Abstract

A single-frequency Ho:Tm:YLF laser, operating at an eye-safe wavelength of 2 µm, has been developed with tuning characteristics optimized for spectroscopy of absorption features. The laser frequency was stabilized to three different absorption lines of carbon dioxide by a wavelength modulation technique. Long-term frequency drift has been eliminated from the laser, and shorter-term jitter has been reduced to within 13.5 MHz of the absorption line center. This stabilized laser is an ideal injection seed source for a differential absorption lidar system for measurement of atmospheric gases.

© 2000 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Precise wavelength control of a single-frequency pulsed Ho:Tm:YLF laser

Grady J. Koch, Mulugeta Petros, Jirong Yu, and Upendra N. Singh
Appl. Opt. 41(9) 1718-1721 (2002)

Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: design and application to atmospheric measurements

Grady J. Koch, Jeffrey Y. Beyon, Fabien Gibert, Bruce W. Barnes, Syed Ismail, Mulugeta Petros, Paul J. Petzar, Jirong Yu, Edward A. Modlin, Kenneth J. Davis, and Upendra N. Singh
Appl. Opt. 47(7) 944-956 (2008)

High-power Ti:sapphire laser at 820 nm for scanning ground-based water–vapor differential absorption lidar

Gerd Wagner, Andreas Behrendt, Volker Wulfmeyer, Florian Späth, and Max Schiller
Appl. Opt. 52(11) 2454-2469 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription