Abstract

An all-fiber antenna with a piezoelectric polymer-coated circular-core D fiber has been characterized by finite-element analysis. The response of the D-fiber antenna was determined over a wide frequency range from 1 to 500 MHz. The modeling predicts an electric-field-induced phase shift of 2.43 × 10-5 rad/(V/m)/m at 5 MHz. At frequencies higher than 8 MHz the optical response is dominated by radial resonances of the D-fiber–coating composite. From the simulation results a minimum detectable electric field of 41-µV/m has been achieved with a 1-km length of coated D fiber. In addition, a D-fiber antenna network intended for microcellular communications has been analyzed by shot-noise-limited detection.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription