Abstract

Drive electronics developed for a color liquid-crystal television (LCTV) display enable data to be written onto individual pixels. Display transmittance characteristics obtained with the new and the original TV drive electronics are compared. The enhanced performance obtained through this development has some potential for spatial light modulator applications in color, optical information processing based on the low-cost LCTV. As an example, we describe a novel, to our knowledge, speckle metrology technique used to display fringes and to output correlation peaks resulting from in-plane object displacement. This requires only a single LC display to encode, simultaneously in three pixel colors, speckle and fringe patterns for real-time measurements. Relative merits of this technique, including displacement range and temporal resolution, are discussed.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. K. Liu, J. A. Davis, R. A. Lilly, “Optical-data-processing properties of a liquid-crystal television spatial light modulator,” Opt. Lett. 10, 635–637 (1985).
    [CrossRef] [PubMed]
  2. F. Mok, J. Diep, H. K. Liu, D. Psaltis, “Real-time computer-generated hologram by means of a liquid-crystal television spatial light modulator,” Opt. Lett. 11, 748–750 (1986).
    [CrossRef] [PubMed]
  3. F. T. S. Yu, S. Jutamulia, J. W. Lin, D. A. Gregory, “Adaptive real-time pattern recognition using a liquid crystal TV based joint transform correlator,” Appl. Opt. 26, 1370–1372 (1987).
    [CrossRef] [PubMed]
  4. B. Bates, P. C. Miller, “Liquid crystal television in speckle metrology,” Appl Opt. 27, 2816–2817 (1988).
    [CrossRef] [PubMed]
  5. B. Bates, P. C. Miller, W. Luchuan, “LCTV optical gates applied to real-time speckle metrology,” J Mod. Opt. 36, 317–322 (1989).
    [CrossRef]
  6. B. Bates, P. C. Miller, “Speckle metrology employing LCTV spatial light modulators,” Opt. Laser Eng. 14, 341–349 (1991).
    [CrossRef]
  7. F. T. S. Yu, S. Jutamulia, D. A. Gregory, “Optical parallel logic gates using inexpensive LCTV,” Opt. Lett. 12, 1050–1052 (1987).
    [CrossRef] [PubMed]
  8. T. Okamato, Y. Egawa, T. Asakura, “Liquid crystal television applied to a speckle-correlation method: real-time measurement of the object displacement,” Opt. Commun. 88, 17–21 (1992).
    [CrossRef]
  9. J. Aiken, B. Bates, M. G. Catney, P. C. Miller, “Programmable liquid-crystal TV spatial light modulator: modified drive electronics to improve device performance for spatial-light-modulation operation,” Appl. Opt. 30, 4605–4609 (1991).
    [CrossRef] [PubMed]
  10. B. S. Lowans, B. Bates, R. G. H. Greer, J. Aiken, “Binary phase modulation properties of a programmable liquid-crystal television display,” Appl. Opt. 31, 7393–7395 (1992).
    [CrossRef] [PubMed]
  11. F. T. S. Yu, S. Jutamulia, T. W. Lin, “Real-time polychromatic signal detection using a color liquid crystal television,” Opt. Eng. 26, 453–460 (1987).
    [CrossRef]
  12. L. Z. Cai, T. H. Chao, “Optical image subtraction using a LCTV SLM and white-light imaging grating interferometer,” J. Mod. Opt. 37, 1127–1138 (1990).
    [CrossRef]
  13. Z. Q. Wang, C. M. Cartwright, C. Soutar, W. A. Gillespie, “Real-time color image correlation with a color liquid-crystal television and a Fresnel holographic filter,” Appl. Opt. 32, 715–717 (1993).
    [CrossRef] [PubMed]
  14. F. T. S. Yu, Z. Yang, K. Pan, “Polychromatic target identification with a colour liquid-crystal-TV-based joint-transform correlator,” Appl. Opt. 33, 2170–2172 (1994).
    [CrossRef] [PubMed]
  15. Z. Zhu, “Gray characteristics of a color liquid-crystal television in the beam of a He–Ne laser,” Appl. Opt. 36, 1033–1038 (1997).
    [CrossRef] [PubMed]
  16. I. Moreno, J. A. Davis, K. G. D’Nelly, D. B. Allison, “Transmission, and phase measurement for polarization eigenvectors in twisted-nematic liquid crystal spatial light modulators,” Opt. Eng. 37, 3048–3052 (1998).
    [CrossRef]
  17. J. Aiken, “Development of a low-cost colour SLM,” Electrotechnology (London) 6(2), 30–32 (1995)

1998 (1)

I. Moreno, J. A. Davis, K. G. D’Nelly, D. B. Allison, “Transmission, and phase measurement for polarization eigenvectors in twisted-nematic liquid crystal spatial light modulators,” Opt. Eng. 37, 3048–3052 (1998).
[CrossRef]

1997 (1)

1995 (1)

J. Aiken, “Development of a low-cost colour SLM,” Electrotechnology (London) 6(2), 30–32 (1995)

1994 (1)

1993 (1)

1992 (2)

B. S. Lowans, B. Bates, R. G. H. Greer, J. Aiken, “Binary phase modulation properties of a programmable liquid-crystal television display,” Appl. Opt. 31, 7393–7395 (1992).
[CrossRef] [PubMed]

T. Okamato, Y. Egawa, T. Asakura, “Liquid crystal television applied to a speckle-correlation method: real-time measurement of the object displacement,” Opt. Commun. 88, 17–21 (1992).
[CrossRef]

1991 (2)

1990 (1)

L. Z. Cai, T. H. Chao, “Optical image subtraction using a LCTV SLM and white-light imaging grating interferometer,” J. Mod. Opt. 37, 1127–1138 (1990).
[CrossRef]

1989 (1)

B. Bates, P. C. Miller, W. Luchuan, “LCTV optical gates applied to real-time speckle metrology,” J Mod. Opt. 36, 317–322 (1989).
[CrossRef]

1988 (1)

B. Bates, P. C. Miller, “Liquid crystal television in speckle metrology,” Appl Opt. 27, 2816–2817 (1988).
[CrossRef] [PubMed]

1987 (3)

1986 (1)

1985 (1)

Aiken, J.

Allison, D. B.

I. Moreno, J. A. Davis, K. G. D’Nelly, D. B. Allison, “Transmission, and phase measurement for polarization eigenvectors in twisted-nematic liquid crystal spatial light modulators,” Opt. Eng. 37, 3048–3052 (1998).
[CrossRef]

Asakura, T.

T. Okamato, Y. Egawa, T. Asakura, “Liquid crystal television applied to a speckle-correlation method: real-time measurement of the object displacement,” Opt. Commun. 88, 17–21 (1992).
[CrossRef]

Bates, B.

B. S. Lowans, B. Bates, R. G. H. Greer, J. Aiken, “Binary phase modulation properties of a programmable liquid-crystal television display,” Appl. Opt. 31, 7393–7395 (1992).
[CrossRef] [PubMed]

J. Aiken, B. Bates, M. G. Catney, P. C. Miller, “Programmable liquid-crystal TV spatial light modulator: modified drive electronics to improve device performance for spatial-light-modulation operation,” Appl. Opt. 30, 4605–4609 (1991).
[CrossRef] [PubMed]

B. Bates, P. C. Miller, “Speckle metrology employing LCTV spatial light modulators,” Opt. Laser Eng. 14, 341–349 (1991).
[CrossRef]

B. Bates, P. C. Miller, W. Luchuan, “LCTV optical gates applied to real-time speckle metrology,” J Mod. Opt. 36, 317–322 (1989).
[CrossRef]

B. Bates, P. C. Miller, “Liquid crystal television in speckle metrology,” Appl Opt. 27, 2816–2817 (1988).
[CrossRef] [PubMed]

Cai, L. Z.

L. Z. Cai, T. H. Chao, “Optical image subtraction using a LCTV SLM and white-light imaging grating interferometer,” J. Mod. Opt. 37, 1127–1138 (1990).
[CrossRef]

Cartwright, C. M.

Catney, M. G.

Chao, T. H.

L. Z. Cai, T. H. Chao, “Optical image subtraction using a LCTV SLM and white-light imaging grating interferometer,” J. Mod. Opt. 37, 1127–1138 (1990).
[CrossRef]

D’Nelly, K. G.

I. Moreno, J. A. Davis, K. G. D’Nelly, D. B. Allison, “Transmission, and phase measurement for polarization eigenvectors in twisted-nematic liquid crystal spatial light modulators,” Opt. Eng. 37, 3048–3052 (1998).
[CrossRef]

Davis, J. A.

I. Moreno, J. A. Davis, K. G. D’Nelly, D. B. Allison, “Transmission, and phase measurement for polarization eigenvectors in twisted-nematic liquid crystal spatial light modulators,” Opt. Eng. 37, 3048–3052 (1998).
[CrossRef]

H. K. Liu, J. A. Davis, R. A. Lilly, “Optical-data-processing properties of a liquid-crystal television spatial light modulator,” Opt. Lett. 10, 635–637 (1985).
[CrossRef] [PubMed]

Diep, J.

Egawa, Y.

T. Okamato, Y. Egawa, T. Asakura, “Liquid crystal television applied to a speckle-correlation method: real-time measurement of the object displacement,” Opt. Commun. 88, 17–21 (1992).
[CrossRef]

Gillespie, W. A.

Greer, R. G. H.

Gregory, D. A.

Jutamulia, S.

Lilly, R. A.

Lin, J. W.

Lin, T. W.

F. T. S. Yu, S. Jutamulia, T. W. Lin, “Real-time polychromatic signal detection using a color liquid crystal television,” Opt. Eng. 26, 453–460 (1987).
[CrossRef]

Liu, H. K.

Lowans, B. S.

Luchuan, W.

B. Bates, P. C. Miller, W. Luchuan, “LCTV optical gates applied to real-time speckle metrology,” J Mod. Opt. 36, 317–322 (1989).
[CrossRef]

Miller, P. C.

J. Aiken, B. Bates, M. G. Catney, P. C. Miller, “Programmable liquid-crystal TV spatial light modulator: modified drive electronics to improve device performance for spatial-light-modulation operation,” Appl. Opt. 30, 4605–4609 (1991).
[CrossRef] [PubMed]

B. Bates, P. C. Miller, “Speckle metrology employing LCTV spatial light modulators,” Opt. Laser Eng. 14, 341–349 (1991).
[CrossRef]

B. Bates, P. C. Miller, W. Luchuan, “LCTV optical gates applied to real-time speckle metrology,” J Mod. Opt. 36, 317–322 (1989).
[CrossRef]

B. Bates, P. C. Miller, “Liquid crystal television in speckle metrology,” Appl Opt. 27, 2816–2817 (1988).
[CrossRef] [PubMed]

Mok, F.

Moreno, I.

I. Moreno, J. A. Davis, K. G. D’Nelly, D. B. Allison, “Transmission, and phase measurement for polarization eigenvectors in twisted-nematic liquid crystal spatial light modulators,” Opt. Eng. 37, 3048–3052 (1998).
[CrossRef]

Okamato, T.

T. Okamato, Y. Egawa, T. Asakura, “Liquid crystal television applied to a speckle-correlation method: real-time measurement of the object displacement,” Opt. Commun. 88, 17–21 (1992).
[CrossRef]

Pan, K.

Psaltis, D.

Soutar, C.

Wang, Z. Q.

Yang, Z.

Yu, F. T. S.

Zhu, Z.

Appl Opt. (1)

B. Bates, P. C. Miller, “Liquid crystal television in speckle metrology,” Appl Opt. 27, 2816–2817 (1988).
[CrossRef] [PubMed]

Appl. Opt. (6)

Electrotechnology (London) (1)

J. Aiken, “Development of a low-cost colour SLM,” Electrotechnology (London) 6(2), 30–32 (1995)

J Mod. Opt. (1)

B. Bates, P. C. Miller, W. Luchuan, “LCTV optical gates applied to real-time speckle metrology,” J Mod. Opt. 36, 317–322 (1989).
[CrossRef]

J. Mod. Opt. (1)

L. Z. Cai, T. H. Chao, “Optical image subtraction using a LCTV SLM and white-light imaging grating interferometer,” J. Mod. Opt. 37, 1127–1138 (1990).
[CrossRef]

Opt. Commun. (1)

T. Okamato, Y. Egawa, T. Asakura, “Liquid crystal television applied to a speckle-correlation method: real-time measurement of the object displacement,” Opt. Commun. 88, 17–21 (1992).
[CrossRef]

Opt. Eng. (2)

F. T. S. Yu, S. Jutamulia, T. W. Lin, “Real-time polychromatic signal detection using a color liquid crystal television,” Opt. Eng. 26, 453–460 (1987).
[CrossRef]

I. Moreno, J. A. Davis, K. G. D’Nelly, D. B. Allison, “Transmission, and phase measurement for polarization eigenvectors in twisted-nematic liquid crystal spatial light modulators,” Opt. Eng. 37, 3048–3052 (1998).
[CrossRef]

Opt. Laser Eng. (1)

B. Bates, P. C. Miller, “Speckle metrology employing LCTV spatial light modulators,” Opt. Laser Eng. 14, 341–349 (1991).
[CrossRef]

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Pixelated structure of the Casio TV Model 7700 LC display (dimensions are in millimeters). Labeled axes refer to direction of object displacement considered in Section 4.

Fig. 2
Fig. 2

Block diagram of display and original TV electronics assemblies that may be physically separated and interfaced by cable connection. The new drive electronics takes the place of the video-processing IC and operates the display through the row and the column IC’s.

Fig. 3
Fig. 3

Block diagram of new drive electronics and control system. The video camera interface enables LC display of real-time images from the CCD camera. The display assembly contains the LCD and row and column IC’s. The timing signal processing periodically inverts the drive signals to increase the display lifetime. All memory IC’s are NEC Model µ PD42208; computer interface is Amplicon PC Model 14AT.

Fig. 4
Fig. 4

Single-pixel transmittance data measured at wavelengths of 633, 514 and 488 nm. The data for the original drive electronics (pixel on/off) and for the new drive electronics are shown in the left- and the right-hand figure parts, respectively.

Fig. 5
Fig. 5

Large-area, spectral transmittance data obtained with a white-light source with pixels of one color activated. The data on the left- and the right-hand sides show results for the original (brightness control, 75 mV) and the new (pixel data, 255) drive electronics, respectively. Laser line wavelengths used for single-pixel data measurement (Fig. 4) are indicated.

Fig. 6
Fig. 6

Schematic optical arrangement for demonstrating object displacement measurement by means of speckle metrology with a single-LCTV display. The LC display is illuminated simultaneously in 514- and 633-nm-λ beams. The monochrome CCD camera records the speckle patterns, and the color CCD records both the fringe pattern (green light) and the correlation output peaks (red light).

Fig. 7
Fig. 7

Examples of recorded images for object displacements of 25 and 50 µm. In each image frame the correlation peaks (recorded in red light) are on the left-hand side and the corresponding fringes (recorded in green light) are on the right-hand side. Top row, x displacements; center row, y displacements; bottom row, equal x and y displacements. Since these are binarized images taken from the computer monitor, there is some loss in quality compared with images displayed on the color TV monitor.

Metrics