Abstract

The assumption that values of water-leaving radiance in the near-infrared (NIR) are negligible enable aerosol radiative properties to be easily determined in the correction of satellite ocean color imagery. This is referred to as the black pixel assumption. We examine the implications of the black pixel assumption using a simple bio-optical model for the NIR water-leaving reflectance [ρwNIR)]N. In productive waters [chlorophyll (Chl) concentration >2 mg m-3], estimates of [ρwNIR)]N are several orders of magnitude larger than those expected for pure seawater. These large values of [ρwNIR)]N result in an overcorrection of atmospheric effects for retrievals of water-leaving reflectance that are most pronounced in the violet and blue spectral region. The overcorrection increases dramatically with Chl, reducing the true water-leaving radiance by roughly 75% when Chl is equal to 5 mg m-3. Relaxing the black pixel assumption in the correction of Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) satellite ocean color imagery provides significant improvements in Chl and water-leaving reflectance retrievals when Chl values are greater than 2 mg m-3. Improvements in the present modeling of [ρwNIR)]N are considered, particularly for turbid coastal waters. However, this research shows that the effects of nonzero NIR reflectance must be included in the correction of satellite ocean color imagery.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res. 102, 17,081–17,106 (1997).
    [CrossRef]
  2. H. R. Gordon, M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994).
    [CrossRef] [PubMed]
  3. H. R. Gordon, J. W. Brown, R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner,” Appl. Opt. 27, 862–871 (1988).
    [CrossRef] [PubMed]
  4. H. R. Gordon, M. Wang, “Surface roughness considerations for atmospheric correction of ocean color sensors. 1: The Rayleigh scattering component,” Appl. Opt. 31, 4247–4260 (1992).
    [CrossRef] [PubMed]
  5. M. Wang, “Atmospheric correction of ocean color sensors: computing atmospheric diffuse transmittance,” Appl. Opt. 38, 451–455 (1999).
    [CrossRef]
  6. H. Yang, H. R. Gordon, “Remote sensing of ocean color: assessment of water-leaving radiance bidirectional effects on atmospheric diffuse transmittance,” Appl. Opt. 36, 7887–7897 (1997).
    [CrossRef]
  7. H. R. Gordon, M. Wang, “Influence of oceanic whitecaps on atmospheric correction of ocean-color sensor,” Appl. Opt. 33, 7754–7763 (1994).
    [CrossRef] [PubMed]
  8. R. Frouin, M. Schwindling, P. Y. Deschamps, “Spectral reflectance of sea foam in the visible and near-infrared—in situ measurements and remote sensing implications,” J. Geophys. Res. 101, 14,361–14,371 (1996).
    [CrossRef]
  9. K. D. Moore, K. J. Voss, H. R. Gordon, “Spectral reflectance of whitecaps: their contribution to water-leaving radiance,” J. Geophys. Res. 105, 6493–6499 (2000).
    [CrossRef]
  10. H. R. Gordon, D. K. Clark, “Clear water radiances for atmospheric correction of coastal zone color scanner imagery,” Appl. Opt. 20, 4175–4180 (1981).
    [CrossRef] [PubMed]
  11. H. R. Gordon, A. Y. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, New York, 1983).
    [CrossRef]
  12. J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24,937–24,953 (1998).
    [CrossRef]
  13. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10,909–10,924 (1988).
    [CrossRef]
  14. S. A. Garver, D. A. Siegel, “Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation: I. Time series from the Sargasso Sea,” J. Geophys. Res. 102, 18,607–18,625 (1997).
    [CrossRef]
  15. K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403–5421 (1999).
    [CrossRef]
  16. C. R. McClain, M. L. Cleave, G. C. Feldman, W. W. Gregg, S. B. Hooker, N. Kuring, “Science quality SeaWiFS data for global biosphere research,” Sea Technol. 39, 10–16 (1998).
  17. B. D. Schieber, C. R. McClain, “LwN and chlorophyll-a matchup analyses,” in SeaWiFS Postlaunch Calibration and Validation Analysis, ,S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000).
  18. R. A. Arnone, P. Martinolich, R. W. Gould, M. Sydor, R. P. Stumpf, “Coastal optical properties using SeaWiFS,” Ocean Optics XIV Conference, Kailua-Kona, Hawaii, 10–13 November 1998; Ocean Optics XIV CD-ROM (Office of Naval Research, Washington, D.C., 1998).
  19. K. G. Ruddick, F. Ovidio, M. Rijkeboer, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Appl. Opt. 39, 897–912 (2000).
    [CrossRef]
  20. C. Hu, K. L. Carder, F. Muller-Karger, “Atmospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,” Remote Sens. Environ. (to be published).
  21. R. W. Austin, “The remote sensing of spectral radiance from below the ocean surface,” in Optical Aspects of Oceanography, N. G. Jerlov, E. S. Nielson, eds. (Academic, San Diego, Calif., 1974), pp. 317–344.
  22. G. M. Hale, M. R. Query, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12, 555–563 (1973).
    [CrossRef] [PubMed]
  23. R. C. Smith, K. S. Baker, “Optical properties of the clearest natural waters,” Appl. Opt. 20, 177–184 (1981).
    [CrossRef] [PubMed]
  24. A. Bricaud, A. Morel, M. Babin, K. Allali, H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31,033–31,044 (1998).
    [CrossRef]
  25. R. W. Gould, R. A. Arnone, P. M. Martinolich, “Spectral dependence of the scattering coefficient in case 1 and case 2 waters,” Appl. Opt. 38, 2377–2383 (1999).
    [CrossRef]
  26. A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case 1 waters),” J. Geophys. Res. 93, 10,749–10,768 (1988).
    [CrossRef]
  27. H. Loisel, A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: a reexamination,” Limnol. Oceanogr. 43, 847–858 (1998).
    [CrossRef]
  28. B. C. Johnson, E. E. Early, R. E. Eplee, R. A. Barnes, R. T. Caffrey, “The 1997 prelaunch radiometric calibration of SeaWiFS,” Vol. 4 of , S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1999).
  29. M. Wang, “A sensitivity study of SeaWiFS atmospheric correction algorithm: effects of spectral band variations,” Remote Sens. Environ. 67, 348–359 (1999).
    [CrossRef]
  30. S. Maritorena, J. O’Reilly, “Update on the operational SeaWiFS chlorophyll a algorithm,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 2, Vol. 9, , S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000).
  31. C. D. Mobley, Hydrolight 4.0 Users Guide (Sequoia Scientific, Inc., Mercer Island, Wash., 1998).
  32. W. S. Pegau, D. Gray, J. R. V. Zaneveld, “Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity,” Appl. Opt. 36, 6035–6046 (1997).
    [CrossRef] [PubMed]
  33. M. Sydor, R. A. Arnone, “Effect of suspended particulate and dissolved organic matter on remote sensing of coastal and riverine waters,” Appl. Opt. 36, 6905–6912 (1997).
    [CrossRef]

2000

K. D. Moore, K. J. Voss, H. R. Gordon, “Spectral reflectance of whitecaps: their contribution to water-leaving radiance,” J. Geophys. Res. 105, 6493–6499 (2000).
[CrossRef]

K. G. Ruddick, F. Ovidio, M. Rijkeboer, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Appl. Opt. 39, 897–912 (2000).
[CrossRef]

1999

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403–5421 (1999).
[CrossRef]

M. Wang, “Atmospheric correction of ocean color sensors: computing atmospheric diffuse transmittance,” Appl. Opt. 38, 451–455 (1999).
[CrossRef]

R. W. Gould, R. A. Arnone, P. M. Martinolich, “Spectral dependence of the scattering coefficient in case 1 and case 2 waters,” Appl. Opt. 38, 2377–2383 (1999).
[CrossRef]

M. Wang, “A sensitivity study of SeaWiFS atmospheric correction algorithm: effects of spectral band variations,” Remote Sens. Environ. 67, 348–359 (1999).
[CrossRef]

1998

A. Bricaud, A. Morel, M. Babin, K. Allali, H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31,033–31,044 (1998).
[CrossRef]

H. Loisel, A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: a reexamination,” Limnol. Oceanogr. 43, 847–858 (1998).
[CrossRef]

C. R. McClain, M. L. Cleave, G. C. Feldman, W. W. Gregg, S. B. Hooker, N. Kuring, “Science quality SeaWiFS data for global biosphere research,” Sea Technol. 39, 10–16 (1998).

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24,937–24,953 (1998).
[CrossRef]

1997

1996

R. Frouin, M. Schwindling, P. Y. Deschamps, “Spectral reflectance of sea foam in the visible and near-infrared—in situ measurements and remote sensing implications,” J. Geophys. Res. 101, 14,361–14,371 (1996).
[CrossRef]

1994

1992

1988

H. R. Gordon, J. W. Brown, R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner,” Appl. Opt. 27, 862–871 (1988).
[CrossRef] [PubMed]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10,909–10,924 (1988).
[CrossRef]

A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case 1 waters),” J. Geophys. Res. 93, 10,749–10,768 (1988).
[CrossRef]

1981

1973

Allali, K.

A. Bricaud, A. Morel, M. Babin, K. Allali, H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31,033–31,044 (1998).
[CrossRef]

Arnone, R. A.

R. W. Gould, R. A. Arnone, P. M. Martinolich, “Spectral dependence of the scattering coefficient in case 1 and case 2 waters,” Appl. Opt. 38, 2377–2383 (1999).
[CrossRef]

M. Sydor, R. A. Arnone, “Effect of suspended particulate and dissolved organic matter on remote sensing of coastal and riverine waters,” Appl. Opt. 36, 6905–6912 (1997).
[CrossRef]

R. A. Arnone, P. Martinolich, R. W. Gould, M. Sydor, R. P. Stumpf, “Coastal optical properties using SeaWiFS,” Ocean Optics XIV Conference, Kailua-Kona, Hawaii, 10–13 November 1998; Ocean Optics XIV CD-ROM (Office of Naval Research, Washington, D.C., 1998).

Austin, R. W.

R. W. Austin, “The remote sensing of spectral radiance from below the ocean surface,” in Optical Aspects of Oceanography, N. G. Jerlov, E. S. Nielson, eds. (Academic, San Diego, Calif., 1974), pp. 317–344.

Babin, M.

A. Bricaud, A. Morel, M. Babin, K. Allali, H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31,033–31,044 (1998).
[CrossRef]

Baker, K. S.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10,909–10,924 (1988).
[CrossRef]

R. C. Smith, K. S. Baker, “Optical properties of the clearest natural waters,” Appl. Opt. 20, 177–184 (1981).
[CrossRef] [PubMed]

Barnes, R. A.

B. C. Johnson, E. E. Early, R. E. Eplee, R. A. Barnes, R. T. Caffrey, “The 1997 prelaunch radiometric calibration of SeaWiFS,” Vol. 4 of , S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1999).

Bricaud, A.

A. Bricaud, A. Morel, M. Babin, K. Allali, H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31,033–31,044 (1998).
[CrossRef]

Brown, J. W.

H. R. Gordon, J. W. Brown, R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner,” Appl. Opt. 27, 862–871 (1988).
[CrossRef] [PubMed]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10,909–10,924 (1988).
[CrossRef]

Brown, O. B.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10,909–10,924 (1988).
[CrossRef]

Caffrey, R. T.

B. C. Johnson, E. E. Early, R. E. Eplee, R. A. Barnes, R. T. Caffrey, “The 1997 prelaunch radiometric calibration of SeaWiFS,” Vol. 4 of , S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1999).

Carder, K. L.

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403–5421 (1999).
[CrossRef]

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24,937–24,953 (1998).
[CrossRef]

C. Hu, K. L. Carder, F. Muller-Karger, “Atmospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,” Remote Sens. Environ. (to be published).

Chen, F. R.

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403–5421 (1999).
[CrossRef]

Clark, D. K.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10,909–10,924 (1988).
[CrossRef]

H. R. Gordon, D. K. Clark, “Clear water radiances for atmospheric correction of coastal zone color scanner imagery,” Appl. Opt. 20, 4175–4180 (1981).
[CrossRef] [PubMed]

Claustre, H.

A. Bricaud, A. Morel, M. Babin, K. Allali, H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31,033–31,044 (1998).
[CrossRef]

Cleave, M. L.

C. R. McClain, M. L. Cleave, G. C. Feldman, W. W. Gregg, S. B. Hooker, N. Kuring, “Science quality SeaWiFS data for global biosphere research,” Sea Technol. 39, 10–16 (1998).

Deschamps, P. Y.

R. Frouin, M. Schwindling, P. Y. Deschamps, “Spectral reflectance of sea foam in the visible and near-infrared—in situ measurements and remote sensing implications,” J. Geophys. Res. 101, 14,361–14,371 (1996).
[CrossRef]

Early, E. E.

B. C. Johnson, E. E. Early, R. E. Eplee, R. A. Barnes, R. T. Caffrey, “The 1997 prelaunch radiometric calibration of SeaWiFS,” Vol. 4 of , S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1999).

Eplee, R. E.

B. C. Johnson, E. E. Early, R. E. Eplee, R. A. Barnes, R. T. Caffrey, “The 1997 prelaunch radiometric calibration of SeaWiFS,” Vol. 4 of , S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1999).

Evans, R. H.

H. R. Gordon, J. W. Brown, R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner,” Appl. Opt. 27, 862–871 (1988).
[CrossRef] [PubMed]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10,909–10,924 (1988).
[CrossRef]

Feldman, G. C.

C. R. McClain, M. L. Cleave, G. C. Feldman, W. W. Gregg, S. B. Hooker, N. Kuring, “Science quality SeaWiFS data for global biosphere research,” Sea Technol. 39, 10–16 (1998).

Frouin, R.

R. Frouin, M. Schwindling, P. Y. Deschamps, “Spectral reflectance of sea foam in the visible and near-infrared—in situ measurements and remote sensing implications,” J. Geophys. Res. 101, 14,361–14,371 (1996).
[CrossRef]

Garver, S. A.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24,937–24,953 (1998).
[CrossRef]

S. A. Garver, D. A. Siegel, “Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation: I. Time series from the Sargasso Sea,” J. Geophys. Res. 102, 18,607–18,625 (1997).
[CrossRef]

Gordon, H. R.

K. D. Moore, K. J. Voss, H. R. Gordon, “Spectral reflectance of whitecaps: their contribution to water-leaving radiance,” J. Geophys. Res. 105, 6493–6499 (2000).
[CrossRef]

H. Yang, H. R. Gordon, “Remote sensing of ocean color: assessment of water-leaving radiance bidirectional effects on atmospheric diffuse transmittance,” Appl. Opt. 36, 7887–7897 (1997).
[CrossRef]

H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res. 102, 17,081–17,106 (1997).
[CrossRef]

H. R. Gordon, M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994).
[CrossRef] [PubMed]

H. R. Gordon, M. Wang, “Influence of oceanic whitecaps on atmospheric correction of ocean-color sensor,” Appl. Opt. 33, 7754–7763 (1994).
[CrossRef] [PubMed]

H. R. Gordon, M. Wang, “Surface roughness considerations for atmospheric correction of ocean color sensors. 1: The Rayleigh scattering component,” Appl. Opt. 31, 4247–4260 (1992).
[CrossRef] [PubMed]

H. R. Gordon, J. W. Brown, R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner,” Appl. Opt. 27, 862–871 (1988).
[CrossRef] [PubMed]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10,909–10,924 (1988).
[CrossRef]

H. R. Gordon, D. K. Clark, “Clear water radiances for atmospheric correction of coastal zone color scanner imagery,” Appl. Opt. 20, 4175–4180 (1981).
[CrossRef] [PubMed]

H. R. Gordon, A. Y. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, New York, 1983).
[CrossRef]

Gould, R. W.

R. W. Gould, R. A. Arnone, P. M. Martinolich, “Spectral dependence of the scattering coefficient in case 1 and case 2 waters,” Appl. Opt. 38, 2377–2383 (1999).
[CrossRef]

R. A. Arnone, P. Martinolich, R. W. Gould, M. Sydor, R. P. Stumpf, “Coastal optical properties using SeaWiFS,” Ocean Optics XIV Conference, Kailua-Kona, Hawaii, 10–13 November 1998; Ocean Optics XIV CD-ROM (Office of Naval Research, Washington, D.C., 1998).

Gray, D.

Gregg, W. W.

C. R. McClain, M. L. Cleave, G. C. Feldman, W. W. Gregg, S. B. Hooker, N. Kuring, “Science quality SeaWiFS data for global biosphere research,” Sea Technol. 39, 10–16 (1998).

Hale, G. M.

Hawes, S. K.

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403–5421 (1999).
[CrossRef]

Hooker, S. B.

C. R. McClain, M. L. Cleave, G. C. Feldman, W. W. Gregg, S. B. Hooker, N. Kuring, “Science quality SeaWiFS data for global biosphere research,” Sea Technol. 39, 10–16 (1998).

Hu, C.

C. Hu, K. L. Carder, F. Muller-Karger, “Atmospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,” Remote Sens. Environ. (to be published).

Johnson, B. C.

B. C. Johnson, E. E. Early, R. E. Eplee, R. A. Barnes, R. T. Caffrey, “The 1997 prelaunch radiometric calibration of SeaWiFS,” Vol. 4 of , S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1999).

Kahru, M.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24,937–24,953 (1998).
[CrossRef]

Kamykowski, D.

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403–5421 (1999).
[CrossRef]

Kuring, N.

C. R. McClain, M. L. Cleave, G. C. Feldman, W. W. Gregg, S. B. Hooker, N. Kuring, “Science quality SeaWiFS data for global biosphere research,” Sea Technol. 39, 10–16 (1998).

Lee, Z. P.

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403–5421 (1999).
[CrossRef]

Loisel, H.

H. Loisel, A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: a reexamination,” Limnol. Oceanogr. 43, 847–858 (1998).
[CrossRef]

Maritorena, S.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24,937–24,953 (1998).
[CrossRef]

S. Maritorena, J. O’Reilly, “Update on the operational SeaWiFS chlorophyll a algorithm,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 2, Vol. 9, , S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000).

Martinolich, P.

R. A. Arnone, P. Martinolich, R. W. Gould, M. Sydor, R. P. Stumpf, “Coastal optical properties using SeaWiFS,” Ocean Optics XIV Conference, Kailua-Kona, Hawaii, 10–13 November 1998; Ocean Optics XIV CD-ROM (Office of Naval Research, Washington, D.C., 1998).

Martinolich, P. M.

McClain, C. R.

C. R. McClain, M. L. Cleave, G. C. Feldman, W. W. Gregg, S. B. Hooker, N. Kuring, “Science quality SeaWiFS data for global biosphere research,” Sea Technol. 39, 10–16 (1998).

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24,937–24,953 (1998).
[CrossRef]

B. D. Schieber, C. R. McClain, “LwN and chlorophyll-a matchup analyses,” in SeaWiFS Postlaunch Calibration and Validation Analysis, ,S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000).

Mitchell, B. G.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24,937–24,953 (1998).
[CrossRef]

Mobley, C. D.

C. D. Mobley, Hydrolight 4.0 Users Guide (Sequoia Scientific, Inc., Mercer Island, Wash., 1998).

Moore, K. D.

K. D. Moore, K. J. Voss, H. R. Gordon, “Spectral reflectance of whitecaps: their contribution to water-leaving radiance,” J. Geophys. Res. 105, 6493–6499 (2000).
[CrossRef]

Morel, A.

A. Bricaud, A. Morel, M. Babin, K. Allali, H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31,033–31,044 (1998).
[CrossRef]

H. Loisel, A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: a reexamination,” Limnol. Oceanogr. 43, 847–858 (1998).
[CrossRef]

A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case 1 waters),” J. Geophys. Res. 93, 10,749–10,768 (1988).
[CrossRef]

Morel, A. Y.

H. R. Gordon, A. Y. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, New York, 1983).
[CrossRef]

Muller-Karger, F.

C. Hu, K. L. Carder, F. Muller-Karger, “Atmospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,” Remote Sens. Environ. (to be published).

O’Reilly, J.

S. Maritorena, J. O’Reilly, “Update on the operational SeaWiFS chlorophyll a algorithm,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 2, Vol. 9, , S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000).

O’Reilly, J. E.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24,937–24,953 (1998).
[CrossRef]

Ovidio, F.

Pegau, W. S.

Query, M. R.

Rijkeboer, M.

Ruddick, K. G.

Schieber, B. D.

B. D. Schieber, C. R. McClain, “LwN and chlorophyll-a matchup analyses,” in SeaWiFS Postlaunch Calibration and Validation Analysis, ,S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000).

Schwindling, M.

R. Frouin, M. Schwindling, P. Y. Deschamps, “Spectral reflectance of sea foam in the visible and near-infrared—in situ measurements and remote sensing implications,” J. Geophys. Res. 101, 14,361–14,371 (1996).
[CrossRef]

Siegel, D. A.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24,937–24,953 (1998).
[CrossRef]

S. A. Garver, D. A. Siegel, “Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation: I. Time series from the Sargasso Sea,” J. Geophys. Res. 102, 18,607–18,625 (1997).
[CrossRef]

Smith, R. C.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10,909–10,924 (1988).
[CrossRef]

R. C. Smith, K. S. Baker, “Optical properties of the clearest natural waters,” Appl. Opt. 20, 177–184 (1981).
[CrossRef] [PubMed]

Stumpf, R. P.

R. A. Arnone, P. Martinolich, R. W. Gould, M. Sydor, R. P. Stumpf, “Coastal optical properties using SeaWiFS,” Ocean Optics XIV Conference, Kailua-Kona, Hawaii, 10–13 November 1998; Ocean Optics XIV CD-ROM (Office of Naval Research, Washington, D.C., 1998).

Sydor, M.

M. Sydor, R. A. Arnone, “Effect of suspended particulate and dissolved organic matter on remote sensing of coastal and riverine waters,” Appl. Opt. 36, 6905–6912 (1997).
[CrossRef]

R. A. Arnone, P. Martinolich, R. W. Gould, M. Sydor, R. P. Stumpf, “Coastal optical properties using SeaWiFS,” Ocean Optics XIV Conference, Kailua-Kona, Hawaii, 10–13 November 1998; Ocean Optics XIV CD-ROM (Office of Naval Research, Washington, D.C., 1998).

Voss, K. J.

K. D. Moore, K. J. Voss, H. R. Gordon, “Spectral reflectance of whitecaps: their contribution to water-leaving radiance,” J. Geophys. Res. 105, 6493–6499 (2000).
[CrossRef]

Wang, M.

Yang, H.

Zaneveld, J. R. V.

Appl. Opt.

H. R. Gordon, M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994).
[CrossRef] [PubMed]

H. R. Gordon, J. W. Brown, R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner,” Appl. Opt. 27, 862–871 (1988).
[CrossRef] [PubMed]

H. R. Gordon, M. Wang, “Surface roughness considerations for atmospheric correction of ocean color sensors. 1: The Rayleigh scattering component,” Appl. Opt. 31, 4247–4260 (1992).
[CrossRef] [PubMed]

M. Wang, “Atmospheric correction of ocean color sensors: computing atmospheric diffuse transmittance,” Appl. Opt. 38, 451–455 (1999).
[CrossRef]

H. Yang, H. R. Gordon, “Remote sensing of ocean color: assessment of water-leaving radiance bidirectional effects on atmospheric diffuse transmittance,” Appl. Opt. 36, 7887–7897 (1997).
[CrossRef]

H. R. Gordon, M. Wang, “Influence of oceanic whitecaps on atmospheric correction of ocean-color sensor,” Appl. Opt. 33, 7754–7763 (1994).
[CrossRef] [PubMed]

H. R. Gordon, D. K. Clark, “Clear water radiances for atmospheric correction of coastal zone color scanner imagery,” Appl. Opt. 20, 4175–4180 (1981).
[CrossRef] [PubMed]

K. G. Ruddick, F. Ovidio, M. Rijkeboer, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Appl. Opt. 39, 897–912 (2000).
[CrossRef]

R. W. Gould, R. A. Arnone, P. M. Martinolich, “Spectral dependence of the scattering coefficient in case 1 and case 2 waters,” Appl. Opt. 38, 2377–2383 (1999).
[CrossRef]

G. M. Hale, M. R. Query, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12, 555–563 (1973).
[CrossRef] [PubMed]

R. C. Smith, K. S. Baker, “Optical properties of the clearest natural waters,” Appl. Opt. 20, 177–184 (1981).
[CrossRef] [PubMed]

W. S. Pegau, D. Gray, J. R. V. Zaneveld, “Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity,” Appl. Opt. 36, 6035–6046 (1997).
[CrossRef] [PubMed]

M. Sydor, R. A. Arnone, “Effect of suspended particulate and dissolved organic matter on remote sensing of coastal and riverine waters,” Appl. Opt. 36, 6905–6912 (1997).
[CrossRef]

J. Geophys. Res.

H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res. 102, 17,081–17,106 (1997).
[CrossRef]

A. Bricaud, A. Morel, M. Babin, K. Allali, H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31,033–31,044 (1998).
[CrossRef]

A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case 1 waters),” J. Geophys. Res. 93, 10,749–10,768 (1988).
[CrossRef]

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24,937–24,953 (1998).
[CrossRef]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10,909–10,924 (1988).
[CrossRef]

S. A. Garver, D. A. Siegel, “Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation: I. Time series from the Sargasso Sea,” J. Geophys. Res. 102, 18,607–18,625 (1997).
[CrossRef]

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403–5421 (1999).
[CrossRef]

R. Frouin, M. Schwindling, P. Y. Deschamps, “Spectral reflectance of sea foam in the visible and near-infrared—in situ measurements and remote sensing implications,” J. Geophys. Res. 101, 14,361–14,371 (1996).
[CrossRef]

K. D. Moore, K. J. Voss, H. R. Gordon, “Spectral reflectance of whitecaps: their contribution to water-leaving radiance,” J. Geophys. Res. 105, 6493–6499 (2000).
[CrossRef]

Limnol. Oceanogr.

H. Loisel, A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: a reexamination,” Limnol. Oceanogr. 43, 847–858 (1998).
[CrossRef]

Remote Sens. Environ.

M. Wang, “A sensitivity study of SeaWiFS atmospheric correction algorithm: effects of spectral band variations,” Remote Sens. Environ. 67, 348–359 (1999).
[CrossRef]

Sea Technol.

C. R. McClain, M. L. Cleave, G. C. Feldman, W. W. Gregg, S. B. Hooker, N. Kuring, “Science quality SeaWiFS data for global biosphere research,” Sea Technol. 39, 10–16 (1998).

Other

B. D. Schieber, C. R. McClain, “LwN and chlorophyll-a matchup analyses,” in SeaWiFS Postlaunch Calibration and Validation Analysis, ,S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000).

R. A. Arnone, P. Martinolich, R. W. Gould, M. Sydor, R. P. Stumpf, “Coastal optical properties using SeaWiFS,” Ocean Optics XIV Conference, Kailua-Kona, Hawaii, 10–13 November 1998; Ocean Optics XIV CD-ROM (Office of Naval Research, Washington, D.C., 1998).

C. Hu, K. L. Carder, F. Muller-Karger, “Atmospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,” Remote Sens. Environ. (to be published).

R. W. Austin, “The remote sensing of spectral radiance from below the ocean surface,” in Optical Aspects of Oceanography, N. G. Jerlov, E. S. Nielson, eds. (Academic, San Diego, Calif., 1974), pp. 317–344.

H. R. Gordon, A. Y. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, New York, 1983).
[CrossRef]

S. Maritorena, J. O’Reilly, “Update on the operational SeaWiFS chlorophyll a algorithm,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 2, Vol. 9, , S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000).

C. D. Mobley, Hydrolight 4.0 Users Guide (Sequoia Scientific, Inc., Mercer Island, Wash., 1998).

B. C. Johnson, E. E. Early, R. E. Eplee, R. A. Barnes, R. T. Caffrey, “The 1997 prelaunch radiometric calibration of SeaWiFS,” Vol. 4 of , S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

SIMBIOS in situ and SeaWiFS imagery match-up comparison for [ρ w (λ)] N at 412, 443, 490, and Chl. The SeaWiFS observations are processed with the standard version 2 processing procedures. Procedures explaining the match-up data set procedure are provided in Ref. 17.

Fig. 2
Fig. 2

Comparison of b bp(λ) and [ρ w NIR)] N estimates versus Chl by use of the SeaBAM data set12 for (a) b bp(550), (b) b bp(865), (c) [ρ w (760)] N , and (d) [ρ w (865)] N . The results of the bio-optical algorithm [Eq. (6)] are shown as the solid curve, whereas the points are from the closure model [Eq. (7)]. The dotted horizontal lines in (c) and (d) are estimates of [ρ w NIR)] N assuming that b bpNIR) equals zero (the clear-water reflectance). The dashed horizontal lines in (c) and (d) are the one digital count level for the SeaWiFS instrument for bands 7 and 8.28

Fig. 3
Fig. 3

Errors Δ[ρ w (λ)] N in the retrieved [ρ w (λ)] N by our ignoring the NIR ocean contributions for the SeaWiFS bands 1–5 for the aerosol M80 model with an optical thickness of 0.1 at 865 nm, seven Chl values, and for the solar and viewing geometries of (a) and (c) θ0 = 20°, θ = 20°, Δϕ = 90° and (b) and (d) θ0 = 40°, θ = 40°, Δϕ = 90°. Note that (c) and (d) are in relative errors (%). The curves from the top to the bottom in these figures correspond to Chl concentrations of 0.1, 0.3, 0.5, 1.0, 1.5, 2.0, and 5.0 mg m-3, respectively.

Fig. 4
Fig. 4

SeaWiFS LAC chlorophyll scene for the Chesapeake Bay and adjacent waters from 19 May 1998 (S1998139171559.L1A_HNSG), processed with (a) the SeaWiFS standard processing (version 2) and (b) the present NIR correction procedure. The purple dots in (a) correspond to the location of field observations used in making Fig. 5(c).

Fig. 5
Fig. 5

Chlorophyll concentration histograms for observations taken from within the Chesapeake Bay from 19 May 1998 by use of (a) the SeaWiFS LAC scene and the standard processing (version 2), (b) the SeaWiFS LAC scene with the present NIR correction procedure, and (c) from in situ observations taken between 18 and 20 May 1998. The purple dots in Fig. 4(a) provide the location of the data used in making Fig. 5(c).

Fig. 6
Fig. 6

SIMBIOS match-up data set for [ρ w (λ)] N at 412, 443, 490, and Chl after the NIR correction procedure is performed. The format is identical to Fig. 1.

Fig. 7
Fig. 7

Relative error in the SIMBIOS match-up data set for chlorophyll a concentration by use of (a) standard processing and (b) with the present NIR bio-optical algorithm. The rms deviation for high chlorophyll conditions (Chl > 1 mg m-3) decreases by a significant amount after the NIR correction is employed (2.04–1.46 mg m-3).

Fig. 8
Fig. 8

Percentage reduction in SeaWiFS chlorophyll retrievals after implementation of the NIR correction procedure (solid line) as a function of the Chl retrieval from the standard processing. Data are shown for two 8-day composite SeaWiFS global-area coverage (GAC) scenes for (a) summer (12–19 July 1998) and (b) winter (17–24 January 1998) conditions. Also shown is the percentage occurrence of the different Chl intervals (dotted line).

Fig. 9
Fig. 9

Percentage improvement in water-leaving reflectance spectra retrievals (upper) and normalized to the estimated spectra (lower) after implementation of the NIR correction procedure (NIR corrected and standard). Data are shown for two 8-day composite SeaWiFS global-area coverage scenes for summer (right, 12–19 July 1998) and winter (left, 17–24 January 1998) conditions. The different curves correspond to categories of Chl concentrations of 10–20, 5–10, 2–5, 1–2, and 0.5–1 mg m-3 from top to bottom. These results will likely underestimate the NIR error that is due to the assumption that negative [ρ w (λ)] N retrievals are zero in the composite-making procedure in the present version of SeaWiFS processing.

Tables (5)

Tables Icon

Table 1 Parameters used to Determine [ρ w NIR)] N

Tables Icon

Table 2 Ensemble Mean and Standard Deviation (in parentheses) Estimates for b bp(550), b bp(760), and b bp(865) by use of SeaBAM (N = 919)

Tables Icon

Table 3 Ensemble Mean and Standard Deviation (in parentheses) Estimates for [ρ w (670)] N , [ρ w (760)] N , and [ρ w (865)] N by use of SeaBAM (N = 919)

Tables Icon

Table 4 Error ΔR(i, j) (in percent) in the Retrieved Ratio of the Normalized Water-Leaving Reflectance between the SeaWiFS Bands 2 and 5 and bands 3 and 5a

Tables Icon

Table 5 Error in the Retrieved Chlorophyll Concentration (in percent) by use of the Morel-3 and OC2v2 Algorithmsa

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ρtλ=ρrλ+ρaλ+ρraλ+Tλρgλ+tλρwcλ+tλρwλ.
LwλN=Lwλ/μ0t0λ,
ρwλN=πLwλNF0λρwλt0λ,
ρwλN=πt/n2i=12 gibbλbbλ+aλi,
ρwλNIRNπt/n2×i=12 gibbpλNIR+bbwλNIRbbpλNIR+bbwλNIR+awλNIRi,
bbpBOλNIR=0.416 Chl0.766(0.002+550/λNIR×0.020.5-0.25 log10Chl),
bbpOCλNIR=X0+X1ρw551N×551λNIRY0+Y1ρw443N/ρw488N,
ΔRi, j=ρwλiN+ΔρwλiNρwλjN+ΔρwλjN-ρwλiNρwλjN,
Chl0initialρwλNIRNatmos corrρwλN and Chl  repeat.iterations

Metrics