Abstract

Localized heating in the focus of an optical trap operating in water can result in a temperature rise of several kelvins. We present spatially resolved measurements of the refractive-index distribution induced by the localized heating produced in an optical trap and infer the temperature distribution. We have determined a peak temperature rise in water of 4 K in the focus of a 985-nm-wavelength 55-mW laser beam. The localized heating is directly proportional to power and the absorption coefficient. The temperature distribution is in excellent agreement with a model based on the heat equation.

© 2000 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Heating by absorption in the focus of an objective lens

Andreas Schönle and Stefan W. Hell
Opt. Lett. 23(5) 325-327 (1998)

Optical trapping in an absorbing medium: from optical tweezing to thermal tweezing

Poonam Kumari, J. A. Dharmadhikari, A. K. Dharmadhikari, H. Basu, S. Sharma, and D. Mathur
Opt. Express 20(4) 4645-4652 (2012)

Intrinsic heating in optically trapped Au nanoparticles measured by dark-field spectroscopy

Ana Andres-Arroyo, Fan Wang, Wen Jun Toe, and Peter Reece
Biomed. Opt. Express 6(9) 3646-3654 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription