Abstract

A new algorithm for cloud detection over sea surface has been developed that makes use of autocorrelation and cross correlation between a real spectrum and either a synthetic or a laboratory spectrum. The scheme is intended for high-spectral-resolution satelliteborne infrared sensors that will measure the Earth’s entire emission spectrum rather than the upwelling radiance in a few channels. A new index is defined with which one can determine quantitatively the degree of homogeneity of two spectra in the 800–900-cm-1 (11.11–12.5 µm) window region. The index makes use of only the observed spectrum along with a reference synthetic spectrum and, therefore, may form the basis for an operational stand-alone cloud-detection algorithm for next-generation high-spectral-resolution infrared sensors. Application both to synthetic spectra obtained in simulation and to sea-surface real spectra recorded through the interferometric monitor for greenhouse gases is considered.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. H. Aumann, R. J. Pagano, “Atmospheric infrared sounder on the Earth Observing System,” Opt. Eng. 33, 776–784 (1994).
    [CrossRef]
  2. IASI science plan, available from the European Organization for the Exploitation of Meteorological Satellites, Am Kavalleriesand 31, 64295 Darmstdat, Germany.
  3. R. Beer, R. H. Norton, “Analysis of spectra using correlation functions,” Appl. Opt. 7, 1255–1261 (1988).
    [CrossRef]
  4. S. A. M. Clough, M. J. Iacono, J.-L. Moncet, “Line-by-line calculation of atmospheric fluxes and cooling rates. 1. Application to water vapor,” J. Geophys. Res. 97, 15,761–15,785 (1992).
    [CrossRef]
  5. S. A. M. Clough, M. J. Iacono, “Line-by-line calculation of atmospheric fluxes and cooling rates. 2. Application to carbon dioxide, ozone, methane, nitrous oxide, and the halocarbons,” J. Geophys. Res. 100, 16,519–16,535 (1995).
    [CrossRef]
  6. K. Masuda, T. Takashima, Y. Takayama, “Emissivity of pure and sea waters for the model sea surface in the infrared window regions,” Remote Sens. Environ. 24, 313–329 (1988).
    [CrossRef]
  7. G. E. P. Box, G. M. Jenkins, Time Series Analysis (Holden-Day, San Francisco, Calif., 1976).
  8. H. Kobayashi, A. Shimota, C. Yoshigahara, I. Yoshida, Y. Uehara, K. Kondo, “Satellite-borne high-resolution FTIR for lower atmosphere sounding and its evaluation,” IEEE Trans. Geosci. Remote Sens. 37, 1496–1507 (1999).
    [CrossRef]
  9. U. Amato, V. Cuomo, I. De Feis, F. Romano, C. Serio, H. Kobayashi, “Inverting for geophysical parameters from IMG radiances,” Trans. Geosci. Remote Sens. 37, 1620–1632 (1999).
    [CrossRef]
  10. C. Serio, U. Amato, I. De Feis, F. Esposito, A. M. Lubrano, G. Masiello, R. Rizzi, “Summary Report of the CHIARA project for IMG,” (Dipartimento di Ingegneria e Fisica dell’Ambiente, C. da Macchia Romana, 85100 Potenza, Italy, 1999).
  11. W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnet, W. McKeown, “Observations of the infrared radiative properties of the ocean—implications for the measurements of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41–51 (1996).
    [CrossRef]
  12. V. Cuomo, H. Kobayashi, V. Lanorte, A. M. Lubrano, N. Pergola, C. Pietrapertosa, F. Romano, C. Serio, “A cloud detection approach for IASI data,” in Technical Proceedings of the Tenth International ATOVS Study Conference (Meterological Research Centre, Melbourne, Australia, 1999), pp. 125–133.

1999 (2)

H. Kobayashi, A. Shimota, C. Yoshigahara, I. Yoshida, Y. Uehara, K. Kondo, “Satellite-borne high-resolution FTIR for lower atmosphere sounding and its evaluation,” IEEE Trans. Geosci. Remote Sens. 37, 1496–1507 (1999).
[CrossRef]

U. Amato, V. Cuomo, I. De Feis, F. Romano, C. Serio, H. Kobayashi, “Inverting for geophysical parameters from IMG radiances,” Trans. Geosci. Remote Sens. 37, 1620–1632 (1999).
[CrossRef]

1996 (1)

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnet, W. McKeown, “Observations of the infrared radiative properties of the ocean—implications for the measurements of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41–51 (1996).
[CrossRef]

1995 (1)

S. A. M. Clough, M. J. Iacono, “Line-by-line calculation of atmospheric fluxes and cooling rates. 2. Application to carbon dioxide, ozone, methane, nitrous oxide, and the halocarbons,” J. Geophys. Res. 100, 16,519–16,535 (1995).
[CrossRef]

1994 (1)

H. H. Aumann, R. J. Pagano, “Atmospheric infrared sounder on the Earth Observing System,” Opt. Eng. 33, 776–784 (1994).
[CrossRef]

1992 (1)

S. A. M. Clough, M. J. Iacono, J.-L. Moncet, “Line-by-line calculation of atmospheric fluxes and cooling rates. 1. Application to water vapor,” J. Geophys. Res. 97, 15,761–15,785 (1992).
[CrossRef]

1988 (2)

R. Beer, R. H. Norton, “Analysis of spectra using correlation functions,” Appl. Opt. 7, 1255–1261 (1988).
[CrossRef]

K. Masuda, T. Takashima, Y. Takayama, “Emissivity of pure and sea waters for the model sea surface in the infrared window regions,” Remote Sens. Environ. 24, 313–329 (1988).
[CrossRef]

Amato, U.

U. Amato, V. Cuomo, I. De Feis, F. Romano, C. Serio, H. Kobayashi, “Inverting for geophysical parameters from IMG radiances,” Trans. Geosci. Remote Sens. 37, 1620–1632 (1999).
[CrossRef]

C. Serio, U. Amato, I. De Feis, F. Esposito, A. M. Lubrano, G. Masiello, R. Rizzi, “Summary Report of the CHIARA project for IMG,” (Dipartimento di Ingegneria e Fisica dell’Ambiente, C. da Macchia Romana, 85100 Potenza, Italy, 1999).

Aumann, H. H.

H. H. Aumann, R. J. Pagano, “Atmospheric infrared sounder on the Earth Observing System,” Opt. Eng. 33, 776–784 (1994).
[CrossRef]

Beer, R.

R. Beer, R. H. Norton, “Analysis of spectra using correlation functions,” Appl. Opt. 7, 1255–1261 (1988).
[CrossRef]

Box, G. E. P.

G. E. P. Box, G. M. Jenkins, Time Series Analysis (Holden-Day, San Francisco, Calif., 1976).

Brown, J.

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnet, W. McKeown, “Observations of the infrared radiative properties of the ocean—implications for the measurements of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41–51 (1996).
[CrossRef]

Brown, O.

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnet, W. McKeown, “Observations of the infrared radiative properties of the ocean—implications for the measurements of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41–51 (1996).
[CrossRef]

Clough, S. A. M.

S. A. M. Clough, M. J. Iacono, “Line-by-line calculation of atmospheric fluxes and cooling rates. 2. Application to carbon dioxide, ozone, methane, nitrous oxide, and the halocarbons,” J. Geophys. Res. 100, 16,519–16,535 (1995).
[CrossRef]

S. A. M. Clough, M. J. Iacono, J.-L. Moncet, “Line-by-line calculation of atmospheric fluxes and cooling rates. 1. Application to water vapor,” J. Geophys. Res. 97, 15,761–15,785 (1992).
[CrossRef]

Cuomo, V.

U. Amato, V. Cuomo, I. De Feis, F. Romano, C. Serio, H. Kobayashi, “Inverting for geophysical parameters from IMG radiances,” Trans. Geosci. Remote Sens. 37, 1620–1632 (1999).
[CrossRef]

V. Cuomo, H. Kobayashi, V. Lanorte, A. M. Lubrano, N. Pergola, C. Pietrapertosa, F. Romano, C. Serio, “A cloud detection approach for IASI data,” in Technical Proceedings of the Tenth International ATOVS Study Conference (Meterological Research Centre, Melbourne, Australia, 1999), pp. 125–133.

De Feis, I.

U. Amato, V. Cuomo, I. De Feis, F. Romano, C. Serio, H. Kobayashi, “Inverting for geophysical parameters from IMG radiances,” Trans. Geosci. Remote Sens. 37, 1620–1632 (1999).
[CrossRef]

C. Serio, U. Amato, I. De Feis, F. Esposito, A. M. Lubrano, G. Masiello, R. Rizzi, “Summary Report of the CHIARA project for IMG,” (Dipartimento di Ingegneria e Fisica dell’Ambiente, C. da Macchia Romana, 85100 Potenza, Italy, 1999).

Esposito, F.

C. Serio, U. Amato, I. De Feis, F. Esposito, A. M. Lubrano, G. Masiello, R. Rizzi, “Summary Report of the CHIARA project for IMG,” (Dipartimento di Ingegneria e Fisica dell’Ambiente, C. da Macchia Romana, 85100 Potenza, Italy, 1999).

Feltz, W.

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnet, W. McKeown, “Observations of the infrared radiative properties of the ocean—implications for the measurements of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41–51 (1996).
[CrossRef]

Howell, H. B.

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnet, W. McKeown, “Observations of the infrared radiative properties of the ocean—implications for the measurements of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41–51 (1996).
[CrossRef]

Iacono, M. J.

S. A. M. Clough, M. J. Iacono, “Line-by-line calculation of atmospheric fluxes and cooling rates. 2. Application to carbon dioxide, ozone, methane, nitrous oxide, and the halocarbons,” J. Geophys. Res. 100, 16,519–16,535 (1995).
[CrossRef]

S. A. M. Clough, M. J. Iacono, J.-L. Moncet, “Line-by-line calculation of atmospheric fluxes and cooling rates. 1. Application to water vapor,” J. Geophys. Res. 97, 15,761–15,785 (1992).
[CrossRef]

Jenkins, G. M.

G. E. P. Box, G. M. Jenkins, Time Series Analysis (Holden-Day, San Francisco, Calif., 1976).

Knuteson, R. O.

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnet, W. McKeown, “Observations of the infrared radiative properties of the ocean—implications for the measurements of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41–51 (1996).
[CrossRef]

Kobayashi, H.

U. Amato, V. Cuomo, I. De Feis, F. Romano, C. Serio, H. Kobayashi, “Inverting for geophysical parameters from IMG radiances,” Trans. Geosci. Remote Sens. 37, 1620–1632 (1999).
[CrossRef]

H. Kobayashi, A. Shimota, C. Yoshigahara, I. Yoshida, Y. Uehara, K. Kondo, “Satellite-borne high-resolution FTIR for lower atmosphere sounding and its evaluation,” IEEE Trans. Geosci. Remote Sens. 37, 1496–1507 (1999).
[CrossRef]

V. Cuomo, H. Kobayashi, V. Lanorte, A. M. Lubrano, N. Pergola, C. Pietrapertosa, F. Romano, C. Serio, “A cloud detection approach for IASI data,” in Technical Proceedings of the Tenth International ATOVS Study Conference (Meterological Research Centre, Melbourne, Australia, 1999), pp. 125–133.

Kondo, K.

H. Kobayashi, A. Shimota, C. Yoshigahara, I. Yoshida, Y. Uehara, K. Kondo, “Satellite-borne high-resolution FTIR for lower atmosphere sounding and its evaluation,” IEEE Trans. Geosci. Remote Sens. 37, 1496–1507 (1999).
[CrossRef]

Lanorte, V.

V. Cuomo, H. Kobayashi, V. Lanorte, A. M. Lubrano, N. Pergola, C. Pietrapertosa, F. Romano, C. Serio, “A cloud detection approach for IASI data,” in Technical Proceedings of the Tenth International ATOVS Study Conference (Meterological Research Centre, Melbourne, Australia, 1999), pp. 125–133.

Lubrano, A. M.

V. Cuomo, H. Kobayashi, V. Lanorte, A. M. Lubrano, N. Pergola, C. Pietrapertosa, F. Romano, C. Serio, “A cloud detection approach for IASI data,” in Technical Proceedings of the Tenth International ATOVS Study Conference (Meterological Research Centre, Melbourne, Australia, 1999), pp. 125–133.

C. Serio, U. Amato, I. De Feis, F. Esposito, A. M. Lubrano, G. Masiello, R. Rizzi, “Summary Report of the CHIARA project for IMG,” (Dipartimento di Ingegneria e Fisica dell’Ambiente, C. da Macchia Romana, 85100 Potenza, Italy, 1999).

Masiello, G.

C. Serio, U. Amato, I. De Feis, F. Esposito, A. M. Lubrano, G. Masiello, R. Rizzi, “Summary Report of the CHIARA project for IMG,” (Dipartimento di Ingegneria e Fisica dell’Ambiente, C. da Macchia Romana, 85100 Potenza, Italy, 1999).

Masuda, K.

K. Masuda, T. Takashima, Y. Takayama, “Emissivity of pure and sea waters for the model sea surface in the infrared window regions,” Remote Sens. Environ. 24, 313–329 (1988).
[CrossRef]

McKeown, W.

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnet, W. McKeown, “Observations of the infrared radiative properties of the ocean—implications for the measurements of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41–51 (1996).
[CrossRef]

Menzel, W. P.

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnet, W. McKeown, “Observations of the infrared radiative properties of the ocean—implications for the measurements of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41–51 (1996).
[CrossRef]

Minnet, P.

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnet, W. McKeown, “Observations of the infrared radiative properties of the ocean—implications for the measurements of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41–51 (1996).
[CrossRef]

Moncet, J.-L.

S. A. M. Clough, M. J. Iacono, J.-L. Moncet, “Line-by-line calculation of atmospheric fluxes and cooling rates. 1. Application to water vapor,” J. Geophys. Res. 97, 15,761–15,785 (1992).
[CrossRef]

Nalli, N. R.

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnet, W. McKeown, “Observations of the infrared radiative properties of the ocean—implications for the measurements of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41–51 (1996).
[CrossRef]

Norton, R. H.

R. Beer, R. H. Norton, “Analysis of spectra using correlation functions,” Appl. Opt. 7, 1255–1261 (1988).
[CrossRef]

Pagano, R. J.

H. H. Aumann, R. J. Pagano, “Atmospheric infrared sounder on the Earth Observing System,” Opt. Eng. 33, 776–784 (1994).
[CrossRef]

Pergola, N.

V. Cuomo, H. Kobayashi, V. Lanorte, A. M. Lubrano, N. Pergola, C. Pietrapertosa, F. Romano, C. Serio, “A cloud detection approach for IASI data,” in Technical Proceedings of the Tenth International ATOVS Study Conference (Meterological Research Centre, Melbourne, Australia, 1999), pp. 125–133.

Pietrapertosa, C.

V. Cuomo, H. Kobayashi, V. Lanorte, A. M. Lubrano, N. Pergola, C. Pietrapertosa, F. Romano, C. Serio, “A cloud detection approach for IASI data,” in Technical Proceedings of the Tenth International ATOVS Study Conference (Meterological Research Centre, Melbourne, Australia, 1999), pp. 125–133.

Revercomb, H. E.

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnet, W. McKeown, “Observations of the infrared radiative properties of the ocean—implications for the measurements of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41–51 (1996).
[CrossRef]

Rizzi, R.

C. Serio, U. Amato, I. De Feis, F. Esposito, A. M. Lubrano, G. Masiello, R. Rizzi, “Summary Report of the CHIARA project for IMG,” (Dipartimento di Ingegneria e Fisica dell’Ambiente, C. da Macchia Romana, 85100 Potenza, Italy, 1999).

Romano, F.

U. Amato, V. Cuomo, I. De Feis, F. Romano, C. Serio, H. Kobayashi, “Inverting for geophysical parameters from IMG radiances,” Trans. Geosci. Remote Sens. 37, 1620–1632 (1999).
[CrossRef]

V. Cuomo, H. Kobayashi, V. Lanorte, A. M. Lubrano, N. Pergola, C. Pietrapertosa, F. Romano, C. Serio, “A cloud detection approach for IASI data,” in Technical Proceedings of the Tenth International ATOVS Study Conference (Meterological Research Centre, Melbourne, Australia, 1999), pp. 125–133.

Serio, C.

U. Amato, V. Cuomo, I. De Feis, F. Romano, C. Serio, H. Kobayashi, “Inverting for geophysical parameters from IMG radiances,” Trans. Geosci. Remote Sens. 37, 1620–1632 (1999).
[CrossRef]

C. Serio, U. Amato, I. De Feis, F. Esposito, A. M. Lubrano, G. Masiello, R. Rizzi, “Summary Report of the CHIARA project for IMG,” (Dipartimento di Ingegneria e Fisica dell’Ambiente, C. da Macchia Romana, 85100 Potenza, Italy, 1999).

V. Cuomo, H. Kobayashi, V. Lanorte, A. M. Lubrano, N. Pergola, C. Pietrapertosa, F. Romano, C. Serio, “A cloud detection approach for IASI data,” in Technical Proceedings of the Tenth International ATOVS Study Conference (Meterological Research Centre, Melbourne, Australia, 1999), pp. 125–133.

Shimota, A.

H. Kobayashi, A. Shimota, C. Yoshigahara, I. Yoshida, Y. Uehara, K. Kondo, “Satellite-borne high-resolution FTIR for lower atmosphere sounding and its evaluation,” IEEE Trans. Geosci. Remote Sens. 37, 1496–1507 (1999).
[CrossRef]

Smith, W. L.

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnet, W. McKeown, “Observations of the infrared radiative properties of the ocean—implications for the measurements of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41–51 (1996).
[CrossRef]

Takashima, T.

K. Masuda, T. Takashima, Y. Takayama, “Emissivity of pure and sea waters for the model sea surface in the infrared window regions,” Remote Sens. Environ. 24, 313–329 (1988).
[CrossRef]

Takayama, Y.

K. Masuda, T. Takashima, Y. Takayama, “Emissivity of pure and sea waters for the model sea surface in the infrared window regions,” Remote Sens. Environ. 24, 313–329 (1988).
[CrossRef]

Uehara, Y.

H. Kobayashi, A. Shimota, C. Yoshigahara, I. Yoshida, Y. Uehara, K. Kondo, “Satellite-borne high-resolution FTIR for lower atmosphere sounding and its evaluation,” IEEE Trans. Geosci. Remote Sens. 37, 1496–1507 (1999).
[CrossRef]

Yoshida, I.

H. Kobayashi, A. Shimota, C. Yoshigahara, I. Yoshida, Y. Uehara, K. Kondo, “Satellite-borne high-resolution FTIR for lower atmosphere sounding and its evaluation,” IEEE Trans. Geosci. Remote Sens. 37, 1496–1507 (1999).
[CrossRef]

Yoshigahara, C.

H. Kobayashi, A. Shimota, C. Yoshigahara, I. Yoshida, Y. Uehara, K. Kondo, “Satellite-borne high-resolution FTIR for lower atmosphere sounding and its evaluation,” IEEE Trans. Geosci. Remote Sens. 37, 1496–1507 (1999).
[CrossRef]

Appl. Opt. (1)

R. Beer, R. H. Norton, “Analysis of spectra using correlation functions,” Appl. Opt. 7, 1255–1261 (1988).
[CrossRef]

Bull. Am. Meteorol. Soc. (1)

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnet, W. McKeown, “Observations of the infrared radiative properties of the ocean—implications for the measurements of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41–51 (1996).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (1)

H. Kobayashi, A. Shimota, C. Yoshigahara, I. Yoshida, Y. Uehara, K. Kondo, “Satellite-borne high-resolution FTIR for lower atmosphere sounding and its evaluation,” IEEE Trans. Geosci. Remote Sens. 37, 1496–1507 (1999).
[CrossRef]

J. Geophys. Res. (2)

S. A. M. Clough, M. J. Iacono, J.-L. Moncet, “Line-by-line calculation of atmospheric fluxes and cooling rates. 1. Application to water vapor,” J. Geophys. Res. 97, 15,761–15,785 (1992).
[CrossRef]

S. A. M. Clough, M. J. Iacono, “Line-by-line calculation of atmospheric fluxes and cooling rates. 2. Application to carbon dioxide, ozone, methane, nitrous oxide, and the halocarbons,” J. Geophys. Res. 100, 16,519–16,535 (1995).
[CrossRef]

Opt. Eng. (1)

H. H. Aumann, R. J. Pagano, “Atmospheric infrared sounder on the Earth Observing System,” Opt. Eng. 33, 776–784 (1994).
[CrossRef]

Remote Sens. Environ. (1)

K. Masuda, T. Takashima, Y. Takayama, “Emissivity of pure and sea waters for the model sea surface in the infrared window regions,” Remote Sens. Environ. 24, 313–329 (1988).
[CrossRef]

Trans. Geosci. Remote Sens. (1)

U. Amato, V. Cuomo, I. De Feis, F. Romano, C. Serio, H. Kobayashi, “Inverting for geophysical parameters from IMG radiances,” Trans. Geosci. Remote Sens. 37, 1620–1632 (1999).
[CrossRef]

Other (4)

C. Serio, U. Amato, I. De Feis, F. Esposito, A. M. Lubrano, G. Masiello, R. Rizzi, “Summary Report of the CHIARA project for IMG,” (Dipartimento di Ingegneria e Fisica dell’Ambiente, C. da Macchia Romana, 85100 Potenza, Italy, 1999).

IASI science plan, available from the European Organization for the Exploitation of Meteorological Satellites, Am Kavalleriesand 31, 64295 Darmstdat, Germany.

G. E. P. Box, G. M. Jenkins, Time Series Analysis (Holden-Day, San Francisco, Calif., 1976).

V. Cuomo, H. Kobayashi, V. Lanorte, A. M. Lubrano, N. Pergola, C. Pietrapertosa, F. Romano, C. Serio, “A cloud detection approach for IASI data,” in Technical Proceedings of the Tenth International ATOVS Study Conference (Meterological Research Centre, Melbourne, Australia, 1999), pp. 125–133.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Top, brightness temperature test spectra used in our analysis. Bottom, the difference between the two spectra.

Fig. 2
Fig. 2

Same as Fig. 1 but with the two spectra standardized [see Eq. (3) in the text]. This operation makes the two spectra nearly coincide. The two standardized spectra are shown by solid and dashed curves. Bottom, the difference between the two standardized spectra.

Fig. 3
Fig. 3

Top, two standardized spectra (solid and dashed curves), which differ only in spectral emissivity. The systematic pattern evident in the difference (bottom) shows that the standardization is fairly well able to pick up the different spectral behavior in the window region.

Fig. 4
Fig. 4

Assessing the effect of observational noise over the index hs. The histogram was obtained in simulation by random noise. A comparison with a Gaussian frequency function with the same mean and standard deviation as those of hs (solid curve) is also shown.

Fig. 5
Fig. 5

Autocorrelation functions of the two standardized spectra (solid and dashed curves) shown in Fig. 2 (one of the two spectra was corrupted by noise before the autocorrelation was formed). The dashed–dotted curve is the cross correlation between the two spectra.

Fig. 6
Fig. 6

IMG spectrum (solid curve) recorded in clear-sky conditions over sea surface and the related reference spectrum (dashed curve).

Fig. 7
Fig. 7

Top, same as Fig. 6 but with the two spectra standardized. (IMG, solid curve; reference spectrum, dashed curve). Bottom, difference between the two spectra.

Fig. 8
Fig. 8

IMG spectrum recorded over sea surface close to the island of Crete.

Fig. 9
Fig. 9

Top, standardized version of the IMG spectrum shown in Fig. 8 (solid curve) along with its reference spectrum (dashed curve). Bottom, the difference between the two spectra.

Tables (1)

Tables Icon

Table 1 IMG Spectra Used to Test the Cloud-Detection Methodology

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

Tσ=B-1Rσ,
f2x=af1x+b,
Hiσ=Tiσ-Tisi,
CjΔx=1NΔxi=1N-j fiΔxfiΔx+jΔx,
Cj=1Ni=1N-j fifi+j.
cj=1Ni=1N-jfi-ffi+j-f.
rj=cjc0.
r12j=c12jc10c201/2,
c12j=1Ni=1N-jf1i-f1f2i+j-f2.
r1j=r2j=r12j
hs=j=0NLr1j-r2jj=0NL r12j,
gi=fi+wi,
cgj=cf0+σw2 j=0cfj otherwise,
Sσ=Rσ+wσ.
|hs|>0.3.

Metrics