Abstract

Resolution of the reconstructed image is evaluated for the reflection hologram recorded by use of a slit. Sharp and deep images are obtained because the resolution in the vertical direction is higher than that of the conventional reflection holograms and is independent of the size of the illuminating light source. In contrast, the resolution in the horizontal direction depends on the light-source size in this direction. The optimum source size is discussed in connection with the balance in the resolutions for both directions. A method for obtaining the vertical parallax by use of multiple slits is proposed, and application of the proposed hologram to the heads-up display is also demonstrated.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Taketomi, T. Kubota, “Reflection hologram for reconstructing deep images,” Opt. Lett. 22, 1725–1727 (1997).
    [CrossRef]
  2. Y. Taketomi, T. Kubota, “Deep image reconstruction of a reflection hologram using a fluorescent lamp,” in Practical Holography XII, S. A. Benton, ed., Proc. SPIE3293, 196–204 (1998).
    [CrossRef]
  3. J. C. Wyant, “Image blur for rainbow holograms,” Opt. Lett. 1, 130–132 (1977).
    [CrossRef] [PubMed]
  4. S. A. Benton, “The principles of reflection holographic stereograms,” in Proceedings of the Third International Symposium on Display Holography, T. H. Jeong, ed. (Lake Forest College, Lake Forest, Ill., 1988), pp. 593–608.
  5. M. Born, E. Wolf, Principles of Optics, 4th ed. (Pergamon, Oxford, UK, 1970), p. 334.
  6. E. G. Ramberg, “The hologram: properties and applications,” RCA Rev. 27, 467–499 (1966).
  7. H. Tanigawa, Y. Tanji, Y. Taketomi, T. Kubota, “Deep image hologram recorded by using a lenticular lens sheet,” in Practical Holography XIII, S. A. Benton, ed., Proc. SPIE3637, 181–187 (1999).
    [CrossRef]
  8. E. N. Leith, H. Chen, “Deep-image rainbow holograms,” Opt. Lett. 2, 82–84 (1978).
    [CrossRef] [PubMed]
  9. F. T. S. Yu, P. H. Ruterbusch, S. L. Zhuang, “High-resolution rainbow holographic process,” Opt. Lett. 5, 443–445 (1980).
    [CrossRef] [PubMed]

1997 (1)

1980 (1)

1978 (1)

1977 (1)

1966 (1)

E. G. Ramberg, “The hologram: properties and applications,” RCA Rev. 27, 467–499 (1966).

Benton, S. A.

S. A. Benton, “The principles of reflection holographic stereograms,” in Proceedings of the Third International Symposium on Display Holography, T. H. Jeong, ed. (Lake Forest College, Lake Forest, Ill., 1988), pp. 593–608.

Born, M.

M. Born, E. Wolf, Principles of Optics, 4th ed. (Pergamon, Oxford, UK, 1970), p. 334.

Chen, H.

Kubota, T.

Y. Taketomi, T. Kubota, “Reflection hologram for reconstructing deep images,” Opt. Lett. 22, 1725–1727 (1997).
[CrossRef]

Y. Taketomi, T. Kubota, “Deep image reconstruction of a reflection hologram using a fluorescent lamp,” in Practical Holography XII, S. A. Benton, ed., Proc. SPIE3293, 196–204 (1998).
[CrossRef]

H. Tanigawa, Y. Tanji, Y. Taketomi, T. Kubota, “Deep image hologram recorded by using a lenticular lens sheet,” in Practical Holography XIII, S. A. Benton, ed., Proc. SPIE3637, 181–187 (1999).
[CrossRef]

Leith, E. N.

Ramberg, E. G.

E. G. Ramberg, “The hologram: properties and applications,” RCA Rev. 27, 467–499 (1966).

Ruterbusch, P. H.

Taketomi, Y.

Y. Taketomi, T. Kubota, “Reflection hologram for reconstructing deep images,” Opt. Lett. 22, 1725–1727 (1997).
[CrossRef]

Y. Taketomi, T. Kubota, “Deep image reconstruction of a reflection hologram using a fluorescent lamp,” in Practical Holography XII, S. A. Benton, ed., Proc. SPIE3293, 196–204 (1998).
[CrossRef]

H. Tanigawa, Y. Tanji, Y. Taketomi, T. Kubota, “Deep image hologram recorded by using a lenticular lens sheet,” in Practical Holography XIII, S. A. Benton, ed., Proc. SPIE3637, 181–187 (1999).
[CrossRef]

Tanigawa, H.

H. Tanigawa, Y. Tanji, Y. Taketomi, T. Kubota, “Deep image hologram recorded by using a lenticular lens sheet,” in Practical Holography XIII, S. A. Benton, ed., Proc. SPIE3637, 181–187 (1999).
[CrossRef]

Tanji, Y.

H. Tanigawa, Y. Tanji, Y. Taketomi, T. Kubota, “Deep image hologram recorded by using a lenticular lens sheet,” in Practical Holography XIII, S. A. Benton, ed., Proc. SPIE3637, 181–187 (1999).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 4th ed. (Pergamon, Oxford, UK, 1970), p. 334.

Wyant, J. C.

Yu, F. T. S.

Zhuang, S. L.

Opt. Lett. (4)

RCA Rev. (1)

E. G. Ramberg, “The hologram: properties and applications,” RCA Rev. 27, 467–499 (1966).

Other (4)

H. Tanigawa, Y. Tanji, Y. Taketomi, T. Kubota, “Deep image hologram recorded by using a lenticular lens sheet,” in Practical Holography XIII, S. A. Benton, ed., Proc. SPIE3637, 181–187 (1999).
[CrossRef]

Y. Taketomi, T. Kubota, “Deep image reconstruction of a reflection hologram using a fluorescent lamp,” in Practical Holography XII, S. A. Benton, ed., Proc. SPIE3293, 196–204 (1998).
[CrossRef]

S. A. Benton, “The principles of reflection holographic stereograms,” in Proceedings of the Third International Symposium on Display Holography, T. H. Jeong, ed. (Lake Forest College, Lake Forest, Ill., 1988), pp. 593–608.

M. Born, E. Wolf, Principles of Optics, 4th ed. (Pergamon, Oxford, UK, 1970), p. 334.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Arrangements for recording and reconstruction of the proposed hologram. (a) Recording, (b) reconstruction.

Fig. 2
Fig. 2

Effect of the slit width and the pupil size on the width of the line image.

Fig. 3
Fig. 3

Dependence of the resolution for the vertical direction on the image distance. L = L′ = 60 cm, D = 2 mm.

Fig. 4
Fig. 4

Arrangement for analyzing the resolution in the horizontal direction due to the illuminating light source.

Fig. 5
Fig. 5

Reconstructed images of the proposed hologram. (a) Image obtained by experiment. A sufficiently small white-light source was used to reconstruct the hologram. (b) Image obtained by simulation.

Fig. 6
Fig. 6

Reconstructed images of the conventional hologram: (a) Image obtained by experiment. A sufficiently small white-light source was used to reconstruct the hologram. (b) Image obtained by simulation.

Fig. 7
Fig. 7

Reconstructed image of the proposed hologram illuminated with a line source. A 20-W white-light fluorescent lamp combined with a 2.8-mm-wide slit was used as the source.

Fig. 8
Fig. 8

Basic arrangement of HUD system applying the concept of the proposed hologram. (a) Recording of the hologram, (b) reconstruction of the hologram with a liquid-crystal television (LCTV).

Fig. 9
Fig. 9

Reconstructed image floating at 50 cm behind the hologram. The height of the letters is 3 mm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

δλ=z0ΔL+DL,
Rλ=1/δλ  (line pairs per linear unit).
δL=2z0λ0 sin θr/Tn+n2-sin2 θr1/2,
RL=1/δL line pairs per linear unit.
δS=z0 cos θrΔθh,
RS=1/2δS line pairs per linear unit.

Metrics