Abstract

The evolution of medium power fields of nonlinear optical waveguides is investigated numerically. The analysis method is based on mode matching of local normal modes of bounded waveguides. Nonlinear cladding waveguides are butt-coupled to linear waveguides. The path of a medium power level beam winds between the film and the nonlinear cladding. The input beam travels toward the nonlinear modal field, at which point the beam is not stationary. After the beam passes the location, it is forced to turn back. The lateral shift of an incident waveguide affects the path of a beam. Saturation and linear absorption lessens the oscillation of a winding path.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. T. Seaton, X. Mai, G. I. Stegeman, H. G. Winful, “Nonlinear guided wave applications,” Opt. Eng. 24, 593–599 (1985).
  2. G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol. 6, 953–970 (1988).
    [CrossRef]
  3. D. Mihalache, M. Bertolotti, C. Sibilia, “Nonlinear wave propagation in planar structures,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1989), Vol. 27, pp. 227–313.
    [CrossRef]
  4. M. Bertolotti, “Introduction to nonlinear guided waves,” in Advances in Integrated Optics, S. Martellucci, A. N. Chester, M. Bertolotti, ed. (Kluwer, Dordrecht, The Netherlands, 1994), pp. 21–55.
    [CrossRef]
  5. J. V. Moloney, J. Ariyasu, C. T. Seaton, G. I. Stegeman, “Stability of nonlinear stationary waves guided by a thin film bounded by nonlinear media,” Appl. Phys. Lett. 48, 826–828 (1986).
    [CrossRef]
  6. J. V. Moloney, J. Ariyasu, C. T. Seaton, G. I. Stegeman, “Numerical evidence for nonstationary, nonlinear, slab-guided waves,” Opt. Lett. 11, 315–317 (1986).
    [CrossRef] [PubMed]
  7. J. Ariyasu, C. T. Seaton, G. I. Stegeman, J. V. Moloney, “New theoretical developments in nonlinear guided waves: stability of TE1 branches,” IEEE J. Quantum Electron. QE-22, 984–987 (1986).
    [CrossRef]
  8. L. Leine, Ch. Wachter, U. Langbein, F. Lederer, “Propagation phenomena of nonlinear film-guided waves: a numerical analysis,” Opt. Lett. 11, 590–592 (1986).
    [CrossRef] [PubMed]
  9. M. A. Gubbels, E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Moloney, “Effects of absorption on TE0 nonlinear guided waves,” Opt. Commun. 61, 357–362 (1987).
    [CrossRef]
  10. D. Mihalache, D. Mazilu, “Stability and instability of nonlinear guided waves in saturable media,” Solid State Commun. 63, 215–217 (1987).
    [CrossRef]
  11. D. Mihalache, D. Mazilu, “Stability of nonlinear stationary slab-guided waves in saturable media: a numerical analysis,” Phys. Lett. 122, 381–384 (1987).
    [CrossRef]
  12. J. Atai, Y. Chen, “Stability of the asymmetric nonlinear mode trapped in symmetric planar waveguides,” J. Lightwave Technol. 11, 577–581 (1993).
    [CrossRef]
  13. E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Moloney, “Gaussian beam excitation of TE0 nonlinear guided waves,” Appl. Phys. Lett. 49, 435–436 (1986).
    [CrossRef]
  14. E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Moloney, A. D. Boardman, “Multisoliton emission from a nonlinear waveguide,” Phys. Rev. A 34, 4442–4444 (1986).
    [CrossRef] [PubMed]
  15. M. A. Gubbels, E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Moloney, “Numerical study of soliton emission from a nonlinear waveguide,” J. Opt. Soc. Am. B 4, 1837–1842 (1987).
    [CrossRef]
  16. L. Leine, C. Wächter, U. Langbein, F. Lederer, “Evolution of nonlinear guided optical fields down a dielectric film with a nonlinear cladding,” J. Opt. Soc. Am. B 5, 547–558 (1988).
    [CrossRef]
  17. S. Ohke, T. Umeda, Y. Cho, “Analysis on waveguiding property of GaAs-AlGaAs MQW nonlinear optical waveguide,” Trans. Inst. Electron. Inf. Commun. Eng. C-I, J73, 573–579 (1990), in Japanese.
  18. M. Bertolotti, P. Masciulli, C. Sibilia, “Mol numerical analysis of nonlinear planar waveguide,” J. Lightwave Technol. 12, 784–789 (1994).
    [CrossRef]
  19. H. Yokota, M. Hira, S. Kurazono, “Iterative finite difference beam propagation method analysis of nonlinear optical waveguide excitation problem,” Trans. Inst. Electron. Inf. Commun. Eng. C-I, J77, 529–535 (1994), in Japanese.
  20. T. Rozzi, L. Zappelli, “Modal analysis of nonlinear propagation in dielectric slab waveguide,” J. Lightwave Technol. 14, 229–235 (1996).
    [CrossRef]
  21. T. Yasui, M. Koshiba, A. Niiyama, Y. Tsuji, “Finite element beam propagation method for nonlinear optical waveguides,” Trans. Inst. Electron. Inf. Commun. Eng. C-I, J81, 417–422 (1998), in Japanese.
  22. K. Tsutsumi, Y. Imada, H. Hirai, Y. Yuba, “Analysis of single-mode optical Y-junctions by the bounded step and bend approximation,” J. Lightwave Technol. 6, 590–600 (1988).
    [CrossRef]
  23. D. Marcuse, Light Transmission Optics, 2nd ed. (Van Nostrand Reinhold, New York, 1982), Sec. 7.2.
  24. Y. Suematsu, K. Iga, Introduction to Optical Fiber Communications, 3rd ed. (Ohm-sha, Tokyo, 1989), Sec. 3.1, in Japanese.

1998 (1)

T. Yasui, M. Koshiba, A. Niiyama, Y. Tsuji, “Finite element beam propagation method for nonlinear optical waveguides,” Trans. Inst. Electron. Inf. Commun. Eng. C-I, J81, 417–422 (1998), in Japanese.

1996 (1)

T. Rozzi, L. Zappelli, “Modal analysis of nonlinear propagation in dielectric slab waveguide,” J. Lightwave Technol. 14, 229–235 (1996).
[CrossRef]

1994 (2)

M. Bertolotti, P. Masciulli, C. Sibilia, “Mol numerical analysis of nonlinear planar waveguide,” J. Lightwave Technol. 12, 784–789 (1994).
[CrossRef]

H. Yokota, M. Hira, S. Kurazono, “Iterative finite difference beam propagation method analysis of nonlinear optical waveguide excitation problem,” Trans. Inst. Electron. Inf. Commun. Eng. C-I, J77, 529–535 (1994), in Japanese.

1993 (1)

J. Atai, Y. Chen, “Stability of the asymmetric nonlinear mode trapped in symmetric planar waveguides,” J. Lightwave Technol. 11, 577–581 (1993).
[CrossRef]

1990 (1)

S. Ohke, T. Umeda, Y. Cho, “Analysis on waveguiding property of GaAs-AlGaAs MQW nonlinear optical waveguide,” Trans. Inst. Electron. Inf. Commun. Eng. C-I, J73, 573–579 (1990), in Japanese.

1988 (3)

K. Tsutsumi, Y. Imada, H. Hirai, Y. Yuba, “Analysis of single-mode optical Y-junctions by the bounded step and bend approximation,” J. Lightwave Technol. 6, 590–600 (1988).
[CrossRef]

G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol. 6, 953–970 (1988).
[CrossRef]

L. Leine, C. Wächter, U. Langbein, F. Lederer, “Evolution of nonlinear guided optical fields down a dielectric film with a nonlinear cladding,” J. Opt. Soc. Am. B 5, 547–558 (1988).
[CrossRef]

1987 (4)

M. A. Gubbels, E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Moloney, “Effects of absorption on TE0 nonlinear guided waves,” Opt. Commun. 61, 357–362 (1987).
[CrossRef]

D. Mihalache, D. Mazilu, “Stability and instability of nonlinear guided waves in saturable media,” Solid State Commun. 63, 215–217 (1987).
[CrossRef]

D. Mihalache, D. Mazilu, “Stability of nonlinear stationary slab-guided waves in saturable media: a numerical analysis,” Phys. Lett. 122, 381–384 (1987).
[CrossRef]

M. A. Gubbels, E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Moloney, “Numerical study of soliton emission from a nonlinear waveguide,” J. Opt. Soc. Am. B 4, 1837–1842 (1987).
[CrossRef]

1986 (6)

J. V. Moloney, J. Ariyasu, C. T. Seaton, G. I. Stegeman, “Numerical evidence for nonstationary, nonlinear, slab-guided waves,” Opt. Lett. 11, 315–317 (1986).
[CrossRef] [PubMed]

J. Ariyasu, C. T. Seaton, G. I. Stegeman, J. V. Moloney, “New theoretical developments in nonlinear guided waves: stability of TE1 branches,” IEEE J. Quantum Electron. QE-22, 984–987 (1986).
[CrossRef]

J. V. Moloney, J. Ariyasu, C. T. Seaton, G. I. Stegeman, “Stability of nonlinear stationary waves guided by a thin film bounded by nonlinear media,” Appl. Phys. Lett. 48, 826–828 (1986).
[CrossRef]

E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Moloney, “Gaussian beam excitation of TE0 nonlinear guided waves,” Appl. Phys. Lett. 49, 435–436 (1986).
[CrossRef]

E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Moloney, A. D. Boardman, “Multisoliton emission from a nonlinear waveguide,” Phys. Rev. A 34, 4442–4444 (1986).
[CrossRef] [PubMed]

L. Leine, Ch. Wachter, U. Langbein, F. Lederer, “Propagation phenomena of nonlinear film-guided waves: a numerical analysis,” Opt. Lett. 11, 590–592 (1986).
[CrossRef] [PubMed]

1985 (1)

C. T. Seaton, X. Mai, G. I. Stegeman, H. G. Winful, “Nonlinear guided wave applications,” Opt. Eng. 24, 593–599 (1985).

Ariyasu, J.

J. V. Moloney, J. Ariyasu, C. T. Seaton, G. I. Stegeman, “Numerical evidence for nonstationary, nonlinear, slab-guided waves,” Opt. Lett. 11, 315–317 (1986).
[CrossRef] [PubMed]

J. V. Moloney, J. Ariyasu, C. T. Seaton, G. I. Stegeman, “Stability of nonlinear stationary waves guided by a thin film bounded by nonlinear media,” Appl. Phys. Lett. 48, 826–828 (1986).
[CrossRef]

J. Ariyasu, C. T. Seaton, G. I. Stegeman, J. V. Moloney, “New theoretical developments in nonlinear guided waves: stability of TE1 branches,” IEEE J. Quantum Electron. QE-22, 984–987 (1986).
[CrossRef]

Atai, J.

J. Atai, Y. Chen, “Stability of the asymmetric nonlinear mode trapped in symmetric planar waveguides,” J. Lightwave Technol. 11, 577–581 (1993).
[CrossRef]

Bertolotti, M.

M. Bertolotti, P. Masciulli, C. Sibilia, “Mol numerical analysis of nonlinear planar waveguide,” J. Lightwave Technol. 12, 784–789 (1994).
[CrossRef]

D. Mihalache, M. Bertolotti, C. Sibilia, “Nonlinear wave propagation in planar structures,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1989), Vol. 27, pp. 227–313.
[CrossRef]

M. Bertolotti, “Introduction to nonlinear guided waves,” in Advances in Integrated Optics, S. Martellucci, A. N. Chester, M. Bertolotti, ed. (Kluwer, Dordrecht, The Netherlands, 1994), pp. 21–55.
[CrossRef]

Boardman, A. D.

E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Moloney, A. D. Boardman, “Multisoliton emission from a nonlinear waveguide,” Phys. Rev. A 34, 4442–4444 (1986).
[CrossRef] [PubMed]

Chen, Y.

J. Atai, Y. Chen, “Stability of the asymmetric nonlinear mode trapped in symmetric planar waveguides,” J. Lightwave Technol. 11, 577–581 (1993).
[CrossRef]

Cho, Y.

S. Ohke, T. Umeda, Y. Cho, “Analysis on waveguiding property of GaAs-AlGaAs MQW nonlinear optical waveguide,” Trans. Inst. Electron. Inf. Commun. Eng. C-I, J73, 573–579 (1990), in Japanese.

Finlayson, N.

G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol. 6, 953–970 (1988).
[CrossRef]

Gubbels, M. A.

M. A. Gubbels, E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Moloney, “Numerical study of soliton emission from a nonlinear waveguide,” J. Opt. Soc. Am. B 4, 1837–1842 (1987).
[CrossRef]

M. A. Gubbels, E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Moloney, “Effects of absorption on TE0 nonlinear guided waves,” Opt. Commun. 61, 357–362 (1987).
[CrossRef]

Hira, M.

H. Yokota, M. Hira, S. Kurazono, “Iterative finite difference beam propagation method analysis of nonlinear optical waveguide excitation problem,” Trans. Inst. Electron. Inf. Commun. Eng. C-I, J77, 529–535 (1994), in Japanese.

Hirai, H.

K. Tsutsumi, Y. Imada, H. Hirai, Y. Yuba, “Analysis of single-mode optical Y-junctions by the bounded step and bend approximation,” J. Lightwave Technol. 6, 590–600 (1988).
[CrossRef]

Iga, K.

Y. Suematsu, K. Iga, Introduction to Optical Fiber Communications, 3rd ed. (Ohm-sha, Tokyo, 1989), Sec. 3.1, in Japanese.

Imada, Y.

K. Tsutsumi, Y. Imada, H. Hirai, Y. Yuba, “Analysis of single-mode optical Y-junctions by the bounded step and bend approximation,” J. Lightwave Technol. 6, 590–600 (1988).
[CrossRef]

Koshiba, M.

T. Yasui, M. Koshiba, A. Niiyama, Y. Tsuji, “Finite element beam propagation method for nonlinear optical waveguides,” Trans. Inst. Electron. Inf. Commun. Eng. C-I, J81, 417–422 (1998), in Japanese.

Kurazono, S.

H. Yokota, M. Hira, S. Kurazono, “Iterative finite difference beam propagation method analysis of nonlinear optical waveguide excitation problem,” Trans. Inst. Electron. Inf. Commun. Eng. C-I, J77, 529–535 (1994), in Japanese.

Langbein, U.

Lederer, F.

Leine, L.

Mai, X.

C. T. Seaton, X. Mai, G. I. Stegeman, H. G. Winful, “Nonlinear guided wave applications,” Opt. Eng. 24, 593–599 (1985).

Marcuse, D.

D. Marcuse, Light Transmission Optics, 2nd ed. (Van Nostrand Reinhold, New York, 1982), Sec. 7.2.

Masciulli, P.

M. Bertolotti, P. Masciulli, C. Sibilia, “Mol numerical analysis of nonlinear planar waveguide,” J. Lightwave Technol. 12, 784–789 (1994).
[CrossRef]

Mazilu, D.

D. Mihalache, D. Mazilu, “Stability and instability of nonlinear guided waves in saturable media,” Solid State Commun. 63, 215–217 (1987).
[CrossRef]

D. Mihalache, D. Mazilu, “Stability of nonlinear stationary slab-guided waves in saturable media: a numerical analysis,” Phys. Lett. 122, 381–384 (1987).
[CrossRef]

Mihalache, D.

D. Mihalache, D. Mazilu, “Stability of nonlinear stationary slab-guided waves in saturable media: a numerical analysis,” Phys. Lett. 122, 381–384 (1987).
[CrossRef]

D. Mihalache, D. Mazilu, “Stability and instability of nonlinear guided waves in saturable media,” Solid State Commun. 63, 215–217 (1987).
[CrossRef]

D. Mihalache, M. Bertolotti, C. Sibilia, “Nonlinear wave propagation in planar structures,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1989), Vol. 27, pp. 227–313.
[CrossRef]

Moloney, J. V.

M. A. Gubbels, E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Moloney, “Effects of absorption on TE0 nonlinear guided waves,” Opt. Commun. 61, 357–362 (1987).
[CrossRef]

M. A. Gubbels, E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Moloney, “Numerical study of soliton emission from a nonlinear waveguide,” J. Opt. Soc. Am. B 4, 1837–1842 (1987).
[CrossRef]

J. V. Moloney, J. Ariyasu, C. T. Seaton, G. I. Stegeman, “Stability of nonlinear stationary waves guided by a thin film bounded by nonlinear media,” Appl. Phys. Lett. 48, 826–828 (1986).
[CrossRef]

J. Ariyasu, C. T. Seaton, G. I. Stegeman, J. V. Moloney, “New theoretical developments in nonlinear guided waves: stability of TE1 branches,” IEEE J. Quantum Electron. QE-22, 984–987 (1986).
[CrossRef]

E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Moloney, “Gaussian beam excitation of TE0 nonlinear guided waves,” Appl. Phys. Lett. 49, 435–436 (1986).
[CrossRef]

J. V. Moloney, J. Ariyasu, C. T. Seaton, G. I. Stegeman, “Numerical evidence for nonstationary, nonlinear, slab-guided waves,” Opt. Lett. 11, 315–317 (1986).
[CrossRef] [PubMed]

E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Moloney, A. D. Boardman, “Multisoliton emission from a nonlinear waveguide,” Phys. Rev. A 34, 4442–4444 (1986).
[CrossRef] [PubMed]

Niiyama, A.

T. Yasui, M. Koshiba, A. Niiyama, Y. Tsuji, “Finite element beam propagation method for nonlinear optical waveguides,” Trans. Inst. Electron. Inf. Commun. Eng. C-I, J81, 417–422 (1998), in Japanese.

Ohke, S.

S. Ohke, T. Umeda, Y. Cho, “Analysis on waveguiding property of GaAs-AlGaAs MQW nonlinear optical waveguide,” Trans. Inst. Electron. Inf. Commun. Eng. C-I, J73, 573–579 (1990), in Japanese.

Rozzi, T.

T. Rozzi, L. Zappelli, “Modal analysis of nonlinear propagation in dielectric slab waveguide,” J. Lightwave Technol. 14, 229–235 (1996).
[CrossRef]

Seaton, C. T.

G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol. 6, 953–970 (1988).
[CrossRef]

M. A. Gubbels, E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Moloney, “Effects of absorption on TE0 nonlinear guided waves,” Opt. Commun. 61, 357–362 (1987).
[CrossRef]

M. A. Gubbels, E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Moloney, “Numerical study of soliton emission from a nonlinear waveguide,” J. Opt. Soc. Am. B 4, 1837–1842 (1987).
[CrossRef]

J. V. Moloney, J. Ariyasu, C. T. Seaton, G. I. Stegeman, “Stability of nonlinear stationary waves guided by a thin film bounded by nonlinear media,” Appl. Phys. Lett. 48, 826–828 (1986).
[CrossRef]

J. Ariyasu, C. T. Seaton, G. I. Stegeman, J. V. Moloney, “New theoretical developments in nonlinear guided waves: stability of TE1 branches,” IEEE J. Quantum Electron. QE-22, 984–987 (1986).
[CrossRef]

E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Moloney, “Gaussian beam excitation of TE0 nonlinear guided waves,” Appl. Phys. Lett. 49, 435–436 (1986).
[CrossRef]

J. V. Moloney, J. Ariyasu, C. T. Seaton, G. I. Stegeman, “Numerical evidence for nonstationary, nonlinear, slab-guided waves,” Opt. Lett. 11, 315–317 (1986).
[CrossRef] [PubMed]

E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Moloney, A. D. Boardman, “Multisoliton emission from a nonlinear waveguide,” Phys. Rev. A 34, 4442–4444 (1986).
[CrossRef] [PubMed]

C. T. Seaton, X. Mai, G. I. Stegeman, H. G. Winful, “Nonlinear guided wave applications,” Opt. Eng. 24, 593–599 (1985).

Sibilia, C.

M. Bertolotti, P. Masciulli, C. Sibilia, “Mol numerical analysis of nonlinear planar waveguide,” J. Lightwave Technol. 12, 784–789 (1994).
[CrossRef]

D. Mihalache, M. Bertolotti, C. Sibilia, “Nonlinear wave propagation in planar structures,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1989), Vol. 27, pp. 227–313.
[CrossRef]

Stegeman, G. I.

G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol. 6, 953–970 (1988).
[CrossRef]

M. A. Gubbels, E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Moloney, “Numerical study of soliton emission from a nonlinear waveguide,” J. Opt. Soc. Am. B 4, 1837–1842 (1987).
[CrossRef]

M. A. Gubbels, E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Moloney, “Effects of absorption on TE0 nonlinear guided waves,” Opt. Commun. 61, 357–362 (1987).
[CrossRef]

J. Ariyasu, C. T. Seaton, G. I. Stegeman, J. V. Moloney, “New theoretical developments in nonlinear guided waves: stability of TE1 branches,” IEEE J. Quantum Electron. QE-22, 984–987 (1986).
[CrossRef]

E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Moloney, “Gaussian beam excitation of TE0 nonlinear guided waves,” Appl. Phys. Lett. 49, 435–436 (1986).
[CrossRef]

J. V. Moloney, J. Ariyasu, C. T. Seaton, G. I. Stegeman, “Stability of nonlinear stationary waves guided by a thin film bounded by nonlinear media,” Appl. Phys. Lett. 48, 826–828 (1986).
[CrossRef]

J. V. Moloney, J. Ariyasu, C. T. Seaton, G. I. Stegeman, “Numerical evidence for nonstationary, nonlinear, slab-guided waves,” Opt. Lett. 11, 315–317 (1986).
[CrossRef] [PubMed]

E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Moloney, A. D. Boardman, “Multisoliton emission from a nonlinear waveguide,” Phys. Rev. A 34, 4442–4444 (1986).
[CrossRef] [PubMed]

C. T. Seaton, X. Mai, G. I. Stegeman, H. G. Winful, “Nonlinear guided wave applications,” Opt. Eng. 24, 593–599 (1985).

Suematsu, Y.

Y. Suematsu, K. Iga, Introduction to Optical Fiber Communications, 3rd ed. (Ohm-sha, Tokyo, 1989), Sec. 3.1, in Japanese.

Tsuji, Y.

T. Yasui, M. Koshiba, A. Niiyama, Y. Tsuji, “Finite element beam propagation method for nonlinear optical waveguides,” Trans. Inst. Electron. Inf. Commun. Eng. C-I, J81, 417–422 (1998), in Japanese.

Tsutsumi, K.

K. Tsutsumi, Y. Imada, H. Hirai, Y. Yuba, “Analysis of single-mode optical Y-junctions by the bounded step and bend approximation,” J. Lightwave Technol. 6, 590–600 (1988).
[CrossRef]

Umeda, T.

S. Ohke, T. Umeda, Y. Cho, “Analysis on waveguiding property of GaAs-AlGaAs MQW nonlinear optical waveguide,” Trans. Inst. Electron. Inf. Commun. Eng. C-I, J73, 573–579 (1990), in Japanese.

Wachter, Ch.

Wächter, C.

Winful, H. G.

C. T. Seaton, X. Mai, G. I. Stegeman, H. G. Winful, “Nonlinear guided wave applications,” Opt. Eng. 24, 593–599 (1985).

Wright, E. M.

G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol. 6, 953–970 (1988).
[CrossRef]

M. A. Gubbels, E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Moloney, “Numerical study of soliton emission from a nonlinear waveguide,” J. Opt. Soc. Am. B 4, 1837–1842 (1987).
[CrossRef]

M. A. Gubbels, E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Moloney, “Effects of absorption on TE0 nonlinear guided waves,” Opt. Commun. 61, 357–362 (1987).
[CrossRef]

E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Moloney, “Gaussian beam excitation of TE0 nonlinear guided waves,” Appl. Phys. Lett. 49, 435–436 (1986).
[CrossRef]

E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Moloney, A. D. Boardman, “Multisoliton emission from a nonlinear waveguide,” Phys. Rev. A 34, 4442–4444 (1986).
[CrossRef] [PubMed]

Yasui, T.

T. Yasui, M. Koshiba, A. Niiyama, Y. Tsuji, “Finite element beam propagation method for nonlinear optical waveguides,” Trans. Inst. Electron. Inf. Commun. Eng. C-I, J81, 417–422 (1998), in Japanese.

Yokota, H.

H. Yokota, M. Hira, S. Kurazono, “Iterative finite difference beam propagation method analysis of nonlinear optical waveguide excitation problem,” Trans. Inst. Electron. Inf. Commun. Eng. C-I, J77, 529–535 (1994), in Japanese.

Yuba, Y.

K. Tsutsumi, Y. Imada, H. Hirai, Y. Yuba, “Analysis of single-mode optical Y-junctions by the bounded step and bend approximation,” J. Lightwave Technol. 6, 590–600 (1988).
[CrossRef]

Zanoni, R.

G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol. 6, 953–970 (1988).
[CrossRef]

Zappelli, L.

T. Rozzi, L. Zappelli, “Modal analysis of nonlinear propagation in dielectric slab waveguide,” J. Lightwave Technol. 14, 229–235 (1996).
[CrossRef]

Appl. Phys. Lett. (2)

E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Moloney, “Gaussian beam excitation of TE0 nonlinear guided waves,” Appl. Phys. Lett. 49, 435–436 (1986).
[CrossRef]

J. V. Moloney, J. Ariyasu, C. T. Seaton, G. I. Stegeman, “Stability of nonlinear stationary waves guided by a thin film bounded by nonlinear media,” Appl. Phys. Lett. 48, 826–828 (1986).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Ariyasu, C. T. Seaton, G. I. Stegeman, J. V. Moloney, “New theoretical developments in nonlinear guided waves: stability of TE1 branches,” IEEE J. Quantum Electron. QE-22, 984–987 (1986).
[CrossRef]

J. Lightwave Technol. (5)

T. Rozzi, L. Zappelli, “Modal analysis of nonlinear propagation in dielectric slab waveguide,” J. Lightwave Technol. 14, 229–235 (1996).
[CrossRef]

K. Tsutsumi, Y. Imada, H. Hirai, Y. Yuba, “Analysis of single-mode optical Y-junctions by the bounded step and bend approximation,” J. Lightwave Technol. 6, 590–600 (1988).
[CrossRef]

M. Bertolotti, P. Masciulli, C. Sibilia, “Mol numerical analysis of nonlinear planar waveguide,” J. Lightwave Technol. 12, 784–789 (1994).
[CrossRef]

J. Atai, Y. Chen, “Stability of the asymmetric nonlinear mode trapped in symmetric planar waveguides,” J. Lightwave Technol. 11, 577–581 (1993).
[CrossRef]

G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol. 6, 953–970 (1988).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

M. A. Gubbels, E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Moloney, “Effects of absorption on TE0 nonlinear guided waves,” Opt. Commun. 61, 357–362 (1987).
[CrossRef]

Opt. Eng. (1)

C. T. Seaton, X. Mai, G. I. Stegeman, H. G. Winful, “Nonlinear guided wave applications,” Opt. Eng. 24, 593–599 (1985).

Opt. Lett. (2)

Phys. Lett. (1)

D. Mihalache, D. Mazilu, “Stability of nonlinear stationary slab-guided waves in saturable media: a numerical analysis,” Phys. Lett. 122, 381–384 (1987).
[CrossRef]

Phys. Rev. A (1)

E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Moloney, A. D. Boardman, “Multisoliton emission from a nonlinear waveguide,” Phys. Rev. A 34, 4442–4444 (1986).
[CrossRef] [PubMed]

Solid State Commun. (1)

D. Mihalache, D. Mazilu, “Stability and instability of nonlinear guided waves in saturable media,” Solid State Commun. 63, 215–217 (1987).
[CrossRef]

Trans. Inst. Electron. Inf. Commun. Eng. C-I (3)

S. Ohke, T. Umeda, Y. Cho, “Analysis on waveguiding property of GaAs-AlGaAs MQW nonlinear optical waveguide,” Trans. Inst. Electron. Inf. Commun. Eng. C-I, J73, 573–579 (1990), in Japanese.

H. Yokota, M. Hira, S. Kurazono, “Iterative finite difference beam propagation method analysis of nonlinear optical waveguide excitation problem,” Trans. Inst. Electron. Inf. Commun. Eng. C-I, J77, 529–535 (1994), in Japanese.

T. Yasui, M. Koshiba, A. Niiyama, Y. Tsuji, “Finite element beam propagation method for nonlinear optical waveguides,” Trans. Inst. Electron. Inf. Commun. Eng. C-I, J81, 417–422 (1998), in Japanese.

Other (4)

D. Marcuse, Light Transmission Optics, 2nd ed. (Van Nostrand Reinhold, New York, 1982), Sec. 7.2.

Y. Suematsu, K. Iga, Introduction to Optical Fiber Communications, 3rd ed. (Ohm-sha, Tokyo, 1989), Sec. 3.1, in Japanese.

D. Mihalache, M. Bertolotti, C. Sibilia, “Nonlinear wave propagation in planar structures,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1989), Vol. 27, pp. 227–313.
[CrossRef]

M. Bertolotti, “Introduction to nonlinear guided waves,” in Advances in Integrated Optics, S. Martellucci, A. N. Chester, M. Bertolotti, ed. (Kluwer, Dordrecht, The Netherlands, 1994), pp. 21–55.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Nonlinear cladding planar waveguide with a butt-coupled linear waveguide as an input guide.

Fig. 2
Fig. 2

Nonlinear guided TE0 mode of a three-layer waveguide having film with a 1.56 index and 1-µm thickness, a substrate with a 1.55 index, and a self-focusing Kerr-type nonlinear cladding with index n = n 0 + n 2I I and n 0 = 1.55 and n 2I = 10-9 m2/W at an optical wavelength of 0.515 µm. (a) Guided power of the TE0 mode versus the effective index. (b) Position of the peak and the center of gravity of the electric field (E y ) measured from the center of the film.

Fig. 3
Fig. 3

Evolution of the E y field. The film–nonlinear cladding interface (x = 24.5 µm) and the film–substrate interface (x = 25.5 µm) are shown as dashed lines.

Fig. 4
Fig. 4

Position of the peak of the E y field as a function of z.

Fig. 5
Fig. 5

Effect of the lateral shift of an input waveguide. The position of the peak of the E y field is shown as a function of z at an input power 23 W/m.

Fig. 6
Fig. 6

Evolution of the E y field at an input power of 23 W/m. The film–nonlinear cladding interface (x = 24.5 µm) and the film–substrate interface (x = 25.5 µm) are shown as dashed lines.

Fig. 7
Fig. 7

Effect of saturation of the dielectric permittivity. The position of the peak of the E y field is shown as a function of z for ∊sat = 0.2 and 0.1 at an input power of 23 W/m.

Fig. 8
Fig. 8

Effect of linear absorption of nonlinear media. The position of the peak of the E y field is shown as a function of z for γ = 10 and 20 cm-1 at an input power of 23 W/m.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

fmx=Ap expjKmpx+Bp exp-jKmpx,  Kmp=np2k02-βm21/2,
m=0M-1 Imfmxexp-jβmΔz+m=0M-1 Rmfmx=n=0N-1 Tngnx,
m=0M-1 βmImfmxexp-jβmΔz-m=0M-1 βmRmfmx=n=0N-1 τnTngnx,
Tn0=m=0M-1βm+τnIm exp-jβmΔz  fmxgn*xdx2τn |gnx|2dx.
P=n=0N-1 |Tn0|2.
r=n02+sat1-exp-α|Ey|2sat,  α=c0n02n2I,
Iz+Δz=Izexp-γΔz,

Metrics