Abstract

In a preliminary experimental program, the measured bidirectional reflection properties between 1.0 and 3.5 µm from a grating spectrometer with a resolution of approximately 0.1 µm for ice crystal clouds generated in a cold chamber are compared with theoretical results computed from a line-by-line equivalent solar radiative transfer model. The theoretical calculations are based on the measured habits, concentrations, and sizes of the ice particles from replicas of the ice crystals that show a mean maximum size of approximately 7 µm. The experimental design was first tested with transmission measurements in a pure water-vapor environment that compare closely with theoretical expectations. Within the uncertainties and in consideration of the assumptions necessitated by the preliminary nature of this program, there is a close comparison between the experimental and theoretical results.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. N. Liou, Y. Takano, P. Yang, “Light scattering and radiative transfer in ice crystal clouds: applications to climate research,” in Light Scattering by Nonspherical Particles: Theory, Measurements, and Geophysical Applications, M. I. Mischenko, J. W. Hovenier, L. D. Travis eds. (Academic, New York, 2000), pp. 417–449.
    [CrossRef]
  2. R. Zander, “Spectral properties of ice clouds and hoarfrost,” J. Geophys. Res. 71, 375–378 (1966).
    [CrossRef]
  3. R. Zander, “Additional details on the near-infrared reflectivity of laboratory ice clouds,” J. Geophys. Res. 73, 6581–6584 (1968).
    [CrossRef]
  4. K. N. Liou, P. Yang, Y. Takano, K. Sassen, T. Charlock, W. Arnott, “On the radiative properties of contrail cirrus,” Geophys. Res. Lett. 8, 1161–1164 (1998).
    [CrossRef]
  5. Q. Fu, K. N. Liou, “On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres,” J. Atmos. Sci. 49, 2139–2156 (1992).
    [CrossRef]
  6. T. Takahashi, N. Fukuta, “Ice crystal replication with common plastic solutions,” J. Atmos. Oceanic Technol. 5, 129–135 (1988).
    [CrossRef]
  7. A. J. Heymsfield, M. Kajikawa, “An improved approach to calculating terminal velocities of plate like crystals and graupel,” J. Atmos. Sci. 44, 1088–1099 (1987).
    [CrossRef]
  8. W. P. Arnott, Y. Dong, J. Hallet, “Extinction efficiency in the infrared (2–18 µm) of laboratory ice clouds: observations of scattering minima in the Christiansen bands of ice,” Appl. Opt. 34, 541–551 (1995).
    [CrossRef] [PubMed]

1998 (1)

K. N. Liou, P. Yang, Y. Takano, K. Sassen, T. Charlock, W. Arnott, “On the radiative properties of contrail cirrus,” Geophys. Res. Lett. 8, 1161–1164 (1998).
[CrossRef]

1995 (1)

1992 (1)

Q. Fu, K. N. Liou, “On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres,” J. Atmos. Sci. 49, 2139–2156 (1992).
[CrossRef]

1988 (1)

T. Takahashi, N. Fukuta, “Ice crystal replication with common plastic solutions,” J. Atmos. Oceanic Technol. 5, 129–135 (1988).
[CrossRef]

1987 (1)

A. J. Heymsfield, M. Kajikawa, “An improved approach to calculating terminal velocities of plate like crystals and graupel,” J. Atmos. Sci. 44, 1088–1099 (1987).
[CrossRef]

1968 (1)

R. Zander, “Additional details on the near-infrared reflectivity of laboratory ice clouds,” J. Geophys. Res. 73, 6581–6584 (1968).
[CrossRef]

1966 (1)

R. Zander, “Spectral properties of ice clouds and hoarfrost,” J. Geophys. Res. 71, 375–378 (1966).
[CrossRef]

Arnott, W.

K. N. Liou, P. Yang, Y. Takano, K. Sassen, T. Charlock, W. Arnott, “On the radiative properties of contrail cirrus,” Geophys. Res. Lett. 8, 1161–1164 (1998).
[CrossRef]

Arnott, W. P.

Charlock, T.

K. N. Liou, P. Yang, Y. Takano, K. Sassen, T. Charlock, W. Arnott, “On the radiative properties of contrail cirrus,” Geophys. Res. Lett. 8, 1161–1164 (1998).
[CrossRef]

Dong, Y.

Fu, Q.

Q. Fu, K. N. Liou, “On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres,” J. Atmos. Sci. 49, 2139–2156 (1992).
[CrossRef]

Fukuta, N.

T. Takahashi, N. Fukuta, “Ice crystal replication with common plastic solutions,” J. Atmos. Oceanic Technol. 5, 129–135 (1988).
[CrossRef]

Hallet, J.

Heymsfield, A. J.

A. J. Heymsfield, M. Kajikawa, “An improved approach to calculating terminal velocities of plate like crystals and graupel,” J. Atmos. Sci. 44, 1088–1099 (1987).
[CrossRef]

Kajikawa, M.

A. J. Heymsfield, M. Kajikawa, “An improved approach to calculating terminal velocities of plate like crystals and graupel,” J. Atmos. Sci. 44, 1088–1099 (1987).
[CrossRef]

Liou, K. N.

K. N. Liou, P. Yang, Y. Takano, K. Sassen, T. Charlock, W. Arnott, “On the radiative properties of contrail cirrus,” Geophys. Res. Lett. 8, 1161–1164 (1998).
[CrossRef]

Q. Fu, K. N. Liou, “On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres,” J. Atmos. Sci. 49, 2139–2156 (1992).
[CrossRef]

K. N. Liou, Y. Takano, P. Yang, “Light scattering and radiative transfer in ice crystal clouds: applications to climate research,” in Light Scattering by Nonspherical Particles: Theory, Measurements, and Geophysical Applications, M. I. Mischenko, J. W. Hovenier, L. D. Travis eds. (Academic, New York, 2000), pp. 417–449.
[CrossRef]

Sassen, K.

K. N. Liou, P. Yang, Y. Takano, K. Sassen, T. Charlock, W. Arnott, “On the radiative properties of contrail cirrus,” Geophys. Res. Lett. 8, 1161–1164 (1998).
[CrossRef]

Takahashi, T.

T. Takahashi, N. Fukuta, “Ice crystal replication with common plastic solutions,” J. Atmos. Oceanic Technol. 5, 129–135 (1988).
[CrossRef]

Takano, Y.

K. N. Liou, P. Yang, Y. Takano, K. Sassen, T. Charlock, W. Arnott, “On the radiative properties of contrail cirrus,” Geophys. Res. Lett. 8, 1161–1164 (1998).
[CrossRef]

K. N. Liou, Y. Takano, P. Yang, “Light scattering and radiative transfer in ice crystal clouds: applications to climate research,” in Light Scattering by Nonspherical Particles: Theory, Measurements, and Geophysical Applications, M. I. Mischenko, J. W. Hovenier, L. D. Travis eds. (Academic, New York, 2000), pp. 417–449.
[CrossRef]

Yang, P.

K. N. Liou, P. Yang, Y. Takano, K. Sassen, T. Charlock, W. Arnott, “On the radiative properties of contrail cirrus,” Geophys. Res. Lett. 8, 1161–1164 (1998).
[CrossRef]

K. N. Liou, Y. Takano, P. Yang, “Light scattering and radiative transfer in ice crystal clouds: applications to climate research,” in Light Scattering by Nonspherical Particles: Theory, Measurements, and Geophysical Applications, M. I. Mischenko, J. W. Hovenier, L. D. Travis eds. (Academic, New York, 2000), pp. 417–449.
[CrossRef]

Zander, R.

R. Zander, “Additional details on the near-infrared reflectivity of laboratory ice clouds,” J. Geophys. Res. 73, 6581–6584 (1968).
[CrossRef]

R. Zander, “Spectral properties of ice clouds and hoarfrost,” J. Geophys. Res. 71, 375–378 (1966).
[CrossRef]

Appl. Opt. (1)

Geophys. Res. Lett. (1)

K. N. Liou, P. Yang, Y. Takano, K. Sassen, T. Charlock, W. Arnott, “On the radiative properties of contrail cirrus,” Geophys. Res. Lett. 8, 1161–1164 (1998).
[CrossRef]

J. Atmos. Oceanic Technol. (1)

T. Takahashi, N. Fukuta, “Ice crystal replication with common plastic solutions,” J. Atmos. Oceanic Technol. 5, 129–135 (1988).
[CrossRef]

J. Atmos. Sci. (2)

A. J. Heymsfield, M. Kajikawa, “An improved approach to calculating terminal velocities of plate like crystals and graupel,” J. Atmos. Sci. 44, 1088–1099 (1987).
[CrossRef]

Q. Fu, K. N. Liou, “On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres,” J. Atmos. Sci. 49, 2139–2156 (1992).
[CrossRef]

J. Geophys. Res. (2)

R. Zander, “Spectral properties of ice clouds and hoarfrost,” J. Geophys. Res. 71, 375–378 (1966).
[CrossRef]

R. Zander, “Additional details on the near-infrared reflectivity of laboratory ice clouds,” J. Geophys. Res. 73, 6581–6584 (1968).
[CrossRef]

Other (1)

K. N. Liou, Y. Takano, P. Yang, “Light scattering and radiative transfer in ice crystal clouds: applications to climate research,” in Light Scattering by Nonspherical Particles: Theory, Measurements, and Geophysical Applications, M. I. Mischenko, J. W. Hovenier, L. D. Travis eds. (Academic, New York, 2000), pp. 417–449.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup used to measure the transmission properties of water vapor and the reflection properties of ice clouds. The chamber is cooled when dry ice is placed directly on top of the stainless-steel inner chamber.

Fig. 2
Fig. 2

Experimentally measured and theoretically derived water-vapor absorption properties.

Fig. 3
Fig. 3

Sample ice crystal particles replicated immediately after the reflectance measurement along with the ice particle size distribution derived from replicas taken before (T = -41 °C) and after (T = -37 °C) the reflection measurement.

Fig. 4
Fig. 4

Experimentally measured spectral reflection for incident light at 0° and detection at 22° from the vertical, along with theoretical expectations based on the measured microphysical properties of the ice cloud at three different optical depths, are shown in the upper plot. The lower plot shows the typical variability of the ice cloud as measured by the extinction of a laser beam and by a monochromatic reflection measurement that produces an uncertainty in the spectral result as indicated by error bars in the upper plot.

Metrics