paper 910224.

Smallwood, G. J.

D. R. Snelling, G. J. Smallwood, Ö. L. Gülder, “Soot measurement with laser-induced incandescence,” presented at the International Energy Agency XIX Task Leaders Meeting on Energy Conservation and Emissions Reduction in Combustion, Capri, Italy, 14–17 September 1997.

Smyth, K. C.

K. C. Smyth, C. R. Shaddix, “The elusive history of m = 1.57 - 0.56i for the refractive index of soot,” Combust. Flame 107, 314–320 (1996).
[CrossRef]

C. R. Shaddix, K. C. Smyth, “Laser-induced incandescencemeasurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

Snelling, D. R.

D. R. Snelling, G. J. Smallwood, Ö. L. Gülder, “Soot measurement with laser-induced incandescence,” presented at the International Energy Agency XIX Task Leaders Meeting on Energy Conservation and Emissions Reduction in Combustion, Capri, Italy, 14–17 September 1997.

Stagg, B.

T. T. Charalampopoulus, H. Chang, B. Stagg, “The effects of temperature and composition on the complex refractive index of flame soot,” Fuel 68, 1173–1179 (1989).
[CrossRef]

Stephens, A. B.

R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Can soot primary size be determined using laser-induced incandescence,” Combust. Flame 116, 291–296 (1999).
[CrossRef]

R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Optical and microscopy investigations of soot structure alterations by laser-induced incandescence,” Appl. Phys. B 67, 115–123 (1998).
[CrossRef]

Stricker, W.

S. Prucker, W. Meier, W. Stricker, “A flat flame burner as calibration source for combustion research: temperature and species concentrations of premixed H2/air flames,” Rev. Sci. Instrum. 65, 2908–2911 (1994).
[CrossRef]

M. Braun-Unkhoff, A. Chrysostomou, P. Frank, E. Gutheil, R. Lückerath, W. Stricker, “Experimental and numerical study on soot formation in laminar high pressure flames,” in 27th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 1565–1572.
[CrossRef]

Sunderland, B.

F. Xu, B. Sunderland, G. M. Faeth, “Soot formation in laminar premixed ethylene/air flames at atmospheric pressure,” Combust. Flame 108, 471–493 (1997).
[CrossRef]

Tait, P. N.

P. N. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993).
[CrossRef]

Ticich, T. M.

R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Can soot primary size be determined using laser-induced incandescence,” Combust. Flame 116, 291–296 (1999).
[CrossRef]

R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Optical and microscopy investigations of soot structure alterations by laser-induced incandescence,” Appl. Phys. B 67, 115–123 (1998).
[CrossRef]

Vander Wal, R. L.

R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Can soot primary size be determined using laser-induced incandescence,” Combust. Flame 116, 291–296 (1999).
[CrossRef]

R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Optical and microscopy investigations of soot structure alterations by laser-induced incandescence,” Appl. Phys. B 67, 115–123 (1998).
[CrossRef]

R. L. Vander Wal, K. A. Jensen, “Laser-induced incandescence: excitation intensity,” Appl. Opt. 37, 1607–1615 (1998).
[CrossRef]

R. L. Vander Wal, “Laser-induced incandescence: detection issues,” Appl. Opt. 35, 6548–6559 (1996).
[CrossRef] [PubMed]

R. L. Vander Wal, “Onset of carbonization, spatial location via simultaneous LIF–LII and characterization via TEM,” Combust. Sci. Technol. 118, 343–360 (1996).
[CrossRef]

R. L. Vander Wal, D. L. Dietrich, “Laser-induced incandescence applied to droplet combustion,” Appl. Opt. 3, 1103–1107 (1995).

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

R. L. Vander Wal, “Soot precursor material: visualization via simultaneous LIF–LII and characterization via TEM,” in 26th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 2269–2275.
[CrossRef]

R. L. Vander Wal, “Calibration and comparison of laser-induced incandescence with cavity ring-down,” in 27th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 59–67.
[CrossRef]

Weiland, K. J.

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

Will, S.

S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, “Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII),” Combust. Flame 120, 439–450 (2000).
[CrossRef]

S. Will, S. Schraml, K. Bader, A. Leipertz, “Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence,” Appl. Opt. 24, 5647–5658 (1998).
[CrossRef]

S. Will, S. Schraml, A. Leipertz, “Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence,” Opt. Lett. 22, 2342–2344 (1995).
[CrossRef]

S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence (LII),” in 26th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 2277–2284.

Xu, F.

F. Xu, B. Sunderland, G. M. Faeth, “Soot formation in laminar premixed ethylene/air flames at atmospheric pressure,” Combust. Flame 108, 471–493 (1997).
[CrossRef]

zur Loye, A. O.

J. E. Dec, A. O. zur Loye, D. L. Siebers, “Soot distribution in a D.I. Diesel engine using 2-D laser-induced incandescence imaging,” in 1991 SAE International Congress and Exposition, Detroit, 25 February–1 March 1991 (Society of Automotive Engineers, Warrendale, PA 15096), paper 910224.

Aerosol Sci. Technol. (1)

M. E. Case, D. L. Hofeldt, “Soot mass concentration measurements in diesel engine exhaust using laser-induced incandescence,” Aerosol Sci. Technol. 25, 46–60 (1996).
[CrossRef]

Appl. Opt. (7)

R. L. Vander Wal, K. A. Jensen, “Laser-induced incandescence: excitation intensity,” Appl. Opt. 37, 1607–1615 (1998).
[CrossRef]

R. L. Vander Wal, “Laser-induced incandescence: detection issues,” Appl. Opt. 35, 6548–6559 (1996).
[CrossRef] [PubMed]

L. A. Melton, “Soot diagnostics based on laser heating,” Appl. Opt. 23, 2201–2208 (1984).
[CrossRef] [PubMed]

T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 43, 7083–7091 (1995).
[CrossRef]

R. L. Vander Wal, D. L. Dietrich, “Laser-induced incandescence applied to droplet combustion,” Appl. Opt. 3, 1103–1107 (1995).

B. Mewes, J. M. Seitzman, “Soot volume fraction and particle size measurements with laser-induced incandescence,” Appl. Opt. 36, 709–717 (1997).
[CrossRef] [PubMed]

S. Will, S. Schraml, K. Bader, A. Leipertz, “Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence,” Appl. Opt. 24, 5647–5658 (1998).
[CrossRef]

Appl. Phys. B (4)

R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Optical and microscopy investigations of soot structure alterations by laser-induced incandescence,” Appl. Phys. B 67, 115–123 (1998).
[CrossRef]

P.-E. Bengtsson, M. Aldén, “Soot-visualization strategies using laser techniques,” Appl. Phys. B 60, 51–59 (1995).
[CrossRef]

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

P.-E. Bengtsson, M. Aldén, “Application of a pulsed laser for soot measurements in premixed flames,” Appl. Phys. B 48, 155–164 (1989).
[CrossRef]

Ber. Bunsenges. Phys. Chem. (1)

P. N. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993).
[CrossRef]

Combust. Flame (10)

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

F. Xu, B. Sunderland, G. M. Faeth, “Soot formation in laminar premixed ethylene/air flames at atmospheric pressure,” Combust. Flame 108, 471–493 (1997).
[CrossRef]

C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Can soot primary size be determined using laser-induced incandescence,” Combust. Flame 116, 291–296 (1999).
[CrossRef]

C. R. Shaddix, K. C. Smyth, “Laser-induced incandescencemeasurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

K. C. Smyth, C. R. Shaddix, “The elusive history of m = 1.57 - 0.56i for the refractive index of soot,” Combust. Flame 107, 314–320 (1996).
[CrossRef]

T. T. Charalampopoulus, J. D. Felske, “Refractive indices of soot particles deduced from in-situ laser light scattering measurements,” Combust. Flame 68, 283–294 (1987).
[CrossRef]

Ü. Ö. Köylü, C. S. McEnally, D. E. Rosner, L. D. Pfefferle, “Simultaneous measurements of soot volume fraction and particle size/microstructures in flames using a thermophoretic sampling technique,” Combust. Flame 110, 494–507 (1997).
[CrossRef]

S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, “Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII),” Combust. Flame 120, 439–450 (2000).
[CrossRef]

Combust. Sci. Technol. (2)

P.-E. Bengtsson, L. Martinsson, M. Aldén, “Rotational CARS thermometry in sooting flames,” Combust. Sci. Technol. 81, 129–140 (1992).
[CrossRef]

R. L. Vander Wal, “Onset of carbonization, spatial location via simultaneous LIF–LII and characterization via TEM,” Combust. Sci. Technol. 118, 343–360 (1996).
[CrossRef]

Fuel (1)

T. T. Charalampopoulus, H. Chang, B. Stagg, “The effects of temperature and composition on the complex refractive index of flame soot,” Fuel 68, 1173–1179 (1989).
[CrossRef]

J. Aerosol Sci. (1)

P. Roth, A. V. Filippov, “In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission,” J. Aerosol Sci. 27, 95–104 (1996).
[CrossRef]

J. Appl. Phys. (1)

A. C. Eckbreth, “Effects of laser-modulated particulate incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4479 (1977).
[CrossRef]

J. Chem. Phys. (1)

L. Martinsson, P.-E. Bengtsson, M. Aldén, S. Kroll, “A test of different rotational Raman linewidth models: accuracy of rotational coherent anti-Stokes Raman scattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99, 2466–2477 (1993).
[CrossRef]

J. Heat Transf. (1)

W. H. Dalzell, A. F. Sarofim, “Optical constants of soot and their application to heat-flux calculations,” J. Heat Transf. 91, 100–104 (1969).
[CrossRef]

Opt. Lett. (1)

S. Will, S. Schraml, A. Leipertz, “Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence,” Opt. Lett. 22, 2342–2344 (1995).
[CrossRef]

Prog. Astronaut. Aeronaut. (1)

R. A. Dobbins, R. J. Santoro, H. G. Semerijan, “Interpretation of optical measurements of soot in flames,” Prog. Astronaut. Aeronaut. 92, 208–237 (1984).

Rev. Sci. Instrum. (1)

S. Prucker, W. Meier, W. Stricker, “A flat flame burner as calibration source for combustion research: temperature and species concentrations of premixed H2/air flames,” Rev. Sci. Instrum. 65, 2908–2911 (1994).
[CrossRef]

Other (11)

R. L. Vander Wal, “Calibration and comparison of laser-induced incandescence with cavity ring-down,” in 27th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 59–67.
[CrossRef]

E. D. Landolt-Börnstein, ed., “Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik (Springer-Verlag, Berlin, 1962).

D. R. Snelling, G. J. Smallwood, Ö. L. Gülder, “Soot measurement with laser-induced incandescence,” presented at the International Energy Agency XIX Task Leaders Meeting on Energy Conservation and Emissions Reduction in Combustion, Capri, Italy, 14–17 September 1997.

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic Press, New York, 1969).

A. D’Alesso, A. Di Lorenzo, A. Borghese, F. Beretta, S. Masi, “Study of the soot nucleation zone of rich methane-oxygen flames,” in 16th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1977), pp. 695–708.
[CrossRef]

J. E. Dec, A. O. zur Loye, D. L. Siebers, “Soot distribution in a D.I. Diesel engine using 2-D laser-induced incandescence imaging,” in 1991 SAE International Congress and Exposition, Detroit, 25 February–1 March 1991 (Society of Automotive Engineers, Warrendale, PA 15096), paper 910224.

J. D. Black, “Laser induced incandescence measurements of particles in aero-engine exhausts,” in Environmental Sensing and Applications, M. Carleer, M. Hilton, T. Lamp, R. Reuter, G. M. Russwurm, K. Schaefer, K. Weber, K. Weitkamp, J. P. Wolf, L. Woppowa, eds., Proc. SPIE3821, 209–215 (1999).
[CrossRef]

R. L. Vander Wal, “Soot precursor material: visualization via simultaneous LIF–LII and characterization via TEM,” in 26th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 2269–2275.
[CrossRef]

J. E. Dec, “A conceptual model of DI diesel combustion based on laser-sheet imaging,” in 1997 SAE International Congress and Exposition, Detroit, 24–27 1997 (Society of Automotive Engineers, Warrendale, PA 15096), paper 970873.

M. Braun-Unkhoff, A. Chrysostomou, P. Frank, E. Gutheil, R. Lückerath, W. Stricker, “Experimental and numerical study on soot formation in laminar high pressure flames,” in 27th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 1565–1572.
[CrossRef]

S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence (LII),” in 26th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 2277–2284.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Incandescence intensity as a function of incident laser fluence for the experimental setup.

Fig. 2
Fig. 2

Experimental decay curves for three HAB values. The curves have been normalized at a time position of 83 ns.

Fig. 3
Fig. 3

Soot volume fraction as a function of HAB for the studied flames. The relative LII signal profile is included for the Φ = 2.3 flame, and it has been normalized to the profile derived from absorption measurements at a position of 11 mm.

Fig. 4
Fig. 4

Evaluated particle diameter from scattering–extinction measurements as a function of HAB for the studied flames.

Fig. 5
Fig. 5

Decay time as a function of HAB for the flame stabilizer at 21 and at 26 mm above the burner surface.

Fig. 6
Fig. 6

Particle diameter measured with scattering–extinction (d es) and time-resolved LII (d p ).

Fig. 7
Fig. 7

Fluence dependence of the decay time for two consecutive measurements with identical experimental setup.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

fv=λ6πKextEm,  Em=-Imm2-1m2+2,
des=λ4π21/3EmFm1/3QvvKext1/3,  Fm=m2-1m2+22.

Metrics