Abstract

A two-step physical algorithm that simultaneously retrieves geophysical parameters from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements was developed. The retrieved geophysical parameters include atmospheric temperature–humidity profile, surface skin temperature, and two surface emissivities within the shortwave (3–5-µm) and the longwave (8–14.5-µm) regions. The physical retrieval is accomplished in two steps: (i) The Tikhonov regularization method is employed to generate a regularization solution along with an optimum regularization parameter; (ii) the nonlinear Newtonian iteration algorithm is carried out with the regularization solution as a first-guess profile to obtain a final maximum probability solution for geophysical parameters. The algorithm was tested with both simulated and real MODIS Airborne Simulator (MAS) data. Sensitivity studies on simulated MAS data demonstrate that simultaneous retrievals of land and atmospheric parameters improve the accuracy of the retrieved geophysical parameters. Finally, analysis and accuracy of retrievals from real MAS data are discussed.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, H. Ostrow, “MODIS: advanced facility instrument for studies of the Earth as a system,” IEEE Trans. Geosci. Remote Sens. 27, 145–153 (1998).
    [CrossRef]
  2. M. D. King, W. P. Menzel, P. S. Grant, J. S. Myers, G. T. Arnold, S. E. Platnick, L. E. Gumley, S. C. Tsay, C. C. Moeller, M. Fitzgerald, K. S. Brown, F. G. Osterwisch, “Airborne scanning spectrometer for remote sensing of cloud, aerosol, water vapor, and surface properties,” J. Atmos. Ocean. Technol. 13, 777–794 (1996).
    [CrossRef]
  3. W. P. Menzel, L. E. Gumley, “MODIS atmospheric profile retrieval algorithm theoretical basis document,” (Earth Observing System Project Science Office, NASA Goddard Space Flight Center, Greenbelt, Md., 1998).
  4. S. A. Clough, M. J. Iacono, “Line-by-line calculations of atmospheric fluxes and cooling rates. 2. Applications to carbon dioxide, ozone, methane, nitrous oxide and the halocarbons,” J. Geophys. Res. 100, 16519–16535 (1995).
    [CrossRef]
  5. W. L. Smith, H. M. Woolf, A. J. Schriener, “Simultaneous retrieval of surface and atmospheric parameters: a physical and analytically direct approach,” in Advances in Remote Sensing Retrieval Method, A. Deepak, H. E. Flemming, M. T. Chahine, eds. (Deepak, Hampton, Va., 1985), pp. 221–232.
  6. W. L. Smith, H. M. Woolf, H. B. Howell, H.-L. Huang, H. E. Revercomb, “The simultaneous retrieval of atmospheric temperature and water vapor profiles—application to measurements with the high spectral resolution interferometer sounder (HIS),” in Advances in Remote Sensing Retrieval Methods, A. Deepak, H. E. Flemming, J. S. Theon, eds. (Deepak, Hampton, Va., 1989), pp. 189–202.
  7. W. L. Smith, H. E. Revercomb, H. B. Howell, H.-L. Huang, R. O. Knuteson, E. W. Koenig, D. D. LaPorte, S. Silverman, L. A. Sromovsky, H. M. Woolf, “GHIS—the GOES high-resolution interferometer sounder,” J. Appl. Meteorol. 29, 1189–1204 (1990).
    [CrossRef]
  8. W. L. Smith, H. M. Woolf, H. E. Revercomb, “Linear simultaneous solution for temperature and observing constituent profiles from radiance spectra,” Appl. Opt. 30, 1117–1123 (1991).
    [CrossRef] [PubMed]
  9. W. L. Smith, H. M. Woolf, C. M. Hayden, A. J. Schreiner, “The simultaneous retrieval export package,” presented at the Second International TOVS Study Conference, Igls, Austria, 18–22 February 1985 (Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wis., 1985), pp. 224–253.
  10. H.-L. Huang, “An analysis of the characteristics of the atmospheric profiles obtained with the High-Resolution Interferometer Sounder (HIS),” Ph.D. dissertation (University of Wisconsin—Madison, Madison, Wis., 1989).
  11. C. H. Hayden, “GOES-VAS simultaneous temperature-moisture retrieval algorithm,” J. Appl. Meteorol. 27, 705–733 (1988).
    [CrossRef]
  12. T. Schmidt, National Oceanic and Atmospheric Administration/National Environmental Satellite, Data, and Information Service, Office of Research and Applications, Advanced Satellite Products Team, Madison, Wis. 53706 (personal communication, 2000).
  13. Y. Plokhenko, W. P. Menzel, “The effects of surface reflection on estimating the vertical temperature–humidity distribution from spectral infrared measurements,” J. Appl. Meteorol. 39, 3–14 (2000).
    [CrossRef]
  14. Z. M. Wan, J. Dozier, “A generalized split-window algorithm for retrieving land-surface temperature from space,” IEEE Trans. Geosci. Remote Sens. 34, 892–905 (1996).
    [CrossRef]
  15. Z. M. Wan, Z. L. Li, “A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data,” IEEE Trans. Geosci. Remote Sens. 35, 980–996 (1997).
    [CrossRef]
  16. B. Huang, “New approach to simultaneous retrieval of atmospheric profiles from radiance spectra,” Ph.D. dissertation (University of Wisconsin—Madison, Madison, Wis., 1998).
  17. X. L. Ma, T. J. Schmit, W. L. Smith, “A non-linear physical retrieval algorithm—its application to the GOES-8/9 sounder,” J. Appl. Meteorol. 38, 501–513 (1999).
    [CrossRef]
  18. J. Li, H. L. Huang, “Retrieval of atmospheric profiles from satellite sounder measurements by use of the discrepancy principle,” Appl. Opt. 38, 916–923 (1999).
    [CrossRef]
  19. J. R. Eyre, “Inversion of cloudy satellite sounding radiances by nonlinear optimal estimation. I. Theory and simulation for TOVS,” Q. J. R. Meteorol. Soc. 115, 1001–1026 (1989).
    [CrossRef]
  20. J. R. Eyre, “Inversion of cloudy satellite sounding radiances by nonlinear optimal estimation. II. Application to TOVS data,” Q. J. R. Meteorol. Soc. 115, 1027–1037 (1989).
    [CrossRef]
  21. W. L. Smith, H. L. Huang, M. S. Whipple, S. P. Ho, “UW-CIMSS physical retrieval system science document for AIRS/AMSU/MHS,” (Jet Propulsion Laboratory, NASA, Pasedena, Calif., 1996).
  22. O. B. Toon, R. C. Miake-Lye, “Subsonic aircraft: contrail and cloud effects special study (SUCCESS),” Geophys. Res. Lett. 25, 1109–1112 (1998).
    [CrossRef]
  23. W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnett, W. McKeown, “Observations of the infrared radiative properties of the ocean-implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41–51 (1996).
    [CrossRef]
  24. W. C. Snyder, Z. M. Wan, Y. L. Zhang, Y. Z. Feng, “Thermal infrared (3–14 µm) bidirectional reflectance measurements of sands and soils,” Remote Sens. Environ. 60, 101–109 (1997).
    [CrossRef]
  25. J. Li, “Temperature and water vapor weighting functions from radiative transfer equation with surface emissivity and solar reflectivity,” Adv. Atmos. Sci. 11, 421–426 (1994).
    [CrossRef]
  26. The 40 levels for the MAS aircraft pressure coordinates are as follows: 50, 60, 70, 75, 80, 85, 90, 100, 125, 150, 175, 200, 250, 300, 350, 400, 450, 500, 550, 600, 620, 640, 660, 680, 700, 720, 740, 760, 780, 800, 820, 840, 860, 880, 900, 920, 940, 960, 980, and 1000 hPa.
  27. W. L. Smith, H. M. Woolf, “The use of eigenvectors of statistical covariance matrices for interpreting satellite sounding radiometer observations,” J. Atmos. Sci. 33, 1127–1140 (1976).
    [CrossRef]
  28. A. N. Tikhonov, “Solution of incorrectly formulated problems and the regularization method,” Sov. Math. Dokl. 4, 1035–1038 (1963).
  29. A. N. Tikhonov, “Regularization of incorrectly posed problems,” Sov. Math. Dokl. 4, 1624–1627 (1963).
  30. A. N. Tikhonov, V. Y. Arsenin, Solutions of Ill-Posed Problems (Winston, Washington, D.C., 1977).
  31. A. N. Tikhonov, A. V. Goncharsky, V. V. Stepanov, A. G. Yagola, Numerical Methods for the Solution of Ill-Posed Problems (Kluwer, Dordrecht, the Netherlands, 1995).
    [CrossRef]
  32. G. Bachus, F. Gillbert, “Uniqueness in the inversion of inaccurate gross earth data,” Philos. Trans. R. Soc. London Ser. A 266, 123–192 (1970).
    [CrossRef]
  33. S. Twomey, “On the numerical solution of Fredholm integral equations of the first kind by the inversion of the linear system produced by quadrature,” J. Assoc. Comput. Math. 10, 97–101 (1963).
    [CrossRef]
  34. C. D. Rodgers, “Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation,” Rev. Geophys. Space Phys. 14, 609–624 (1976).
    [CrossRef]
  35. P. C. Hansen, “Rank-deficient and discrete ill-posed problems,” Ph.D. dissertation (Technical University of Denmark, Lyngby, Denmark, 1996).
  36. G. Wahba, “Ill-posed problems: numerical and statistical methods for mildly, moderately and severely ill-posed problems with noise data,” Tech. Rep.595, (Statistics Department, University of Wisconsin-Madison, Madison, Wis., 1980).
  37. G. Wahba, Spline Methods for Observational Data, Vol. 59 of CBMS-NSF Regional Conference Series in Applied Mathematics (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1990).
  38. J. R. Eyre, “A fast radiative transfer model for satellite sounding systems,” Tech. Memo176, (European Centre for Medium-Range Weather Forecast, Reading, UK, 1991).
  39. S. Hannon, L. L. Strow, W. W. McMillan, “Atmospheric infrared fast transmittance model: a comparison of two approaches,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research II, P. B. Hays, J. Wang, eds., Proc. SPIE2830, 94–105 (1996).
    [CrossRef]
  40. H. M. Woolf, P. V. Delst, W. J. Zhang, “NOAA-15 HIRS/3 and AMSU transmittance model validation,” in Proceedings of the Tenth International TOVS Study (Bureau of Metrology Resource Center, Melbourne, 1999), pp. 564–573.
  41. J. Wang, G. P. Anderson, H. E. Revercomb, R. O. Knuteson, “Validation of FASCODE3 and MODTRAN3: comparison of model calculations with ground-based and airborne interferometer observations under clear-sky conditions,” Appl. Opt. 35, 6028–6040 (1996).
    [CrossRef] [PubMed]
  42. J. W. Salisbury, D. M. D’Aria, “Emissivity of terrestrial materials in the 8–14 µm atmospheric window,” Remote Sens. Environ. 42, 83–106 (1992).
    [CrossRef]
  43. J. W. Salisbury, D. M. D’Aria, “Emissivity of terrestrial materials in the 3–5 µm atmospheric window,” Remote Sens. Environ. 47, 345–361 (1994).
    [CrossRef]
  44. W. L. Smith, H. M. Woolf, P. G. Abel, C. M. Hayden, M. Chalfant, N. Grody, “NIMBUS-5 sounder data processing system. Part 1. Measurement characteristics and data reduction procedures,” NOAA Tech. Memo NESS57 (National Oceanic and Atmospheric Administration, Washington, D.C., 1974), pp. 36–41.
  45. C. M. Hayden, T. J. Schmit, “Initial evaluation of the GOES-8 sounder,” presented at the Ninth Symposium on Meteorological Observations and Instrumentation Charlotte, N.C., 27–31 March 1995 (American Meteorological Society, Boston, Mass., 1995), pp. 385–390.
  46. C. J. Tucker, “Red and photographic infrared linear combinations for monitoring vegetation,” Remote Sens. Environ. 8, 127–150 (1979).
    [CrossRef]
  47. C. O. Justice, J. R. G. Townshend, B. N. Holben, C. J. Tucker, “Analysis of the phenology of global vegetation using meteorological satellite data,” Int. J. Remote Sens. 6, 1271–1318 (1985).
    [CrossRef]
  48. F. J. Schmidlin, “WMO international radiosonde comparison, phase II,” , in Instruments and Observing Methods, (World Meteorological Organisation, Geneva, Switzerland, 1985), pp. 1–113; available from WMO Secretariat, 41 Avenue Giuseppe Motta, Case Postale 2300, CH-1211 Geneva 2, Switzerland.
  49. C. G. Wade, “An evaluation of problems affecting measurement of low relative humidity on the United States radiosonde,” J. Atmos. Ocean. Technol. 11, 687–700 (1994).
    [CrossRef]
  50. R. W. Pratt, “Review of radiosonde humidity and temperature errors,” J. Atmos. Ocean. Technol. 2, 404–407 (1985).
    [CrossRef]

2000 (1)

Y. Plokhenko, W. P. Menzel, “The effects of surface reflection on estimating the vertical temperature–humidity distribution from spectral infrared measurements,” J. Appl. Meteorol. 39, 3–14 (2000).
[CrossRef]

1999 (2)

X. L. Ma, T. J. Schmit, W. L. Smith, “A non-linear physical retrieval algorithm—its application to the GOES-8/9 sounder,” J. Appl. Meteorol. 38, 501–513 (1999).
[CrossRef]

J. Li, H. L. Huang, “Retrieval of atmospheric profiles from satellite sounder measurements by use of the discrepancy principle,” Appl. Opt. 38, 916–923 (1999).
[CrossRef]

1998 (2)

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, H. Ostrow, “MODIS: advanced facility instrument for studies of the Earth as a system,” IEEE Trans. Geosci. Remote Sens. 27, 145–153 (1998).
[CrossRef]

O. B. Toon, R. C. Miake-Lye, “Subsonic aircraft: contrail and cloud effects special study (SUCCESS),” Geophys. Res. Lett. 25, 1109–1112 (1998).
[CrossRef]

1997 (2)

Z. M. Wan, Z. L. Li, “A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data,” IEEE Trans. Geosci. Remote Sens. 35, 980–996 (1997).
[CrossRef]

W. C. Snyder, Z. M. Wan, Y. L. Zhang, Y. Z. Feng, “Thermal infrared (3–14 µm) bidirectional reflectance measurements of sands and soils,” Remote Sens. Environ. 60, 101–109 (1997).
[CrossRef]

1996 (4)

M. D. King, W. P. Menzel, P. S. Grant, J. S. Myers, G. T. Arnold, S. E. Platnick, L. E. Gumley, S. C. Tsay, C. C. Moeller, M. Fitzgerald, K. S. Brown, F. G. Osterwisch, “Airborne scanning spectrometer for remote sensing of cloud, aerosol, water vapor, and surface properties,” J. Atmos. Ocean. Technol. 13, 777–794 (1996).
[CrossRef]

Z. M. Wan, J. Dozier, “A generalized split-window algorithm for retrieving land-surface temperature from space,” IEEE Trans. Geosci. Remote Sens. 34, 892–905 (1996).
[CrossRef]

J. Wang, G. P. Anderson, H. E. Revercomb, R. O. Knuteson, “Validation of FASCODE3 and MODTRAN3: comparison of model calculations with ground-based and airborne interferometer observations under clear-sky conditions,” Appl. Opt. 35, 6028–6040 (1996).
[CrossRef] [PubMed]

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnett, W. McKeown, “Observations of the infrared radiative properties of the ocean-implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41–51 (1996).
[CrossRef]

1995 (1)

S. A. Clough, M. J. Iacono, “Line-by-line calculations of atmospheric fluxes and cooling rates. 2. Applications to carbon dioxide, ozone, methane, nitrous oxide and the halocarbons,” J. Geophys. Res. 100, 16519–16535 (1995).
[CrossRef]

1994 (3)

J. Li, “Temperature and water vapor weighting functions from radiative transfer equation with surface emissivity and solar reflectivity,” Adv. Atmos. Sci. 11, 421–426 (1994).
[CrossRef]

J. W. Salisbury, D. M. D’Aria, “Emissivity of terrestrial materials in the 3–5 µm atmospheric window,” Remote Sens. Environ. 47, 345–361 (1994).
[CrossRef]

C. G. Wade, “An evaluation of problems affecting measurement of low relative humidity on the United States radiosonde,” J. Atmos. Ocean. Technol. 11, 687–700 (1994).
[CrossRef]

1992 (1)

J. W. Salisbury, D. M. D’Aria, “Emissivity of terrestrial materials in the 8–14 µm atmospheric window,” Remote Sens. Environ. 42, 83–106 (1992).
[CrossRef]

1991 (1)

1990 (1)

W. L. Smith, H. E. Revercomb, H. B. Howell, H.-L. Huang, R. O. Knuteson, E. W. Koenig, D. D. LaPorte, S. Silverman, L. A. Sromovsky, H. M. Woolf, “GHIS—the GOES high-resolution interferometer sounder,” J. Appl. Meteorol. 29, 1189–1204 (1990).
[CrossRef]

1989 (2)

J. R. Eyre, “Inversion of cloudy satellite sounding radiances by nonlinear optimal estimation. I. Theory and simulation for TOVS,” Q. J. R. Meteorol. Soc. 115, 1001–1026 (1989).
[CrossRef]

J. R. Eyre, “Inversion of cloudy satellite sounding radiances by nonlinear optimal estimation. II. Application to TOVS data,” Q. J. R. Meteorol. Soc. 115, 1027–1037 (1989).
[CrossRef]

1988 (1)

C. H. Hayden, “GOES-VAS simultaneous temperature-moisture retrieval algorithm,” J. Appl. Meteorol. 27, 705–733 (1988).
[CrossRef]

1985 (2)

R. W. Pratt, “Review of radiosonde humidity and temperature errors,” J. Atmos. Ocean. Technol. 2, 404–407 (1985).
[CrossRef]

C. O. Justice, J. R. G. Townshend, B. N. Holben, C. J. Tucker, “Analysis of the phenology of global vegetation using meteorological satellite data,” Int. J. Remote Sens. 6, 1271–1318 (1985).
[CrossRef]

1979 (1)

C. J. Tucker, “Red and photographic infrared linear combinations for monitoring vegetation,” Remote Sens. Environ. 8, 127–150 (1979).
[CrossRef]

1976 (2)

C. D. Rodgers, “Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation,” Rev. Geophys. Space Phys. 14, 609–624 (1976).
[CrossRef]

W. L. Smith, H. M. Woolf, “The use of eigenvectors of statistical covariance matrices for interpreting satellite sounding radiometer observations,” J. Atmos. Sci. 33, 1127–1140 (1976).
[CrossRef]

1970 (1)

G. Bachus, F. Gillbert, “Uniqueness in the inversion of inaccurate gross earth data,” Philos. Trans. R. Soc. London Ser. A 266, 123–192 (1970).
[CrossRef]

1963 (3)

S. Twomey, “On the numerical solution of Fredholm integral equations of the first kind by the inversion of the linear system produced by quadrature,” J. Assoc. Comput. Math. 10, 97–101 (1963).
[CrossRef]

A. N. Tikhonov, “Solution of incorrectly formulated problems and the regularization method,” Sov. Math. Dokl. 4, 1035–1038 (1963).

A. N. Tikhonov, “Regularization of incorrectly posed problems,” Sov. Math. Dokl. 4, 1624–1627 (1963).

Abel, P. G.

W. L. Smith, H. M. Woolf, P. G. Abel, C. M. Hayden, M. Chalfant, N. Grody, “NIMBUS-5 sounder data processing system. Part 1. Measurement characteristics and data reduction procedures,” NOAA Tech. Memo NESS57 (National Oceanic and Atmospheric Administration, Washington, D.C., 1974), pp. 36–41.

Anderson, G. P.

Arnold, G. T.

M. D. King, W. P. Menzel, P. S. Grant, J. S. Myers, G. T. Arnold, S. E. Platnick, L. E. Gumley, S. C. Tsay, C. C. Moeller, M. Fitzgerald, K. S. Brown, F. G. Osterwisch, “Airborne scanning spectrometer for remote sensing of cloud, aerosol, water vapor, and surface properties,” J. Atmos. Ocean. Technol. 13, 777–794 (1996).
[CrossRef]

Arsenin, V. Y.

A. N. Tikhonov, V. Y. Arsenin, Solutions of Ill-Posed Problems (Winston, Washington, D.C., 1977).

Bachus, G.

G. Bachus, F. Gillbert, “Uniqueness in the inversion of inaccurate gross earth data,” Philos. Trans. R. Soc. London Ser. A 266, 123–192 (1970).
[CrossRef]

Barnes, W. L.

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, H. Ostrow, “MODIS: advanced facility instrument for studies of the Earth as a system,” IEEE Trans. Geosci. Remote Sens. 27, 145–153 (1998).
[CrossRef]

Brown, J.

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnett, W. McKeown, “Observations of the infrared radiative properties of the ocean-implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41–51 (1996).
[CrossRef]

Brown, K. S.

M. D. King, W. P. Menzel, P. S. Grant, J. S. Myers, G. T. Arnold, S. E. Platnick, L. E. Gumley, S. C. Tsay, C. C. Moeller, M. Fitzgerald, K. S. Brown, F. G. Osterwisch, “Airborne scanning spectrometer for remote sensing of cloud, aerosol, water vapor, and surface properties,” J. Atmos. Ocean. Technol. 13, 777–794 (1996).
[CrossRef]

Brown, O.

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnett, W. McKeown, “Observations of the infrared radiative properties of the ocean-implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41–51 (1996).
[CrossRef]

Chalfant, M.

W. L. Smith, H. M. Woolf, P. G. Abel, C. M. Hayden, M. Chalfant, N. Grody, “NIMBUS-5 sounder data processing system. Part 1. Measurement characteristics and data reduction procedures,” NOAA Tech. Memo NESS57 (National Oceanic and Atmospheric Administration, Washington, D.C., 1974), pp. 36–41.

Clough, S. A.

S. A. Clough, M. J. Iacono, “Line-by-line calculations of atmospheric fluxes and cooling rates. 2. Applications to carbon dioxide, ozone, methane, nitrous oxide and the halocarbons,” J. Geophys. Res. 100, 16519–16535 (1995).
[CrossRef]

D’Aria, D. M.

J. W. Salisbury, D. M. D’Aria, “Emissivity of terrestrial materials in the 3–5 µm atmospheric window,” Remote Sens. Environ. 47, 345–361 (1994).
[CrossRef]

J. W. Salisbury, D. M. D’Aria, “Emissivity of terrestrial materials in the 8–14 µm atmospheric window,” Remote Sens. Environ. 42, 83–106 (1992).
[CrossRef]

Delst, P. V.

H. M. Woolf, P. V. Delst, W. J. Zhang, “NOAA-15 HIRS/3 and AMSU transmittance model validation,” in Proceedings of the Tenth International TOVS Study (Bureau of Metrology Resource Center, Melbourne, 1999), pp. 564–573.

Dozier, J.

Z. M. Wan, J. Dozier, “A generalized split-window algorithm for retrieving land-surface temperature from space,” IEEE Trans. Geosci. Remote Sens. 34, 892–905 (1996).
[CrossRef]

Eyre, J. R.

J. R. Eyre, “Inversion of cloudy satellite sounding radiances by nonlinear optimal estimation. I. Theory and simulation for TOVS,” Q. J. R. Meteorol. Soc. 115, 1001–1026 (1989).
[CrossRef]

J. R. Eyre, “Inversion of cloudy satellite sounding radiances by nonlinear optimal estimation. II. Application to TOVS data,” Q. J. R. Meteorol. Soc. 115, 1027–1037 (1989).
[CrossRef]

J. R. Eyre, “A fast radiative transfer model for satellite sounding systems,” Tech. Memo176, (European Centre for Medium-Range Weather Forecast, Reading, UK, 1991).

Feltz, W.

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnett, W. McKeown, “Observations of the infrared radiative properties of the ocean-implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41–51 (1996).
[CrossRef]

Feng, Y. Z.

W. C. Snyder, Z. M. Wan, Y. L. Zhang, Y. Z. Feng, “Thermal infrared (3–14 µm) bidirectional reflectance measurements of sands and soils,” Remote Sens. Environ. 60, 101–109 (1997).
[CrossRef]

Fitzgerald, M.

M. D. King, W. P. Menzel, P. S. Grant, J. S. Myers, G. T. Arnold, S. E. Platnick, L. E. Gumley, S. C. Tsay, C. C. Moeller, M. Fitzgerald, K. S. Brown, F. G. Osterwisch, “Airborne scanning spectrometer for remote sensing of cloud, aerosol, water vapor, and surface properties,” J. Atmos. Ocean. Technol. 13, 777–794 (1996).
[CrossRef]

Gillbert, F.

G. Bachus, F. Gillbert, “Uniqueness in the inversion of inaccurate gross earth data,” Philos. Trans. R. Soc. London Ser. A 266, 123–192 (1970).
[CrossRef]

Goncharsky, A. V.

A. N. Tikhonov, A. V. Goncharsky, V. V. Stepanov, A. G. Yagola, Numerical Methods for the Solution of Ill-Posed Problems (Kluwer, Dordrecht, the Netherlands, 1995).
[CrossRef]

Grant, P. S.

M. D. King, W. P. Menzel, P. S. Grant, J. S. Myers, G. T. Arnold, S. E. Platnick, L. E. Gumley, S. C. Tsay, C. C. Moeller, M. Fitzgerald, K. S. Brown, F. G. Osterwisch, “Airborne scanning spectrometer for remote sensing of cloud, aerosol, water vapor, and surface properties,” J. Atmos. Ocean. Technol. 13, 777–794 (1996).
[CrossRef]

Grody, N.

W. L. Smith, H. M. Woolf, P. G. Abel, C. M. Hayden, M. Chalfant, N. Grody, “NIMBUS-5 sounder data processing system. Part 1. Measurement characteristics and data reduction procedures,” NOAA Tech. Memo NESS57 (National Oceanic and Atmospheric Administration, Washington, D.C., 1974), pp. 36–41.

Gumley, L. E.

M. D. King, W. P. Menzel, P. S. Grant, J. S. Myers, G. T. Arnold, S. E. Platnick, L. E. Gumley, S. C. Tsay, C. C. Moeller, M. Fitzgerald, K. S. Brown, F. G. Osterwisch, “Airborne scanning spectrometer for remote sensing of cloud, aerosol, water vapor, and surface properties,” J. Atmos. Ocean. Technol. 13, 777–794 (1996).
[CrossRef]

W. P. Menzel, L. E. Gumley, “MODIS atmospheric profile retrieval algorithm theoretical basis document,” (Earth Observing System Project Science Office, NASA Goddard Space Flight Center, Greenbelt, Md., 1998).

Hannon, S.

S. Hannon, L. L. Strow, W. W. McMillan, “Atmospheric infrared fast transmittance model: a comparison of two approaches,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research II, P. B. Hays, J. Wang, eds., Proc. SPIE2830, 94–105 (1996).
[CrossRef]

Hansen, P. C.

P. C. Hansen, “Rank-deficient and discrete ill-posed problems,” Ph.D. dissertation (Technical University of Denmark, Lyngby, Denmark, 1996).

Hayden, C. H.

C. H. Hayden, “GOES-VAS simultaneous temperature-moisture retrieval algorithm,” J. Appl. Meteorol. 27, 705–733 (1988).
[CrossRef]

Hayden, C. M.

W. L. Smith, H. M. Woolf, C. M. Hayden, A. J. Schreiner, “The simultaneous retrieval export package,” presented at the Second International TOVS Study Conference, Igls, Austria, 18–22 February 1985 (Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wis., 1985), pp. 224–253.

C. M. Hayden, T. J. Schmit, “Initial evaluation of the GOES-8 sounder,” presented at the Ninth Symposium on Meteorological Observations and Instrumentation Charlotte, N.C., 27–31 March 1995 (American Meteorological Society, Boston, Mass., 1995), pp. 385–390.

W. L. Smith, H. M. Woolf, P. G. Abel, C. M. Hayden, M. Chalfant, N. Grody, “NIMBUS-5 sounder data processing system. Part 1. Measurement characteristics and data reduction procedures,” NOAA Tech. Memo NESS57 (National Oceanic and Atmospheric Administration, Washington, D.C., 1974), pp. 36–41.

Ho, S. P.

W. L. Smith, H. L. Huang, M. S. Whipple, S. P. Ho, “UW-CIMSS physical retrieval system science document for AIRS/AMSU/MHS,” (Jet Propulsion Laboratory, NASA, Pasedena, Calif., 1996).

Holben, B. N.

C. O. Justice, J. R. G. Townshend, B. N. Holben, C. J. Tucker, “Analysis of the phenology of global vegetation using meteorological satellite data,” Int. J. Remote Sens. 6, 1271–1318 (1985).
[CrossRef]

Howell, H. B.

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnett, W. McKeown, “Observations of the infrared radiative properties of the ocean-implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41–51 (1996).
[CrossRef]

W. L. Smith, H. E. Revercomb, H. B. Howell, H.-L. Huang, R. O. Knuteson, E. W. Koenig, D. D. LaPorte, S. Silverman, L. A. Sromovsky, H. M. Woolf, “GHIS—the GOES high-resolution interferometer sounder,” J. Appl. Meteorol. 29, 1189–1204 (1990).
[CrossRef]

W. L. Smith, H. M. Woolf, H. B. Howell, H.-L. Huang, H. E. Revercomb, “The simultaneous retrieval of atmospheric temperature and water vapor profiles—application to measurements with the high spectral resolution interferometer sounder (HIS),” in Advances in Remote Sensing Retrieval Methods, A. Deepak, H. E. Flemming, J. S. Theon, eds. (Deepak, Hampton, Va., 1989), pp. 189–202.

Huang, B.

B. Huang, “New approach to simultaneous retrieval of atmospheric profiles from radiance spectra,” Ph.D. dissertation (University of Wisconsin—Madison, Madison, Wis., 1998).

Huang, H. L.

J. Li, H. L. Huang, “Retrieval of atmospheric profiles from satellite sounder measurements by use of the discrepancy principle,” Appl. Opt. 38, 916–923 (1999).
[CrossRef]

W. L. Smith, H. L. Huang, M. S. Whipple, S. P. Ho, “UW-CIMSS physical retrieval system science document for AIRS/AMSU/MHS,” (Jet Propulsion Laboratory, NASA, Pasedena, Calif., 1996).

Huang, H.-L.

W. L. Smith, H. E. Revercomb, H. B. Howell, H.-L. Huang, R. O. Knuteson, E. W. Koenig, D. D. LaPorte, S. Silverman, L. A. Sromovsky, H. M. Woolf, “GHIS—the GOES high-resolution interferometer sounder,” J. Appl. Meteorol. 29, 1189–1204 (1990).
[CrossRef]

W. L. Smith, H. M. Woolf, H. B. Howell, H.-L. Huang, H. E. Revercomb, “The simultaneous retrieval of atmospheric temperature and water vapor profiles—application to measurements with the high spectral resolution interferometer sounder (HIS),” in Advances in Remote Sensing Retrieval Methods, A. Deepak, H. E. Flemming, J. S. Theon, eds. (Deepak, Hampton, Va., 1989), pp. 189–202.

H.-L. Huang, “An analysis of the characteristics of the atmospheric profiles obtained with the High-Resolution Interferometer Sounder (HIS),” Ph.D. dissertation (University of Wisconsin—Madison, Madison, Wis., 1989).

Iacono, M. J.

S. A. Clough, M. J. Iacono, “Line-by-line calculations of atmospheric fluxes and cooling rates. 2. Applications to carbon dioxide, ozone, methane, nitrous oxide and the halocarbons,” J. Geophys. Res. 100, 16519–16535 (1995).
[CrossRef]

Justice, C. O.

C. O. Justice, J. R. G. Townshend, B. N. Holben, C. J. Tucker, “Analysis of the phenology of global vegetation using meteorological satellite data,” Int. J. Remote Sens. 6, 1271–1318 (1985).
[CrossRef]

King, M. D.

M. D. King, W. P. Menzel, P. S. Grant, J. S. Myers, G. T. Arnold, S. E. Platnick, L. E. Gumley, S. C. Tsay, C. C. Moeller, M. Fitzgerald, K. S. Brown, F. G. Osterwisch, “Airborne scanning spectrometer for remote sensing of cloud, aerosol, water vapor, and surface properties,” J. Atmos. Ocean. Technol. 13, 777–794 (1996).
[CrossRef]

Knuteson, R. O.

J. Wang, G. P. Anderson, H. E. Revercomb, R. O. Knuteson, “Validation of FASCODE3 and MODTRAN3: comparison of model calculations with ground-based and airborne interferometer observations under clear-sky conditions,” Appl. Opt. 35, 6028–6040 (1996).
[CrossRef] [PubMed]

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnett, W. McKeown, “Observations of the infrared radiative properties of the ocean-implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41–51 (1996).
[CrossRef]

W. L. Smith, H. E. Revercomb, H. B. Howell, H.-L. Huang, R. O. Knuteson, E. W. Koenig, D. D. LaPorte, S. Silverman, L. A. Sromovsky, H. M. Woolf, “GHIS—the GOES high-resolution interferometer sounder,” J. Appl. Meteorol. 29, 1189–1204 (1990).
[CrossRef]

Koenig, E. W.

W. L. Smith, H. E. Revercomb, H. B. Howell, H.-L. Huang, R. O. Knuteson, E. W. Koenig, D. D. LaPorte, S. Silverman, L. A. Sromovsky, H. M. Woolf, “GHIS—the GOES high-resolution interferometer sounder,” J. Appl. Meteorol. 29, 1189–1204 (1990).
[CrossRef]

LaPorte, D. D.

W. L. Smith, H. E. Revercomb, H. B. Howell, H.-L. Huang, R. O. Knuteson, E. W. Koenig, D. D. LaPorte, S. Silverman, L. A. Sromovsky, H. M. Woolf, “GHIS—the GOES high-resolution interferometer sounder,” J. Appl. Meteorol. 29, 1189–1204 (1990).
[CrossRef]

Li, J.

J. Li, H. L. Huang, “Retrieval of atmospheric profiles from satellite sounder measurements by use of the discrepancy principle,” Appl. Opt. 38, 916–923 (1999).
[CrossRef]

J. Li, “Temperature and water vapor weighting functions from radiative transfer equation with surface emissivity and solar reflectivity,” Adv. Atmos. Sci. 11, 421–426 (1994).
[CrossRef]

Li, Z. L.

Z. M. Wan, Z. L. Li, “A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data,” IEEE Trans. Geosci. Remote Sens. 35, 980–996 (1997).
[CrossRef]

Ma, X. L.

X. L. Ma, T. J. Schmit, W. L. Smith, “A non-linear physical retrieval algorithm—its application to the GOES-8/9 sounder,” J. Appl. Meteorol. 38, 501–513 (1999).
[CrossRef]

Maymon, P. W.

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, H. Ostrow, “MODIS: advanced facility instrument for studies of the Earth as a system,” IEEE Trans. Geosci. Remote Sens. 27, 145–153 (1998).
[CrossRef]

McKeown, W.

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnett, W. McKeown, “Observations of the infrared radiative properties of the ocean-implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41–51 (1996).
[CrossRef]

McMillan, W. W.

S. Hannon, L. L. Strow, W. W. McMillan, “Atmospheric infrared fast transmittance model: a comparison of two approaches,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research II, P. B. Hays, J. Wang, eds., Proc. SPIE2830, 94–105 (1996).
[CrossRef]

Menzel, W. P.

Y. Plokhenko, W. P. Menzel, “The effects of surface reflection on estimating the vertical temperature–humidity distribution from spectral infrared measurements,” J. Appl. Meteorol. 39, 3–14 (2000).
[CrossRef]

M. D. King, W. P. Menzel, P. S. Grant, J. S. Myers, G. T. Arnold, S. E. Platnick, L. E. Gumley, S. C. Tsay, C. C. Moeller, M. Fitzgerald, K. S. Brown, F. G. Osterwisch, “Airborne scanning spectrometer for remote sensing of cloud, aerosol, water vapor, and surface properties,” J. Atmos. Ocean. Technol. 13, 777–794 (1996).
[CrossRef]

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnett, W. McKeown, “Observations of the infrared radiative properties of the ocean-implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41–51 (1996).
[CrossRef]

W. P. Menzel, L. E. Gumley, “MODIS atmospheric profile retrieval algorithm theoretical basis document,” (Earth Observing System Project Science Office, NASA Goddard Space Flight Center, Greenbelt, Md., 1998).

Miake-Lye, R. C.

O. B. Toon, R. C. Miake-Lye, “Subsonic aircraft: contrail and cloud effects special study (SUCCESS),” Geophys. Res. Lett. 25, 1109–1112 (1998).
[CrossRef]

Minnett, P.

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnett, W. McKeown, “Observations of the infrared radiative properties of the ocean-implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41–51 (1996).
[CrossRef]

Moeller, C. C.

M. D. King, W. P. Menzel, P. S. Grant, J. S. Myers, G. T. Arnold, S. E. Platnick, L. E. Gumley, S. C. Tsay, C. C. Moeller, M. Fitzgerald, K. S. Brown, F. G. Osterwisch, “Airborne scanning spectrometer for remote sensing of cloud, aerosol, water vapor, and surface properties,” J. Atmos. Ocean. Technol. 13, 777–794 (1996).
[CrossRef]

Montgomery, H. E.

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, H. Ostrow, “MODIS: advanced facility instrument for studies of the Earth as a system,” IEEE Trans. Geosci. Remote Sens. 27, 145–153 (1998).
[CrossRef]

Myers, J. S.

M. D. King, W. P. Menzel, P. S. Grant, J. S. Myers, G. T. Arnold, S. E. Platnick, L. E. Gumley, S. C. Tsay, C. C. Moeller, M. Fitzgerald, K. S. Brown, F. G. Osterwisch, “Airborne scanning spectrometer for remote sensing of cloud, aerosol, water vapor, and surface properties,” J. Atmos. Ocean. Technol. 13, 777–794 (1996).
[CrossRef]

Nalli, N. R.

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnett, W. McKeown, “Observations of the infrared radiative properties of the ocean-implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41–51 (1996).
[CrossRef]

Osterwisch, F. G.

M. D. King, W. P. Menzel, P. S. Grant, J. S. Myers, G. T. Arnold, S. E. Platnick, L. E. Gumley, S. C. Tsay, C. C. Moeller, M. Fitzgerald, K. S. Brown, F. G. Osterwisch, “Airborne scanning spectrometer for remote sensing of cloud, aerosol, water vapor, and surface properties,” J. Atmos. Ocean. Technol. 13, 777–794 (1996).
[CrossRef]

Ostrow, H.

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, H. Ostrow, “MODIS: advanced facility instrument for studies of the Earth as a system,” IEEE Trans. Geosci. Remote Sens. 27, 145–153 (1998).
[CrossRef]

Platnick, S. E.

M. D. King, W. P. Menzel, P. S. Grant, J. S. Myers, G. T. Arnold, S. E. Platnick, L. E. Gumley, S. C. Tsay, C. C. Moeller, M. Fitzgerald, K. S. Brown, F. G. Osterwisch, “Airborne scanning spectrometer for remote sensing of cloud, aerosol, water vapor, and surface properties,” J. Atmos. Ocean. Technol. 13, 777–794 (1996).
[CrossRef]

Plokhenko, Y.

Y. Plokhenko, W. P. Menzel, “The effects of surface reflection on estimating the vertical temperature–humidity distribution from spectral infrared measurements,” J. Appl. Meteorol. 39, 3–14 (2000).
[CrossRef]

Pratt, R. W.

R. W. Pratt, “Review of radiosonde humidity and temperature errors,” J. Atmos. Ocean. Technol. 2, 404–407 (1985).
[CrossRef]

Revercomb, H. E.

J. Wang, G. P. Anderson, H. E. Revercomb, R. O. Knuteson, “Validation of FASCODE3 and MODTRAN3: comparison of model calculations with ground-based and airborne interferometer observations under clear-sky conditions,” Appl. Opt. 35, 6028–6040 (1996).
[CrossRef] [PubMed]

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnett, W. McKeown, “Observations of the infrared radiative properties of the ocean-implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41–51 (1996).
[CrossRef]

W. L. Smith, H. M. Woolf, H. E. Revercomb, “Linear simultaneous solution for temperature and observing constituent profiles from radiance spectra,” Appl. Opt. 30, 1117–1123 (1991).
[CrossRef] [PubMed]

W. L. Smith, H. E. Revercomb, H. B. Howell, H.-L. Huang, R. O. Knuteson, E. W. Koenig, D. D. LaPorte, S. Silverman, L. A. Sromovsky, H. M. Woolf, “GHIS—the GOES high-resolution interferometer sounder,” J. Appl. Meteorol. 29, 1189–1204 (1990).
[CrossRef]

W. L. Smith, H. M. Woolf, H. B. Howell, H.-L. Huang, H. E. Revercomb, “The simultaneous retrieval of atmospheric temperature and water vapor profiles—application to measurements with the high spectral resolution interferometer sounder (HIS),” in Advances in Remote Sensing Retrieval Methods, A. Deepak, H. E. Flemming, J. S. Theon, eds. (Deepak, Hampton, Va., 1989), pp. 189–202.

Rodgers, C. D.

C. D. Rodgers, “Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation,” Rev. Geophys. Space Phys. 14, 609–624 (1976).
[CrossRef]

Salisbury, J. W.

J. W. Salisbury, D. M. D’Aria, “Emissivity of terrestrial materials in the 3–5 µm atmospheric window,” Remote Sens. Environ. 47, 345–361 (1994).
[CrossRef]

J. W. Salisbury, D. M. D’Aria, “Emissivity of terrestrial materials in the 8–14 µm atmospheric window,” Remote Sens. Environ. 42, 83–106 (1992).
[CrossRef]

Salomonson, V. V.

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, H. Ostrow, “MODIS: advanced facility instrument for studies of the Earth as a system,” IEEE Trans. Geosci. Remote Sens. 27, 145–153 (1998).
[CrossRef]

Schmidlin, F. J.

F. J. Schmidlin, “WMO international radiosonde comparison, phase II,” , in Instruments and Observing Methods, (World Meteorological Organisation, Geneva, Switzerland, 1985), pp. 1–113; available from WMO Secretariat, 41 Avenue Giuseppe Motta, Case Postale 2300, CH-1211 Geneva 2, Switzerland.

Schmidt, T.

T. Schmidt, National Oceanic and Atmospheric Administration/National Environmental Satellite, Data, and Information Service, Office of Research and Applications, Advanced Satellite Products Team, Madison, Wis. 53706 (personal communication, 2000).

Schmit, T. J.

X. L. Ma, T. J. Schmit, W. L. Smith, “A non-linear physical retrieval algorithm—its application to the GOES-8/9 sounder,” J. Appl. Meteorol. 38, 501–513 (1999).
[CrossRef]

C. M. Hayden, T. J. Schmit, “Initial evaluation of the GOES-8 sounder,” presented at the Ninth Symposium on Meteorological Observations and Instrumentation Charlotte, N.C., 27–31 March 1995 (American Meteorological Society, Boston, Mass., 1995), pp. 385–390.

Schreiner, A. J.

W. L. Smith, H. M. Woolf, C. M. Hayden, A. J. Schreiner, “The simultaneous retrieval export package,” presented at the Second International TOVS Study Conference, Igls, Austria, 18–22 February 1985 (Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wis., 1985), pp. 224–253.

Schriener, A. J.

W. L. Smith, H. M. Woolf, A. J. Schriener, “Simultaneous retrieval of surface and atmospheric parameters: a physical and analytically direct approach,” in Advances in Remote Sensing Retrieval Method, A. Deepak, H. E. Flemming, M. T. Chahine, eds. (Deepak, Hampton, Va., 1985), pp. 221–232.

Silverman, S.

W. L. Smith, H. E. Revercomb, H. B. Howell, H.-L. Huang, R. O. Knuteson, E. W. Koenig, D. D. LaPorte, S. Silverman, L. A. Sromovsky, H. M. Woolf, “GHIS—the GOES high-resolution interferometer sounder,” J. Appl. Meteorol. 29, 1189–1204 (1990).
[CrossRef]

Smith, W. L.

X. L. Ma, T. J. Schmit, W. L. Smith, “A non-linear physical retrieval algorithm—its application to the GOES-8/9 sounder,” J. Appl. Meteorol. 38, 501–513 (1999).
[CrossRef]

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnett, W. McKeown, “Observations of the infrared radiative properties of the ocean-implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41–51 (1996).
[CrossRef]

W. L. Smith, H. M. Woolf, H. E. Revercomb, “Linear simultaneous solution for temperature and observing constituent profiles from radiance spectra,” Appl. Opt. 30, 1117–1123 (1991).
[CrossRef] [PubMed]

W. L. Smith, H. E. Revercomb, H. B. Howell, H.-L. Huang, R. O. Knuteson, E. W. Koenig, D. D. LaPorte, S. Silverman, L. A. Sromovsky, H. M. Woolf, “GHIS—the GOES high-resolution interferometer sounder,” J. Appl. Meteorol. 29, 1189–1204 (1990).
[CrossRef]

W. L. Smith, H. M. Woolf, “The use of eigenvectors of statistical covariance matrices for interpreting satellite sounding radiometer observations,” J. Atmos. Sci. 33, 1127–1140 (1976).
[CrossRef]

W. L. Smith, H. M. Woolf, P. G. Abel, C. M. Hayden, M. Chalfant, N. Grody, “NIMBUS-5 sounder data processing system. Part 1. Measurement characteristics and data reduction procedures,” NOAA Tech. Memo NESS57 (National Oceanic and Atmospheric Administration, Washington, D.C., 1974), pp. 36–41.

W. L. Smith, H. M. Woolf, C. M. Hayden, A. J. Schreiner, “The simultaneous retrieval export package,” presented at the Second International TOVS Study Conference, Igls, Austria, 18–22 February 1985 (Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wis., 1985), pp. 224–253.

W. L. Smith, H. L. Huang, M. S. Whipple, S. P. Ho, “UW-CIMSS physical retrieval system science document for AIRS/AMSU/MHS,” (Jet Propulsion Laboratory, NASA, Pasedena, Calif., 1996).

W. L. Smith, H. M. Woolf, H. B. Howell, H.-L. Huang, H. E. Revercomb, “The simultaneous retrieval of atmospheric temperature and water vapor profiles—application to measurements with the high spectral resolution interferometer sounder (HIS),” in Advances in Remote Sensing Retrieval Methods, A. Deepak, H. E. Flemming, J. S. Theon, eds. (Deepak, Hampton, Va., 1989), pp. 189–202.

W. L. Smith, H. M. Woolf, A. J. Schriener, “Simultaneous retrieval of surface and atmospheric parameters: a physical and analytically direct approach,” in Advances in Remote Sensing Retrieval Method, A. Deepak, H. E. Flemming, M. T. Chahine, eds. (Deepak, Hampton, Va., 1985), pp. 221–232.

Snyder, W. C.

W. C. Snyder, Z. M. Wan, Y. L. Zhang, Y. Z. Feng, “Thermal infrared (3–14 µm) bidirectional reflectance measurements of sands and soils,” Remote Sens. Environ. 60, 101–109 (1997).
[CrossRef]

Sromovsky, L. A.

W. L. Smith, H. E. Revercomb, H. B. Howell, H.-L. Huang, R. O. Knuteson, E. W. Koenig, D. D. LaPorte, S. Silverman, L. A. Sromovsky, H. M. Woolf, “GHIS—the GOES high-resolution interferometer sounder,” J. Appl. Meteorol. 29, 1189–1204 (1990).
[CrossRef]

Stepanov, V. V.

A. N. Tikhonov, A. V. Goncharsky, V. V. Stepanov, A. G. Yagola, Numerical Methods for the Solution of Ill-Posed Problems (Kluwer, Dordrecht, the Netherlands, 1995).
[CrossRef]

Strow, L. L.

S. Hannon, L. L. Strow, W. W. McMillan, “Atmospheric infrared fast transmittance model: a comparison of two approaches,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research II, P. B. Hays, J. Wang, eds., Proc. SPIE2830, 94–105 (1996).
[CrossRef]

Tikhonov, A. N.

A. N. Tikhonov, “Solution of incorrectly formulated problems and the regularization method,” Sov. Math. Dokl. 4, 1035–1038 (1963).

A. N. Tikhonov, “Regularization of incorrectly posed problems,” Sov. Math. Dokl. 4, 1624–1627 (1963).

A. N. Tikhonov, V. Y. Arsenin, Solutions of Ill-Posed Problems (Winston, Washington, D.C., 1977).

A. N. Tikhonov, A. V. Goncharsky, V. V. Stepanov, A. G. Yagola, Numerical Methods for the Solution of Ill-Posed Problems (Kluwer, Dordrecht, the Netherlands, 1995).
[CrossRef]

Toon, O. B.

O. B. Toon, R. C. Miake-Lye, “Subsonic aircraft: contrail and cloud effects special study (SUCCESS),” Geophys. Res. Lett. 25, 1109–1112 (1998).
[CrossRef]

Townshend, J. R. G.

C. O. Justice, J. R. G. Townshend, B. N. Holben, C. J. Tucker, “Analysis of the phenology of global vegetation using meteorological satellite data,” Int. J. Remote Sens. 6, 1271–1318 (1985).
[CrossRef]

Tsay, S. C.

M. D. King, W. P. Menzel, P. S. Grant, J. S. Myers, G. T. Arnold, S. E. Platnick, L. E. Gumley, S. C. Tsay, C. C. Moeller, M. Fitzgerald, K. S. Brown, F. G. Osterwisch, “Airborne scanning spectrometer for remote sensing of cloud, aerosol, water vapor, and surface properties,” J. Atmos. Ocean. Technol. 13, 777–794 (1996).
[CrossRef]

Tucker, C. J.

C. O. Justice, J. R. G. Townshend, B. N. Holben, C. J. Tucker, “Analysis of the phenology of global vegetation using meteorological satellite data,” Int. J. Remote Sens. 6, 1271–1318 (1985).
[CrossRef]

C. J. Tucker, “Red and photographic infrared linear combinations for monitoring vegetation,” Remote Sens. Environ. 8, 127–150 (1979).
[CrossRef]

Twomey, S.

S. Twomey, “On the numerical solution of Fredholm integral equations of the first kind by the inversion of the linear system produced by quadrature,” J. Assoc. Comput. Math. 10, 97–101 (1963).
[CrossRef]

Wade, C. G.

C. G. Wade, “An evaluation of problems affecting measurement of low relative humidity on the United States radiosonde,” J. Atmos. Ocean. Technol. 11, 687–700 (1994).
[CrossRef]

Wahba, G.

G. Wahba, “Ill-posed problems: numerical and statistical methods for mildly, moderately and severely ill-posed problems with noise data,” Tech. Rep.595, (Statistics Department, University of Wisconsin-Madison, Madison, Wis., 1980).

G. Wahba, Spline Methods for Observational Data, Vol. 59 of CBMS-NSF Regional Conference Series in Applied Mathematics (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1990).

Wan, Z. M.

W. C. Snyder, Z. M. Wan, Y. L. Zhang, Y. Z. Feng, “Thermal infrared (3–14 µm) bidirectional reflectance measurements of sands and soils,” Remote Sens. Environ. 60, 101–109 (1997).
[CrossRef]

Z. M. Wan, Z. L. Li, “A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data,” IEEE Trans. Geosci. Remote Sens. 35, 980–996 (1997).
[CrossRef]

Z. M. Wan, J. Dozier, “A generalized split-window algorithm for retrieving land-surface temperature from space,” IEEE Trans. Geosci. Remote Sens. 34, 892–905 (1996).
[CrossRef]

Wang, J.

Whipple, M. S.

W. L. Smith, H. L. Huang, M. S. Whipple, S. P. Ho, “UW-CIMSS physical retrieval system science document for AIRS/AMSU/MHS,” (Jet Propulsion Laboratory, NASA, Pasedena, Calif., 1996).

Woolf, H. M.

W. L. Smith, H. M. Woolf, H. E. Revercomb, “Linear simultaneous solution for temperature and observing constituent profiles from radiance spectra,” Appl. Opt. 30, 1117–1123 (1991).
[CrossRef] [PubMed]

W. L. Smith, H. E. Revercomb, H. B. Howell, H.-L. Huang, R. O. Knuteson, E. W. Koenig, D. D. LaPorte, S. Silverman, L. A. Sromovsky, H. M. Woolf, “GHIS—the GOES high-resolution interferometer sounder,” J. Appl. Meteorol. 29, 1189–1204 (1990).
[CrossRef]

W. L. Smith, H. M. Woolf, “The use of eigenvectors of statistical covariance matrices for interpreting satellite sounding radiometer observations,” J. Atmos. Sci. 33, 1127–1140 (1976).
[CrossRef]

H. M. Woolf, P. V. Delst, W. J. Zhang, “NOAA-15 HIRS/3 and AMSU transmittance model validation,” in Proceedings of the Tenth International TOVS Study (Bureau of Metrology Resource Center, Melbourne, 1999), pp. 564–573.

W. L. Smith, H. M. Woolf, P. G. Abel, C. M. Hayden, M. Chalfant, N. Grody, “NIMBUS-5 sounder data processing system. Part 1. Measurement characteristics and data reduction procedures,” NOAA Tech. Memo NESS57 (National Oceanic and Atmospheric Administration, Washington, D.C., 1974), pp. 36–41.

W. L. Smith, H. M. Woolf, A. J. Schriener, “Simultaneous retrieval of surface and atmospheric parameters: a physical and analytically direct approach,” in Advances in Remote Sensing Retrieval Method, A. Deepak, H. E. Flemming, M. T. Chahine, eds. (Deepak, Hampton, Va., 1985), pp. 221–232.

W. L. Smith, H. M. Woolf, H. B. Howell, H.-L. Huang, H. E. Revercomb, “The simultaneous retrieval of atmospheric temperature and water vapor profiles—application to measurements with the high spectral resolution interferometer sounder (HIS),” in Advances in Remote Sensing Retrieval Methods, A. Deepak, H. E. Flemming, J. S. Theon, eds. (Deepak, Hampton, Va., 1989), pp. 189–202.

W. L. Smith, H. M. Woolf, C. M. Hayden, A. J. Schreiner, “The simultaneous retrieval export package,” presented at the Second International TOVS Study Conference, Igls, Austria, 18–22 February 1985 (Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wis., 1985), pp. 224–253.

Yagola, A. G.

A. N. Tikhonov, A. V. Goncharsky, V. V. Stepanov, A. G. Yagola, Numerical Methods for the Solution of Ill-Posed Problems (Kluwer, Dordrecht, the Netherlands, 1995).
[CrossRef]

Zhang, W. J.

H. M. Woolf, P. V. Delst, W. J. Zhang, “NOAA-15 HIRS/3 and AMSU transmittance model validation,” in Proceedings of the Tenth International TOVS Study (Bureau of Metrology Resource Center, Melbourne, 1999), pp. 564–573.

Zhang, Y. L.

W. C. Snyder, Z. M. Wan, Y. L. Zhang, Y. Z. Feng, “Thermal infrared (3–14 µm) bidirectional reflectance measurements of sands and soils,” Remote Sens. Environ. 60, 101–109 (1997).
[CrossRef]

Adv. Atmos. Sci. (1)

J. Li, “Temperature and water vapor weighting functions from radiative transfer equation with surface emissivity and solar reflectivity,” Adv. Atmos. Sci. 11, 421–426 (1994).
[CrossRef]

Appl. Opt. (3)

Bull. Am. Meteorol. Soc. (1)

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnett, W. McKeown, “Observations of the infrared radiative properties of the ocean-implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41–51 (1996).
[CrossRef]

Geophys. Res. Lett. (1)

O. B. Toon, R. C. Miake-Lye, “Subsonic aircraft: contrail and cloud effects special study (SUCCESS),” Geophys. Res. Lett. 25, 1109–1112 (1998).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (3)

Z. M. Wan, J. Dozier, “A generalized split-window algorithm for retrieving land-surface temperature from space,” IEEE Trans. Geosci. Remote Sens. 34, 892–905 (1996).
[CrossRef]

Z. M. Wan, Z. L. Li, “A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data,” IEEE Trans. Geosci. Remote Sens. 35, 980–996 (1997).
[CrossRef]

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, H. Ostrow, “MODIS: advanced facility instrument for studies of the Earth as a system,” IEEE Trans. Geosci. Remote Sens. 27, 145–153 (1998).
[CrossRef]

Int. J. Remote Sens. (1)

C. O. Justice, J. R. G. Townshend, B. N. Holben, C. J. Tucker, “Analysis of the phenology of global vegetation using meteorological satellite data,” Int. J. Remote Sens. 6, 1271–1318 (1985).
[CrossRef]

J. Appl. Meteorol. (4)

C. H. Hayden, “GOES-VAS simultaneous temperature-moisture retrieval algorithm,” J. Appl. Meteorol. 27, 705–733 (1988).
[CrossRef]

W. L. Smith, H. E. Revercomb, H. B. Howell, H.-L. Huang, R. O. Knuteson, E. W. Koenig, D. D. LaPorte, S. Silverman, L. A. Sromovsky, H. M. Woolf, “GHIS—the GOES high-resolution interferometer sounder,” J. Appl. Meteorol. 29, 1189–1204 (1990).
[CrossRef]

Y. Plokhenko, W. P. Menzel, “The effects of surface reflection on estimating the vertical temperature–humidity distribution from spectral infrared measurements,” J. Appl. Meteorol. 39, 3–14 (2000).
[CrossRef]

X. L. Ma, T. J. Schmit, W. L. Smith, “A non-linear physical retrieval algorithm—its application to the GOES-8/9 sounder,” J. Appl. Meteorol. 38, 501–513 (1999).
[CrossRef]

J. Assoc. Comput. Math. (1)

S. Twomey, “On the numerical solution of Fredholm integral equations of the first kind by the inversion of the linear system produced by quadrature,” J. Assoc. Comput. Math. 10, 97–101 (1963).
[CrossRef]

J. Atmos. Ocean. Technol. (3)

M. D. King, W. P. Menzel, P. S. Grant, J. S. Myers, G. T. Arnold, S. E. Platnick, L. E. Gumley, S. C. Tsay, C. C. Moeller, M. Fitzgerald, K. S. Brown, F. G. Osterwisch, “Airborne scanning spectrometer for remote sensing of cloud, aerosol, water vapor, and surface properties,” J. Atmos. Ocean. Technol. 13, 777–794 (1996).
[CrossRef]

C. G. Wade, “An evaluation of problems affecting measurement of low relative humidity on the United States radiosonde,” J. Atmos. Ocean. Technol. 11, 687–700 (1994).
[CrossRef]

R. W. Pratt, “Review of radiosonde humidity and temperature errors,” J. Atmos. Ocean. Technol. 2, 404–407 (1985).
[CrossRef]

J. Atmos. Sci. (1)

W. L. Smith, H. M. Woolf, “The use of eigenvectors of statistical covariance matrices for interpreting satellite sounding radiometer observations,” J. Atmos. Sci. 33, 1127–1140 (1976).
[CrossRef]

J. Geophys. Res. (1)

S. A. Clough, M. J. Iacono, “Line-by-line calculations of atmospheric fluxes and cooling rates. 2. Applications to carbon dioxide, ozone, methane, nitrous oxide and the halocarbons,” J. Geophys. Res. 100, 16519–16535 (1995).
[CrossRef]

Philos. Trans. R. Soc. London Ser. A (1)

G. Bachus, F. Gillbert, “Uniqueness in the inversion of inaccurate gross earth data,” Philos. Trans. R. Soc. London Ser. A 266, 123–192 (1970).
[CrossRef]

Q. J. R. Meteorol. Soc. (2)

J. R. Eyre, “Inversion of cloudy satellite sounding radiances by nonlinear optimal estimation. I. Theory and simulation for TOVS,” Q. J. R. Meteorol. Soc. 115, 1001–1026 (1989).
[CrossRef]

J. R. Eyre, “Inversion of cloudy satellite sounding radiances by nonlinear optimal estimation. II. Application to TOVS data,” Q. J. R. Meteorol. Soc. 115, 1027–1037 (1989).
[CrossRef]

Remote Sens. Environ. (4)

W. C. Snyder, Z. M. Wan, Y. L. Zhang, Y. Z. Feng, “Thermal infrared (3–14 µm) bidirectional reflectance measurements of sands and soils,” Remote Sens. Environ. 60, 101–109 (1997).
[CrossRef]

C. J. Tucker, “Red and photographic infrared linear combinations for monitoring vegetation,” Remote Sens. Environ. 8, 127–150 (1979).
[CrossRef]

J. W. Salisbury, D. M. D’Aria, “Emissivity of terrestrial materials in the 8–14 µm atmospheric window,” Remote Sens. Environ. 42, 83–106 (1992).
[CrossRef]

J. W. Salisbury, D. M. D’Aria, “Emissivity of terrestrial materials in the 3–5 µm atmospheric window,” Remote Sens. Environ. 47, 345–361 (1994).
[CrossRef]

Rev. Geophys. Space Phys. (1)

C. D. Rodgers, “Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation,” Rev. Geophys. Space Phys. 14, 609–624 (1976).
[CrossRef]

Sov. Math. Dokl. (2)

A. N. Tikhonov, “Solution of incorrectly formulated problems and the regularization method,” Sov. Math. Dokl. 4, 1035–1038 (1963).

A. N. Tikhonov, “Regularization of incorrectly posed problems,” Sov. Math. Dokl. 4, 1624–1627 (1963).

Other (20)

A. N. Tikhonov, V. Y. Arsenin, Solutions of Ill-Posed Problems (Winston, Washington, D.C., 1977).

A. N. Tikhonov, A. V. Goncharsky, V. V. Stepanov, A. G. Yagola, Numerical Methods for the Solution of Ill-Posed Problems (Kluwer, Dordrecht, the Netherlands, 1995).
[CrossRef]

P. C. Hansen, “Rank-deficient and discrete ill-posed problems,” Ph.D. dissertation (Technical University of Denmark, Lyngby, Denmark, 1996).

G. Wahba, “Ill-posed problems: numerical and statistical methods for mildly, moderately and severely ill-posed problems with noise data,” Tech. Rep.595, (Statistics Department, University of Wisconsin-Madison, Madison, Wis., 1980).

G. Wahba, Spline Methods for Observational Data, Vol. 59 of CBMS-NSF Regional Conference Series in Applied Mathematics (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1990).

J. R. Eyre, “A fast radiative transfer model for satellite sounding systems,” Tech. Memo176, (European Centre for Medium-Range Weather Forecast, Reading, UK, 1991).

S. Hannon, L. L. Strow, W. W. McMillan, “Atmospheric infrared fast transmittance model: a comparison of two approaches,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research II, P. B. Hays, J. Wang, eds., Proc. SPIE2830, 94–105 (1996).
[CrossRef]

H. M. Woolf, P. V. Delst, W. J. Zhang, “NOAA-15 HIRS/3 and AMSU transmittance model validation,” in Proceedings of the Tenth International TOVS Study (Bureau of Metrology Resource Center, Melbourne, 1999), pp. 564–573.

W. L. Smith, H. L. Huang, M. S. Whipple, S. P. Ho, “UW-CIMSS physical retrieval system science document for AIRS/AMSU/MHS,” (Jet Propulsion Laboratory, NASA, Pasedena, Calif., 1996).

B. Huang, “New approach to simultaneous retrieval of atmospheric profiles from radiance spectra,” Ph.D. dissertation (University of Wisconsin—Madison, Madison, Wis., 1998).

W. L. Smith, H. M. Woolf, A. J. Schriener, “Simultaneous retrieval of surface and atmospheric parameters: a physical and analytically direct approach,” in Advances in Remote Sensing Retrieval Method, A. Deepak, H. E. Flemming, M. T. Chahine, eds. (Deepak, Hampton, Va., 1985), pp. 221–232.

W. L. Smith, H. M. Woolf, H. B. Howell, H.-L. Huang, H. E. Revercomb, “The simultaneous retrieval of atmospheric temperature and water vapor profiles—application to measurements with the high spectral resolution interferometer sounder (HIS),” in Advances in Remote Sensing Retrieval Methods, A. Deepak, H. E. Flemming, J. S. Theon, eds. (Deepak, Hampton, Va., 1989), pp. 189–202.

W. P. Menzel, L. E. Gumley, “MODIS atmospheric profile retrieval algorithm theoretical basis document,” (Earth Observing System Project Science Office, NASA Goddard Space Flight Center, Greenbelt, Md., 1998).

T. Schmidt, National Oceanic and Atmospheric Administration/National Environmental Satellite, Data, and Information Service, Office of Research and Applications, Advanced Satellite Products Team, Madison, Wis. 53706 (personal communication, 2000).

W. L. Smith, H. M. Woolf, C. M. Hayden, A. J. Schreiner, “The simultaneous retrieval export package,” presented at the Second International TOVS Study Conference, Igls, Austria, 18–22 February 1985 (Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wis., 1985), pp. 224–253.

H.-L. Huang, “An analysis of the characteristics of the atmospheric profiles obtained with the High-Resolution Interferometer Sounder (HIS),” Ph.D. dissertation (University of Wisconsin—Madison, Madison, Wis., 1989).

W. L. Smith, H. M. Woolf, P. G. Abel, C. M. Hayden, M. Chalfant, N. Grody, “NIMBUS-5 sounder data processing system. Part 1. Measurement characteristics and data reduction procedures,” NOAA Tech. Memo NESS57 (National Oceanic and Atmospheric Administration, Washington, D.C., 1974), pp. 36–41.

C. M. Hayden, T. J. Schmit, “Initial evaluation of the GOES-8 sounder,” presented at the Ninth Symposium on Meteorological Observations and Instrumentation Charlotte, N.C., 27–31 March 1995 (American Meteorological Society, Boston, Mass., 1995), pp. 385–390.

The 40 levels for the MAS aircraft pressure coordinates are as follows: 50, 60, 70, 75, 80, 85, 90, 100, 125, 150, 175, 200, 250, 300, 350, 400, 450, 500, 550, 600, 620, 640, 660, 680, 700, 720, 740, 760, 780, 800, 820, 840, 860, 880, 900, 920, 940, 960, 980, and 1000 hPa.

F. J. Schmidlin, “WMO international radiosonde comparison, phase II,” , in Instruments and Observing Methods, (World Meteorological Organisation, Geneva, Switzerland, 1985), pp. 1–113; available from WMO Secretariat, 41 Avenue Giuseppe Motta, Case Postale 2300, CH-1211 Geneva 2, Switzerland.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

MAS spectral response functions plotted over high-resolution brightness temperature spectrum (U.S. standard atmosphere).

Fig. 2
Fig. 2

Surface emissivity spectra in 3.5–14.5 µm for various terrestrial materials.

Fig. 3
Fig. 3

MAS band synthetic brightness temperature (BT) differences between LBLRTM and fast regression transmittance models (the BT difference is zero if the column is not shown).

Fig. 4
Fig. 4

Same as Fig. 3, but for driest and wettest profiles (the BT difference is zero if the column is not shown).

Fig. 5
Fig. 5

MAS band brightness temperature difference sensitivity to temperature (top panel) and water-vapor mixing ratio profile (bottom panel) variations. Hottest and wettest profiles of Figs. 3 and 4 are used.

Fig. 6
Fig. 6

Same as Fig. 5, but to surface emissivity (top panel) and skin temperature (bottom panel) variations [the brightness temperature (BT) difference is zero if the column is not shown].

Fig. 7
Fig. 7

Band-averaged emissivities of 80 terrestrial material samples in MAS bands 30–32, 42, 45, 46, and 48.

Fig. 8
Fig. 8

Retrieved rms errors of temperature and water-vapor mixing ratio from the MAS synthetic brightness temperatures.

Fig. 9
Fig. 9

Surface skin temperature (in kelvins) and total precipitable water-vapor (in centimeters) images retrieved from the MAS real observations.

Fig. 10
Fig. 10

Same as Fig. 9, but for retrieved surface emissivities within the shortwave and the longwave regions.

Fig. 11
Fig. 11

Relationship between retrieved surface skin temperature and normalized difference vegetation index.

Fig. 12
Fig. 12

Scatter diagram of retrieved surface skin temperature versus NDVI.

Fig. 13
Fig. 13

Temperature and water-vapor mixing ratio retrieval comparisons with CLASS sounding profile at Cloud and Radiation Testbed site.

Tables (4)

Tables Icon

Table 1 Spectral Characteristics of the MAS Sounding Bands in the 1996 Configuration

Tables Icon

Table 2 List of Terrestrial Material Samplesa

Tables Icon

Table 3 Retrieval rms of Independent Dataset Simulated for 418 Profiles, with no Noise Added

Tables Icon

Table 4 Retrieval RMS of Independent Dataset Simulated for 418 Profiles, Noise (mean = 0 and std = 0.2 K) Added

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

Rνj, μ=Bνj, tsνj, μτνj, μ, ps+Raνj, μ+02π01 μfrμ; -μ, ϕRdνj, μ, -μ, ϕdμdϕ+τ*νj, μ, -μ0, 0-μ0E0νjfrμ; -μ0, ϕ0,
α=πfrμ; -μ0, ϕ0r,
Rνj, μ=Bνj, tsνj, μτνj, μ, ps-0psBνj, tpτνj, μ, ppdp+1-νj, μ0psBνj, tpτ*νj, μ, -μ, ppdp+1-νj, ματ*νj, μ, -μ0, 0-μ0E0νjπ,
δtBj=δts Ktsj+δjKj+i=1ls δtiKti, j+i=1lsδ lnqiKqi, j,
δy=Kδx,
K=KtKqKtsK,
δx=δtδ ln qδtsδ.
Kti, j=βi, j-τi, jpi+1-jτ*i, jpiδpi,
βi, j=Bνj, ti/tiRνj, μ/tB.
Kqi, j=βsjts-tajτsj-21-jl=1ls βl, jτ*l, jδtl+l=ils βl, jτl, j+1-jτ*l, j]δtl× ln τwi, jpi δpi.
Ktsls, j=βsjjτsj,
Kls, j=1Rνj, μ/tBBνj, tsτsj-l=1ls Bνj, tlτ*l, jpl δpl,
δx=i=1M fiνi=Vf,
δy=Kδx=KVf=Kˆf.
MinδfK˜δf-δy˜2+γ2Lδf2,
δfγ=K˜γ#δy˜,
K˜γ#=K˜TK˜+γ2LTL-1K˜T.
fn+1=K˜nTK˜n+γn I-1K˜nTδy˜nm+K˜n fn,
j=νj,lνj,u ψννdννj,lνj,u ψνdν,
NDVI=ref7-ref2ref7+ref2,

Metrics