Abstract

A single-frequency Ho:Tm:YLF laser, operating at an eye-safe wavelength of 2 µm, has been developed with tuning characteristics optimized for spectroscopy of absorption features. The laser frequency was stabilized to three different absorption lines of carbon dioxide by a wavelength modulation technique. Long-term frequency drift has been eliminated from the laser, and shorter-term jitter has been reduced to within 13.5 MHz of the absorption line center. This stabilized laser is an ideal injection seed source for a differential absorption lidar system for measurement of atmospheric gases.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Brockman, B. C. Barker, G. J. Koch, D. P. C. Nguyen, C. L. Britt, “Coherent pulsed lidar sensing of wake vortex position and strength, winds and turbulence in airport terminal areas,” in Tenth Biennial Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, Huntsville, Ala., 1999), pp. 12–15.
  2. S. M. Hannon, H. R. Bagley, S. C. Soreide, D. A. Bowdle, R. K. Bogue, L. J. Ehrenberger, “Airborne turbulence detection and warning: ACLAIM flight test results,” in Tenth Biennial Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, Huntsville, Ala., (1999), pp. 20–23.
  3. S. Cha, K. P. Chan, D. K. Killinger, “Tunable 2.1-µm Ho lidar for simultaneous range-resolved measurements of atmospheric water vapor and aerosol backscatter profiles,” Appl. Opt. 30, 3938–3943 (1991).
    [CrossRef] [PubMed]
  4. T. M. Taczak, D. K. Killinger, “Development of a tunable, narrow-linewidth, cw 2.066-µm Ho:YLF laser for remote sensing of atmospheric CO2 and H2O,” Appl. Opt. 37, 8460–8476 (1998).
    [CrossRef]
  5. G. J. Koch, R. E. Davis, A. N. Dharamsi, M. Petros, J. C. McCarthy, “Differential absorption measurements of atmospheric water vapor with a coherent lidar at 2050.532 nm,” in Tenth Biennial Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, Huntsville, Ala., 1999), pp. 68–71.
  6. W. C. Edwards, L. P. Petway, C. W. Antill, “Performance improvements to the lidar atmospheric sensing experiment (LASE),” in Nineteenth International Laser Radar Conference, (available from NASA Center for Aerospace Information, University of Nebraska, Omaha, Neb., 1998), pp. 815–817.
  7. N. P. Barnes, J. C. Barnes, “Injection seeding. I: Theory,” IEEE J. Quantum Electron. 29, 2670–2683 (1993).
    [CrossRef]
  8. A. N. Dharamsi, “A theory of modulation spectroscopy with applications of higher harmonic detection,” J. Phys. D 29, 540–549 (1996).
    [CrossRef]
  9. J. M. Supplee, E. A. Whittaker, W. Lenth, “Theoretical description of frequency modulation and wavelength modulation spectroscopy,” Appl. Opt. 33, 6294–6302 (1994).
    [CrossRef] [PubMed]
  10. C. M. Fitzgerald, G. J. Koch, A. M. Bullock, A. N. Dharamsi, “Wavelength modulation spectroscopy of water vapor and line center stabilization at 1.462 µm for lidar applications,” in Laser Diodes and LEDs in Industrial, Measurement, Imaging, and Sensors Applications II; Testing, Packaging, and Reliability of Semiconductor Lasers V, G. T. Burnham, X. He, K. J. Londen, S. C. Wang, eds., Proc. SPIE3945, 98–105 (2000).
    [CrossRef]
  11. T. Ikegami, S. Sudo, Y. Sakai, Frequency Stabilization of Semiconductor Laser Diodes (Artech House, Norwood, Mass., 1995).
  12. A. Arie, M. L. Bortz, M. M. Fejer, R. L. Byer, “Iodine spectroscopy and absolute frequency stabilization with the second harmonic of the 1319-nm Nd:YAG laser,” Opt. Lett. 18, 1757–1759 (1993).
    [CrossRef] [PubMed]
  13. P. Laporta, S. Taccheo, S. Longhi, C. Svelto, P. De Natale, “Frequency locking of tunable Er:Yb microlasers to absorption lines of 13C2H2 in the 1540–1550 nm wavelength interval,” Appl. Phys. Lett. 71, 2731–2733 (1997).
    [CrossRef]
  14. B. T. McGuckin, R. T. Menzies, C. Esporles, “Tunable frequency stabilized diode-laser-pumped Tm,Ho:YLiF4 laser at room temperature,” Appl. Opt. 32, 2082–2084 (1993).
    [CrossRef] [PubMed]
  15. S. W. Henderson, C. P. Hale, “Tunable single-longitudinal-mode diode laser pumped Tm:Ho:YAG laser,” Appl. Opt. 29, 1716–1718 (1990).
    [CrossRef] [PubMed]
  16. G. J. Koch, J. P. Deyst, M. P. Storm, “Single-frequency lasing of monolithic Ho,Tm:YLF,” Opt. Lett. 18, 1235–1237 (1993).
    [CrossRef] [PubMed]
  17. C. P. Hale, S. W. Henderson, D. M. D’Epagnier, “Tunable highly-stable master/local oscillator for coherent lidar applications,” in Tenth Biennial Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, Huntsville, Ala., 1999), pp. 115–118.
  18. L. S. Rothman, USF HITRAN-PC, Version 2.51 (Ontar Corporation, North Andover, Mass., 1996).

1998 (1)

1997 (1)

P. Laporta, S. Taccheo, S. Longhi, C. Svelto, P. De Natale, “Frequency locking of tunable Er:Yb microlasers to absorption lines of 13C2H2 in the 1540–1550 nm wavelength interval,” Appl. Phys. Lett. 71, 2731–2733 (1997).
[CrossRef]

1996 (1)

A. N. Dharamsi, “A theory of modulation spectroscopy with applications of higher harmonic detection,” J. Phys. D 29, 540–549 (1996).
[CrossRef]

1994 (1)

1993 (4)

1991 (1)

1990 (1)

Antill, C. W.

W. C. Edwards, L. P. Petway, C. W. Antill, “Performance improvements to the lidar atmospheric sensing experiment (LASE),” in Nineteenth International Laser Radar Conference, (available from NASA Center for Aerospace Information, University of Nebraska, Omaha, Neb., 1998), pp. 815–817.

Arie, A.

Bagley, H. R.

S. M. Hannon, H. R. Bagley, S. C. Soreide, D. A. Bowdle, R. K. Bogue, L. J. Ehrenberger, “Airborne turbulence detection and warning: ACLAIM flight test results,” in Tenth Biennial Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, Huntsville, Ala., (1999), pp. 20–23.

Barker, B. C.

P. Brockman, B. C. Barker, G. J. Koch, D. P. C. Nguyen, C. L. Britt, “Coherent pulsed lidar sensing of wake vortex position and strength, winds and turbulence in airport terminal areas,” in Tenth Biennial Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, Huntsville, Ala., 1999), pp. 12–15.

Barnes, J. C.

N. P. Barnes, J. C. Barnes, “Injection seeding. I: Theory,” IEEE J. Quantum Electron. 29, 2670–2683 (1993).
[CrossRef]

Barnes, N. P.

N. P. Barnes, J. C. Barnes, “Injection seeding. I: Theory,” IEEE J. Quantum Electron. 29, 2670–2683 (1993).
[CrossRef]

Bogue, R. K.

S. M. Hannon, H. R. Bagley, S. C. Soreide, D. A. Bowdle, R. K. Bogue, L. J. Ehrenberger, “Airborne turbulence detection and warning: ACLAIM flight test results,” in Tenth Biennial Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, Huntsville, Ala., (1999), pp. 20–23.

Bortz, M. L.

Bowdle, D. A.

S. M. Hannon, H. R. Bagley, S. C. Soreide, D. A. Bowdle, R. K. Bogue, L. J. Ehrenberger, “Airborne turbulence detection and warning: ACLAIM flight test results,” in Tenth Biennial Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, Huntsville, Ala., (1999), pp. 20–23.

Britt, C. L.

P. Brockman, B. C. Barker, G. J. Koch, D. P. C. Nguyen, C. L. Britt, “Coherent pulsed lidar sensing of wake vortex position and strength, winds and turbulence in airport terminal areas,” in Tenth Biennial Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, Huntsville, Ala., 1999), pp. 12–15.

Brockman, P.

P. Brockman, B. C. Barker, G. J. Koch, D. P. C. Nguyen, C. L. Britt, “Coherent pulsed lidar sensing of wake vortex position and strength, winds and turbulence in airport terminal areas,” in Tenth Biennial Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, Huntsville, Ala., 1999), pp. 12–15.

Bullock, A. M.

C. M. Fitzgerald, G. J. Koch, A. M. Bullock, A. N. Dharamsi, “Wavelength modulation spectroscopy of water vapor and line center stabilization at 1.462 µm for lidar applications,” in Laser Diodes and LEDs in Industrial, Measurement, Imaging, and Sensors Applications II; Testing, Packaging, and Reliability of Semiconductor Lasers V, G. T. Burnham, X. He, K. J. Londen, S. C. Wang, eds., Proc. SPIE3945, 98–105 (2000).
[CrossRef]

Byer, R. L.

Cha, S.

Chan, K. P.

D’Epagnier, D. M.

C. P. Hale, S. W. Henderson, D. M. D’Epagnier, “Tunable highly-stable master/local oscillator for coherent lidar applications,” in Tenth Biennial Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, Huntsville, Ala., 1999), pp. 115–118.

Davis, R. E.

G. J. Koch, R. E. Davis, A. N. Dharamsi, M. Petros, J. C. McCarthy, “Differential absorption measurements of atmospheric water vapor with a coherent lidar at 2050.532 nm,” in Tenth Biennial Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, Huntsville, Ala., 1999), pp. 68–71.

De Natale, P.

P. Laporta, S. Taccheo, S. Longhi, C. Svelto, P. De Natale, “Frequency locking of tunable Er:Yb microlasers to absorption lines of 13C2H2 in the 1540–1550 nm wavelength interval,” Appl. Phys. Lett. 71, 2731–2733 (1997).
[CrossRef]

Deyst, J. P.

Dharamsi, A. N.

A. N. Dharamsi, “A theory of modulation spectroscopy with applications of higher harmonic detection,” J. Phys. D 29, 540–549 (1996).
[CrossRef]

C. M. Fitzgerald, G. J. Koch, A. M. Bullock, A. N. Dharamsi, “Wavelength modulation spectroscopy of water vapor and line center stabilization at 1.462 µm for lidar applications,” in Laser Diodes and LEDs in Industrial, Measurement, Imaging, and Sensors Applications II; Testing, Packaging, and Reliability of Semiconductor Lasers V, G. T. Burnham, X. He, K. J. Londen, S. C. Wang, eds., Proc. SPIE3945, 98–105 (2000).
[CrossRef]

G. J. Koch, R. E. Davis, A. N. Dharamsi, M. Petros, J. C. McCarthy, “Differential absorption measurements of atmospheric water vapor with a coherent lidar at 2050.532 nm,” in Tenth Biennial Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, Huntsville, Ala., 1999), pp. 68–71.

Edwards, W. C.

W. C. Edwards, L. P. Petway, C. W. Antill, “Performance improvements to the lidar atmospheric sensing experiment (LASE),” in Nineteenth International Laser Radar Conference, (available from NASA Center for Aerospace Information, University of Nebraska, Omaha, Neb., 1998), pp. 815–817.

Ehrenberger, L. J.

S. M. Hannon, H. R. Bagley, S. C. Soreide, D. A. Bowdle, R. K. Bogue, L. J. Ehrenberger, “Airborne turbulence detection and warning: ACLAIM flight test results,” in Tenth Biennial Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, Huntsville, Ala., (1999), pp. 20–23.

Esporles, C.

Fejer, M. M.

Fitzgerald, C. M.

C. M. Fitzgerald, G. J. Koch, A. M. Bullock, A. N. Dharamsi, “Wavelength modulation spectroscopy of water vapor and line center stabilization at 1.462 µm for lidar applications,” in Laser Diodes and LEDs in Industrial, Measurement, Imaging, and Sensors Applications II; Testing, Packaging, and Reliability of Semiconductor Lasers V, G. T. Burnham, X. He, K. J. Londen, S. C. Wang, eds., Proc. SPIE3945, 98–105 (2000).
[CrossRef]

Hale, C. P.

S. W. Henderson, C. P. Hale, “Tunable single-longitudinal-mode diode laser pumped Tm:Ho:YAG laser,” Appl. Opt. 29, 1716–1718 (1990).
[CrossRef] [PubMed]

C. P. Hale, S. W. Henderson, D. M. D’Epagnier, “Tunable highly-stable master/local oscillator for coherent lidar applications,” in Tenth Biennial Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, Huntsville, Ala., 1999), pp. 115–118.

Hannon, S. M.

S. M. Hannon, H. R. Bagley, S. C. Soreide, D. A. Bowdle, R. K. Bogue, L. J. Ehrenberger, “Airborne turbulence detection and warning: ACLAIM flight test results,” in Tenth Biennial Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, Huntsville, Ala., (1999), pp. 20–23.

Henderson, S. W.

S. W. Henderson, C. P. Hale, “Tunable single-longitudinal-mode diode laser pumped Tm:Ho:YAG laser,” Appl. Opt. 29, 1716–1718 (1990).
[CrossRef] [PubMed]

C. P. Hale, S. W. Henderson, D. M. D’Epagnier, “Tunable highly-stable master/local oscillator for coherent lidar applications,” in Tenth Biennial Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, Huntsville, Ala., 1999), pp. 115–118.

Ikegami, T.

T. Ikegami, S. Sudo, Y. Sakai, Frequency Stabilization of Semiconductor Laser Diodes (Artech House, Norwood, Mass., 1995).

Killinger, D. K.

Koch, G. J.

G. J. Koch, J. P. Deyst, M. P. Storm, “Single-frequency lasing of monolithic Ho,Tm:YLF,” Opt. Lett. 18, 1235–1237 (1993).
[CrossRef] [PubMed]

C. M. Fitzgerald, G. J. Koch, A. M. Bullock, A. N. Dharamsi, “Wavelength modulation spectroscopy of water vapor and line center stabilization at 1.462 µm for lidar applications,” in Laser Diodes and LEDs in Industrial, Measurement, Imaging, and Sensors Applications II; Testing, Packaging, and Reliability of Semiconductor Lasers V, G. T. Burnham, X. He, K. J. Londen, S. C. Wang, eds., Proc. SPIE3945, 98–105 (2000).
[CrossRef]

P. Brockman, B. C. Barker, G. J. Koch, D. P. C. Nguyen, C. L. Britt, “Coherent pulsed lidar sensing of wake vortex position and strength, winds and turbulence in airport terminal areas,” in Tenth Biennial Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, Huntsville, Ala., 1999), pp. 12–15.

G. J. Koch, R. E. Davis, A. N. Dharamsi, M. Petros, J. C. McCarthy, “Differential absorption measurements of atmospheric water vapor with a coherent lidar at 2050.532 nm,” in Tenth Biennial Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, Huntsville, Ala., 1999), pp. 68–71.

Laporta, P.

P. Laporta, S. Taccheo, S. Longhi, C. Svelto, P. De Natale, “Frequency locking of tunable Er:Yb microlasers to absorption lines of 13C2H2 in the 1540–1550 nm wavelength interval,” Appl. Phys. Lett. 71, 2731–2733 (1997).
[CrossRef]

Lenth, W.

Longhi, S.

P. Laporta, S. Taccheo, S. Longhi, C. Svelto, P. De Natale, “Frequency locking of tunable Er:Yb microlasers to absorption lines of 13C2H2 in the 1540–1550 nm wavelength interval,” Appl. Phys. Lett. 71, 2731–2733 (1997).
[CrossRef]

McCarthy, J. C.

G. J. Koch, R. E. Davis, A. N. Dharamsi, M. Petros, J. C. McCarthy, “Differential absorption measurements of atmospheric water vapor with a coherent lidar at 2050.532 nm,” in Tenth Biennial Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, Huntsville, Ala., 1999), pp. 68–71.

McGuckin, B. T.

Menzies, R. T.

Nguyen, D. P. C.

P. Brockman, B. C. Barker, G. J. Koch, D. P. C. Nguyen, C. L. Britt, “Coherent pulsed lidar sensing of wake vortex position and strength, winds and turbulence in airport terminal areas,” in Tenth Biennial Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, Huntsville, Ala., 1999), pp. 12–15.

Petros, M.

G. J. Koch, R. E. Davis, A. N. Dharamsi, M. Petros, J. C. McCarthy, “Differential absorption measurements of atmospheric water vapor with a coherent lidar at 2050.532 nm,” in Tenth Biennial Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, Huntsville, Ala., 1999), pp. 68–71.

Petway, L. P.

W. C. Edwards, L. P. Petway, C. W. Antill, “Performance improvements to the lidar atmospheric sensing experiment (LASE),” in Nineteenth International Laser Radar Conference, (available from NASA Center for Aerospace Information, University of Nebraska, Omaha, Neb., 1998), pp. 815–817.

Rothman, L. S.

L. S. Rothman, USF HITRAN-PC, Version 2.51 (Ontar Corporation, North Andover, Mass., 1996).

Sakai, Y.

T. Ikegami, S. Sudo, Y. Sakai, Frequency Stabilization of Semiconductor Laser Diodes (Artech House, Norwood, Mass., 1995).

Soreide, S. C.

S. M. Hannon, H. R. Bagley, S. C. Soreide, D. A. Bowdle, R. K. Bogue, L. J. Ehrenberger, “Airborne turbulence detection and warning: ACLAIM flight test results,” in Tenth Biennial Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, Huntsville, Ala., (1999), pp. 20–23.

Storm, M. P.

Sudo, S.

T. Ikegami, S. Sudo, Y. Sakai, Frequency Stabilization of Semiconductor Laser Diodes (Artech House, Norwood, Mass., 1995).

Supplee, J. M.

Svelto, C.

P. Laporta, S. Taccheo, S. Longhi, C. Svelto, P. De Natale, “Frequency locking of tunable Er:Yb microlasers to absorption lines of 13C2H2 in the 1540–1550 nm wavelength interval,” Appl. Phys. Lett. 71, 2731–2733 (1997).
[CrossRef]

Taccheo, S.

P. Laporta, S. Taccheo, S. Longhi, C. Svelto, P. De Natale, “Frequency locking of tunable Er:Yb microlasers to absorption lines of 13C2H2 in the 1540–1550 nm wavelength interval,” Appl. Phys. Lett. 71, 2731–2733 (1997).
[CrossRef]

Taczak, T. M.

Whittaker, E. A.

Appl. Opt. (5)

Appl. Phys. Lett. (1)

P. Laporta, S. Taccheo, S. Longhi, C. Svelto, P. De Natale, “Frequency locking of tunable Er:Yb microlasers to absorption lines of 13C2H2 in the 1540–1550 nm wavelength interval,” Appl. Phys. Lett. 71, 2731–2733 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

N. P. Barnes, J. C. Barnes, “Injection seeding. I: Theory,” IEEE J. Quantum Electron. 29, 2670–2683 (1993).
[CrossRef]

J. Phys. D (1)

A. N. Dharamsi, “A theory of modulation spectroscopy with applications of higher harmonic detection,” J. Phys. D 29, 540–549 (1996).
[CrossRef]

Opt. Lett. (2)

Other (8)

C. P. Hale, S. W. Henderson, D. M. D’Epagnier, “Tunable highly-stable master/local oscillator for coherent lidar applications,” in Tenth Biennial Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, Huntsville, Ala., 1999), pp. 115–118.

L. S. Rothman, USF HITRAN-PC, Version 2.51 (Ontar Corporation, North Andover, Mass., 1996).

C. M. Fitzgerald, G. J. Koch, A. M. Bullock, A. N. Dharamsi, “Wavelength modulation spectroscopy of water vapor and line center stabilization at 1.462 µm for lidar applications,” in Laser Diodes and LEDs in Industrial, Measurement, Imaging, and Sensors Applications II; Testing, Packaging, and Reliability of Semiconductor Lasers V, G. T. Burnham, X. He, K. J. Londen, S. C. Wang, eds., Proc. SPIE3945, 98–105 (2000).
[CrossRef]

T. Ikegami, S. Sudo, Y. Sakai, Frequency Stabilization of Semiconductor Laser Diodes (Artech House, Norwood, Mass., 1995).

P. Brockman, B. C. Barker, G. J. Koch, D. P. C. Nguyen, C. L. Britt, “Coherent pulsed lidar sensing of wake vortex position and strength, winds and turbulence in airport terminal areas,” in Tenth Biennial Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, Huntsville, Ala., 1999), pp. 12–15.

S. M. Hannon, H. R. Bagley, S. C. Soreide, D. A. Bowdle, R. K. Bogue, L. J. Ehrenberger, “Airborne turbulence detection and warning: ACLAIM flight test results,” in Tenth Biennial Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, Huntsville, Ala., (1999), pp. 20–23.

G. J. Koch, R. E. Davis, A. N. Dharamsi, M. Petros, J. C. McCarthy, “Differential absorption measurements of atmospheric water vapor with a coherent lidar at 2050.532 nm,” in Tenth Biennial Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, Huntsville, Ala., 1999), pp. 68–71.

W. C. Edwards, L. P. Petway, C. W. Antill, “Performance improvements to the lidar atmospheric sensing experiment (LASE),” in Nineteenth International Laser Radar Conference, (available from NASA Center for Aerospace Information, University of Nebraska, Omaha, Neb., 1998), pp. 815–817.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Layout of the Ho:Tm:YLF laser. The cavity length from the high reflector (HR) to the output coupler is 10 cm. A piezoelectric translator (PZT) moves the output coupler for fine frequency tuning.

Fig. 2
Fig. 2

Tuning characteristic as the PZT is moved. Two model hops occur within the 1000-V range of the PZT.

Fig. 3
Fig. 3

Layout of the spectroscopy and line stabilization experiments. Optical paths are drawn as thicker lines.

Fig. 4
Fig. 4

Scan of the laser over the absorption line of carbon dioxide.

Fig. 5
Fig. 5

Error signal from the lock-in amplifier as the laser is scanned over the carbon dioxide absorption line. The zero crossing of the error signal occurs at line center.

Fig. 6
Fig. 6

Frequency fluctuation with (upper trace) and without (lower trace) stabilization engaged. Fluctuations are measured by the error signal from the lock-in amplifier.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Et=E0 cos2πνLt+βωm sinωmt,
Δf=β/2π.

Metrics