Abstract

Following several years of development the construction of a multichannel time-resolved imaging device for medical optical tomography has been completed. Images are reconstructed from time-resolved measurements by use of a scheme that employs a finite-element diffusion-based forward model and an iterative reconstruction solver. Prior to testing on clinical subjects the fully automated instrument and the reconstruction software are evaluated with tissue-equivalent phantoms. We describe our first attempt to generate multiple-slice images of a phantom without uniform properties along the axial direction, while still using a computationally fast two-dimensional reconstruction algorithm. The image quality is improved by the employment of an approximate correction method that uses scaling factors derived from the ratios of finite-element forward simulations in two and three spatial dimensions. The 32-channel system was employed to generate maps of the internal scattering and the absorption properties at 14 different transverse planes across the phantom. The images clearly reveal the locations of small inhomogeneous regions embedded within the phantom. These results were obtained by use of purely temporal data and without resource to reference measurements.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977).
    [CrossRef] [PubMed]
  2. B. Chance, R. R. Alfano, B. J. Tromberg, eds., Optical Tomography and Spectroscopy of Tissue III, Proc. SPIE3597 (1999).
  3. J. G. Fujimoto, M. S. Patterson, eds., Advances in Optical Imaging and Photon Migration, Vol. 21 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998).
  4. B. Chance, C. E. Cooper, D. T. Delpy, E. O. R. Reynolds, eds., Feature Issue on Near-Infrared Spectroscopy and Imaging of Living Systems, Philos. Trans. R. Soc. London B 352, 649–763 (1997).
  5. B. Tromberg, A. Yodh, E. Sevick, D. Pine, eds., Feature Issue on Diffusing Photons in Turbid Media, Appl. Opt. 36, 9–231 (1997).
  6. M. Schweiger, S. R. Arridge, “A system for solving the forward and inverse problems in optical spectroscopy and imaging,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 263–268.
  7. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
    [CrossRef]
  8. B. W. Pogue, M. S. Patterson, H. Jiang, K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).
    [CrossRef] [PubMed]
  9. H. Jiang, K. D. Paulsen, U. L. Osterberg, M. S. Patterson, “Improved continuous light diffusion imaging in single- and multi-target tissue-like phantoms,” Phys. Med. Biol. 43, 675–693 (1998).
    [CrossRef] [PubMed]
  10. Y. Ueda, K. Ohta, M. Oda, M. Miwa, Y. Yamashita, Y. Tsuchiya, “Average value method: a new approach to practical optical computed tomography for a turbid medium such as human tissue,” Jpn. J. Appl. Phys. 37, 2717–2723 (1998).
    [CrossRef]
  11. V. Ntziachristos, X. Ma, B. Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4233 (1998).
    [CrossRef]
  12. H. Koizumi, Y. Yamashita, A. Maki, T. Yamamoto, Y. Ito, H. Itagaki, R. Kennan, “Higher-order brain function analysis by trans-cranial dynamic NIRS imaging,” J. Biomed. Opt. 4, 403–413 (1999).
    [CrossRef] [PubMed]
  13. J. P. Van Houten, D. A. Benaron, S. Spilman, D. K. Stevenson, “Imaging brain injury using time-resolved near infrared light scanning,” Pediatr. Res. 39, 470–476 (1996).
    [CrossRef] [PubMed]
  14. H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
    [CrossRef]
  15. H. Rinneberg, D. Grosenick, H. Wabnitz, H. Danlewski, K. Moesta, P. Schlag, “Time-domain mammography: results on phantoms, healthy volunteers, and patients,” in Advances in Optical Imaging and Photon Migration, J. G. Fujimoto, M. S. Patterson, eds., Vol. 21 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 278–280.
  16. H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Simultaneous reconstruction of optical absorption and scattering maps in turbid media from near-infrared frequency-domain data,” Opt. Lett. 20, 2128–2130 (1995).
    [CrossRef] [PubMed]
  17. M. Kaschke, H. Jess, G. Gaida, J.-M. Kaltenbach, W. Wrobel, “Transillumination imaging of tissue by phase modulation techniques,” in Advances in Optical Imaging and Photon Migration, J. G. Fujimoto, M. S. Patterson, eds., Vol. 21 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 88–92.
  18. B. Chance, M. Cope, E. Gratton, N. Ramanujam, B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69, 3457–3481 (1998).
    [CrossRef]
  19. F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
    [CrossRef]
  20. J. C. Hebden, F. E. W. Schmidt, M. E. Fry, M. Schweiger, E. M. C. Hillman, D. T. Delpy, “Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data,” Opt. Lett. 24, 534–536 (1999).
    [CrossRef]
  21. M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–960 (1995).
    [CrossRef] [PubMed]
  22. M. Schweiger, S. R. Arridge, “Application of temporal filters to time resolved data in optical tomography,” Phys. Med. Biol. 44, 1699–1717 (1999).
    [CrossRef] [PubMed]
  23. E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. S. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and data type extraction for time-resolved optical tomography,” Rev. Sci. Instrum. (to be published).
  24. M. Schweiger, S. R. Arridge, “Comparison of two- and three-dimensional reconstruction methods in optical tomography,” Appl. Opt. 37, 7419–7428 (1998).
    [CrossRef]
  25. S. R. Arridge, M. Schweiger, “A gradient-based optimization scheme for optical tomography,” Opt. Express 2, 213–226 (1998), http://www.osa.org/epubs/opticsexpress .
    [CrossRef]
  26. S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “Performance of an iterative reconstruction algorithm for near infrared absorption and scatter imaging,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 360–371 (1993).
    [CrossRef]
  27. S. R. Arridge, J. C. Hebden, M. Schweiger, F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, H. Dehghani, D. T. Delpy, “A method for 3-D time-resolved optical tomography,” Int. J. Imaging Syst. Technol. (to be published).

2000

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

1999

J. C. Hebden, F. E. W. Schmidt, M. E. Fry, M. Schweiger, E. M. C. Hillman, D. T. Delpy, “Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data,” Opt. Lett. 24, 534–536 (1999).
[CrossRef]

M. Schweiger, S. R. Arridge, “Application of temporal filters to time resolved data in optical tomography,” Phys. Med. Biol. 44, 1699–1717 (1999).
[CrossRef] [PubMed]

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

H. Koizumi, Y. Yamashita, A. Maki, T. Yamamoto, Y. Ito, H. Itagaki, R. Kennan, “Higher-order brain function analysis by trans-cranial dynamic NIRS imaging,” J. Biomed. Opt. 4, 403–413 (1999).
[CrossRef] [PubMed]

1998

H. Jiang, K. D. Paulsen, U. L. Osterberg, M. S. Patterson, “Improved continuous light diffusion imaging in single- and multi-target tissue-like phantoms,” Phys. Med. Biol. 43, 675–693 (1998).
[CrossRef] [PubMed]

Y. Ueda, K. Ohta, M. Oda, M. Miwa, Y. Yamashita, Y. Tsuchiya, “Average value method: a new approach to practical optical computed tomography for a turbid medium such as human tissue,” Jpn. J. Appl. Phys. 37, 2717–2723 (1998).
[CrossRef]

V. Ntziachristos, X. Ma, B. Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4233 (1998).
[CrossRef]

B. Chance, M. Cope, E. Gratton, N. Ramanujam, B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69, 3457–3481 (1998).
[CrossRef]

M. Schweiger, S. R. Arridge, “Comparison of two- and three-dimensional reconstruction methods in optical tomography,” Appl. Opt. 37, 7419–7428 (1998).
[CrossRef]

S. R. Arridge, M. Schweiger, “A gradient-based optimization scheme for optical tomography,” Opt. Express 2, 213–226 (1998), http://www.osa.org/epubs/opticsexpress .
[CrossRef]

1997

B. Chance, C. E. Cooper, D. T. Delpy, E. O. R. Reynolds, eds., Feature Issue on Near-Infrared Spectroscopy and Imaging of Living Systems, Philos. Trans. R. Soc. London B 352, 649–763 (1997).

B. Tromberg, A. Yodh, E. Sevick, D. Pine, eds., Feature Issue on Diffusing Photons in Turbid Media, Appl. Opt. 36, 9–231 (1997).

1996

J. P. Van Houten, D. A. Benaron, S. Spilman, D. K. Stevenson, “Imaging brain injury using time-resolved near infrared light scanning,” Pediatr. Res. 39, 470–476 (1996).
[CrossRef] [PubMed]

1995

B. W. Pogue, M. S. Patterson, H. Jiang, K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).
[CrossRef] [PubMed]

M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–960 (1995).
[CrossRef] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Simultaneous reconstruction of optical absorption and scattering maps in turbid media from near-infrared frequency-domain data,” Opt. Lett. 20, 2128–2130 (1995).
[CrossRef] [PubMed]

1977

F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977).
[CrossRef] [PubMed]

Arridge, S. R.

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

M. Schweiger, S. R. Arridge, “Application of temporal filters to time resolved data in optical tomography,” Phys. Med. Biol. 44, 1699–1717 (1999).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, “Comparison of two- and three-dimensional reconstruction methods in optical tomography,” Appl. Opt. 37, 7419–7428 (1998).
[CrossRef]

S. R. Arridge, M. Schweiger, “A gradient-based optimization scheme for optical tomography,” Opt. Express 2, 213–226 (1998), http://www.osa.org/epubs/opticsexpress .
[CrossRef]

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. S. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and data type extraction for time-resolved optical tomography,” Rev. Sci. Instrum. (to be published).

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “Performance of an iterative reconstruction algorithm for near infrared absorption and scatter imaging,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 360–371 (1993).
[CrossRef]

S. R. Arridge, J. C. Hebden, M. Schweiger, F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, H. Dehghani, D. T. Delpy, “A method for 3-D time-resolved optical tomography,” Int. J. Imaging Syst. Technol. (to be published).

M. Schweiger, S. R. Arridge, “A system for solving the forward and inverse problems in optical spectroscopy and imaging,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 263–268.

Benaron, D. A.

J. P. Van Houten, D. A. Benaron, S. Spilman, D. K. Stevenson, “Imaging brain injury using time-resolved near infrared light scanning,” Pediatr. Res. 39, 470–476 (1996).
[CrossRef] [PubMed]

Chance, B.

V. Ntziachristos, X. Ma, B. Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4233 (1998).
[CrossRef]

B. Chance, M. Cope, E. Gratton, N. Ramanujam, B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69, 3457–3481 (1998).
[CrossRef]

Cope, M.

B. Chance, M. Cope, E. Gratton, N. Ramanujam, B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69, 3457–3481 (1998).
[CrossRef]

Danlewski, H.

H. Rinneberg, D. Grosenick, H. Wabnitz, H. Danlewski, K. Moesta, P. Schlag, “Time-domain mammography: results on phantoms, healthy volunteers, and patients,” in Advances in Optical Imaging and Photon Migration, J. G. Fujimoto, M. S. Patterson, eds., Vol. 21 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 278–280.

Dehghani, H.

S. R. Arridge, J. C. Hebden, M. Schweiger, F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, H. Dehghani, D. T. Delpy, “A method for 3-D time-resolved optical tomography,” Int. J. Imaging Syst. Technol. (to be published).

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. S. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and data type extraction for time-resolved optical tomography,” Rev. Sci. Instrum. (to be published).

Delpy, D. T.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

J. C. Hebden, F. E. W. Schmidt, M. E. Fry, M. Schweiger, E. M. C. Hillman, D. T. Delpy, “Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data,” Opt. Lett. 24, 534–536 (1999).
[CrossRef]

M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–960 (1995).
[CrossRef] [PubMed]

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. S. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and data type extraction for time-resolved optical tomography,” Rev. Sci. Instrum. (to be published).

S. R. Arridge, J. C. Hebden, M. Schweiger, F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, H. Dehghani, D. T. Delpy, “A method for 3-D time-resolved optical tomography,” Int. J. Imaging Syst. Technol. (to be published).

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “Performance of an iterative reconstruction algorithm for near infrared absorption and scatter imaging,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 360–371 (1993).
[CrossRef]

Eda, H.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Firbank, M.

M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–960 (1995).
[CrossRef] [PubMed]

Fry, M. E.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

J. C. Hebden, F. E. W. Schmidt, M. E. Fry, M. Schweiger, E. M. C. Hillman, D. T. Delpy, “Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data,” Opt. Lett. 24, 534–536 (1999).
[CrossRef]

S. R. Arridge, J. C. Hebden, M. Schweiger, F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, H. Dehghani, D. T. Delpy, “A method for 3-D time-resolved optical tomography,” Int. J. Imaging Syst. Technol. (to be published).

Gaida, G.

M. Kaschke, H. Jess, G. Gaida, J.-M. Kaltenbach, W. Wrobel, “Transillumination imaging of tissue by phase modulation techniques,” in Advances in Optical Imaging and Photon Migration, J. G. Fujimoto, M. S. Patterson, eds., Vol. 21 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 88–92.

Gratton, E.

B. Chance, M. Cope, E. Gratton, N. Ramanujam, B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69, 3457–3481 (1998).
[CrossRef]

Grosenick, D.

H. Rinneberg, D. Grosenick, H. Wabnitz, H. Danlewski, K. Moesta, P. Schlag, “Time-domain mammography: results on phantoms, healthy volunteers, and patients,” in Advances in Optical Imaging and Photon Migration, J. G. Fujimoto, M. S. Patterson, eds., Vol. 21 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 278–280.

Hebden, J. C.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

J. C. Hebden, F. E. W. Schmidt, M. E. Fry, M. Schweiger, E. M. C. Hillman, D. T. Delpy, “Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data,” Opt. Lett. 24, 534–536 (1999).
[CrossRef]

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. S. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and data type extraction for time-resolved optical tomography,” Rev. Sci. Instrum. (to be published).

S. R. Arridge, J. C. Hebden, M. Schweiger, F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, H. Dehghani, D. T. Delpy, “A method for 3-D time-resolved optical tomography,” Int. J. Imaging Syst. Technol. (to be published).

Hillman, E. M. C.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

J. C. Hebden, F. E. W. Schmidt, M. E. Fry, M. Schweiger, E. M. C. Hillman, D. T. Delpy, “Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data,” Opt. Lett. 24, 534–536 (1999).
[CrossRef]

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. S. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and data type extraction for time-resolved optical tomography,” Rev. Sci. Instrum. (to be published).

S. R. Arridge, J. C. Hebden, M. Schweiger, F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, H. Dehghani, D. T. Delpy, “A method for 3-D time-resolved optical tomography,” Int. J. Imaging Syst. Technol. (to be published).

Hiraoka, M.

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “Performance of an iterative reconstruction algorithm for near infrared absorption and scatter imaging,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 360–371 (1993).
[CrossRef]

Itagaki, H.

H. Koizumi, Y. Yamashita, A. Maki, T. Yamamoto, Y. Ito, H. Itagaki, R. Kennan, “Higher-order brain function analysis by trans-cranial dynamic NIRS imaging,” J. Biomed. Opt. 4, 403–413 (1999).
[CrossRef] [PubMed]

Ito, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

H. Koizumi, Y. Yamashita, A. Maki, T. Yamamoto, Y. Ito, H. Itagaki, R. Kennan, “Higher-order brain function analysis by trans-cranial dynamic NIRS imaging,” J. Biomed. Opt. 4, 403–413 (1999).
[CrossRef] [PubMed]

Jess, H.

M. Kaschke, H. Jess, G. Gaida, J.-M. Kaltenbach, W. Wrobel, “Transillumination imaging of tissue by phase modulation techniques,” in Advances in Optical Imaging and Photon Migration, J. G. Fujimoto, M. S. Patterson, eds., Vol. 21 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 88–92.

Jiang, H.

H. Jiang, K. D. Paulsen, U. L. Osterberg, M. S. Patterson, “Improved continuous light diffusion imaging in single- and multi-target tissue-like phantoms,” Phys. Med. Biol. 43, 675–693 (1998).
[CrossRef] [PubMed]

B. W. Pogue, M. S. Patterson, H. Jiang, K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).
[CrossRef] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Simultaneous reconstruction of optical absorption and scattering maps in turbid media from near-infrared frequency-domain data,” Opt. Lett. 20, 2128–2130 (1995).
[CrossRef] [PubMed]

Jöbsis, F. F.

F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977).
[CrossRef] [PubMed]

Kaltenbach, J.-M.

M. Kaschke, H. Jess, G. Gaida, J.-M. Kaltenbach, W. Wrobel, “Transillumination imaging of tissue by phase modulation techniques,” in Advances in Optical Imaging and Photon Migration, J. G. Fujimoto, M. S. Patterson, eds., Vol. 21 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 88–92.

Kaschke, M.

M. Kaschke, H. Jess, G. Gaida, J.-M. Kaltenbach, W. Wrobel, “Transillumination imaging of tissue by phase modulation techniques,” in Advances in Optical Imaging and Photon Migration, J. G. Fujimoto, M. S. Patterson, eds., Vol. 21 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 88–92.

Kennan, R.

H. Koizumi, Y. Yamashita, A. Maki, T. Yamamoto, Y. Ito, H. Itagaki, R. Kennan, “Higher-order brain function analysis by trans-cranial dynamic NIRS imaging,” J. Biomed. Opt. 4, 403–413 (1999).
[CrossRef] [PubMed]

Koizumi, H.

H. Koizumi, Y. Yamashita, A. Maki, T. Yamamoto, Y. Ito, H. Itagaki, R. Kennan, “Higher-order brain function analysis by trans-cranial dynamic NIRS imaging,” J. Biomed. Opt. 4, 403–413 (1999).
[CrossRef] [PubMed]

Ma, X.

V. Ntziachristos, X. Ma, B. Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4233 (1998).
[CrossRef]

Maki, A.

H. Koizumi, Y. Yamashita, A. Maki, T. Yamamoto, Y. Ito, H. Itagaki, R. Kennan, “Higher-order brain function analysis by trans-cranial dynamic NIRS imaging,” J. Biomed. Opt. 4, 403–413 (1999).
[CrossRef] [PubMed]

Miwa, M.

Y. Ueda, K. Ohta, M. Oda, M. Miwa, Y. Yamashita, Y. Tsuchiya, “Average value method: a new approach to practical optical computed tomography for a turbid medium such as human tissue,” Jpn. J. Appl. Phys. 37, 2717–2723 (1998).
[CrossRef]

Moesta, K.

H. Rinneberg, D. Grosenick, H. Wabnitz, H. Danlewski, K. Moesta, P. Schlag, “Time-domain mammography: results on phantoms, healthy volunteers, and patients,” in Advances in Optical Imaging and Photon Migration, J. G. Fujimoto, M. S. Patterson, eds., Vol. 21 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 278–280.

Ntziachristos, V.

V. Ntziachristos, X. Ma, B. Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4233 (1998).
[CrossRef]

Oda, I.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Oda, M.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Y. Ueda, K. Ohta, M. Oda, M. Miwa, Y. Yamashita, Y. Tsuchiya, “Average value method: a new approach to practical optical computed tomography for a turbid medium such as human tissue,” Jpn. J. Appl. Phys. 37, 2717–2723 (1998).
[CrossRef]

M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–960 (1995).
[CrossRef] [PubMed]

Ohta, K.

Y. Ueda, K. Ohta, M. Oda, M. Miwa, Y. Yamashita, Y. Tsuchiya, “Average value method: a new approach to practical optical computed tomography for a turbid medium such as human tissue,” Jpn. J. Appl. Phys. 37, 2717–2723 (1998).
[CrossRef]

Oikawa, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Osterberg, U. L.

H. Jiang, K. D. Paulsen, U. L. Osterberg, M. S. Patterson, “Improved continuous light diffusion imaging in single- and multi-target tissue-like phantoms,” Phys. Med. Biol. 43, 675–693 (1998).
[CrossRef] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Simultaneous reconstruction of optical absorption and scattering maps in turbid media from near-infrared frequency-domain data,” Opt. Lett. 20, 2128–2130 (1995).
[CrossRef] [PubMed]

Patterson, M. S.

H. Jiang, K. D. Paulsen, U. L. Osterberg, M. S. Patterson, “Improved continuous light diffusion imaging in single- and multi-target tissue-like phantoms,” Phys. Med. Biol. 43, 675–693 (1998).
[CrossRef] [PubMed]

B. W. Pogue, M. S. Patterson, H. Jiang, K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).
[CrossRef] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Simultaneous reconstruction of optical absorption and scattering maps in turbid media from near-infrared frequency-domain data,” Opt. Lett. 20, 2128–2130 (1995).
[CrossRef] [PubMed]

Paulsen, K. D.

H. Jiang, K. D. Paulsen, U. L. Osterberg, M. S. Patterson, “Improved continuous light diffusion imaging in single- and multi-target tissue-like phantoms,” Phys. Med. Biol. 43, 675–693 (1998).
[CrossRef] [PubMed]

B. W. Pogue, M. S. Patterson, H. Jiang, K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).
[CrossRef] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Simultaneous reconstruction of optical absorption and scattering maps in turbid media from near-infrared frequency-domain data,” Opt. Lett. 20, 2128–2130 (1995).
[CrossRef] [PubMed]

Pogue, B. W.

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Simultaneous reconstruction of optical absorption and scattering maps in turbid media from near-infrared frequency-domain data,” Opt. Lett. 20, 2128–2130 (1995).
[CrossRef] [PubMed]

B. W. Pogue, M. S. Patterson, H. Jiang, K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).
[CrossRef] [PubMed]

Ramanujam, N.

B. Chance, M. Cope, E. Gratton, N. Ramanujam, B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69, 3457–3481 (1998).
[CrossRef]

Rinneberg, H.

H. Rinneberg, D. Grosenick, H. Wabnitz, H. Danlewski, K. Moesta, P. Schlag, “Time-domain mammography: results on phantoms, healthy volunteers, and patients,” in Advances in Optical Imaging and Photon Migration, J. G. Fujimoto, M. S. Patterson, eds., Vol. 21 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 278–280.

Sassaroli, A.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Schlag, P.

H. Rinneberg, D. Grosenick, H. Wabnitz, H. Danlewski, K. Moesta, P. Schlag, “Time-domain mammography: results on phantoms, healthy volunteers, and patients,” in Advances in Optical Imaging and Photon Migration, J. G. Fujimoto, M. S. Patterson, eds., Vol. 21 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 278–280.

Schmidt, F. E. W.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

J. C. Hebden, F. E. W. Schmidt, M. E. Fry, M. Schweiger, E. M. C. Hillman, D. T. Delpy, “Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data,” Opt. Lett. 24, 534–536 (1999).
[CrossRef]

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. S. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and data type extraction for time-resolved optical tomography,” Rev. Sci. Instrum. (to be published).

S. R. Arridge, J. C. Hebden, M. Schweiger, F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, H. Dehghani, D. T. Delpy, “A method for 3-D time-resolved optical tomography,” Int. J. Imaging Syst. Technol. (to be published).

Schweiger, M.

M. Schweiger, S. R. Arridge, “Application of temporal filters to time resolved data in optical tomography,” Phys. Med. Biol. 44, 1699–1717 (1999).
[CrossRef] [PubMed]

J. C. Hebden, F. E. W. Schmidt, M. E. Fry, M. Schweiger, E. M. C. Hillman, D. T. Delpy, “Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data,” Opt. Lett. 24, 534–536 (1999).
[CrossRef]

M. Schweiger, S. R. Arridge, “Comparison of two- and three-dimensional reconstruction methods in optical tomography,” Appl. Opt. 37, 7419–7428 (1998).
[CrossRef]

S. R. Arridge, M. Schweiger, “A gradient-based optimization scheme for optical tomography,” Opt. Express 2, 213–226 (1998), http://www.osa.org/epubs/opticsexpress .
[CrossRef]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “Performance of an iterative reconstruction algorithm for near infrared absorption and scatter imaging,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 360–371 (1993).
[CrossRef]

S. R. Arridge, J. C. Hebden, M. Schweiger, F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, H. Dehghani, D. T. Delpy, “A method for 3-D time-resolved optical tomography,” Int. J. Imaging Syst. Technol. (to be published).

M. Schweiger, S. R. Arridge, “A system for solving the forward and inverse problems in optical spectroscopy and imaging,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 263–268.

Schweiger, M. S.

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. S. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and data type extraction for time-resolved optical tomography,” Rev. Sci. Instrum. (to be published).

Spilman, S.

J. P. Van Houten, D. A. Benaron, S. Spilman, D. K. Stevenson, “Imaging brain injury using time-resolved near infrared light scanning,” Pediatr. Res. 39, 470–476 (1996).
[CrossRef] [PubMed]

Stevenson, D. K.

J. P. Van Houten, D. A. Benaron, S. Spilman, D. K. Stevenson, “Imaging brain injury using time-resolved near infrared light scanning,” Pediatr. Res. 39, 470–476 (1996).
[CrossRef] [PubMed]

Takada, M.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Tamura, M.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Tromberg, B.

B. Chance, M. Cope, E. Gratton, N. Ramanujam, B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69, 3457–3481 (1998).
[CrossRef]

Tsuchiya, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Y. Ueda, K. Ohta, M. Oda, M. Miwa, Y. Yamashita, Y. Tsuchiya, “Average value method: a new approach to practical optical computed tomography for a turbid medium such as human tissue,” Jpn. J. Appl. Phys. 37, 2717–2723 (1998).
[CrossRef]

Tsunazawa, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Ueda, Y.

Y. Ueda, K. Ohta, M. Oda, M. Miwa, Y. Yamashita, Y. Tsuchiya, “Average value method: a new approach to practical optical computed tomography for a turbid medium such as human tissue,” Jpn. J. Appl. Phys. 37, 2717–2723 (1998).
[CrossRef]

Van Houten, J. P.

J. P. Van Houten, D. A. Benaron, S. Spilman, D. K. Stevenson, “Imaging brain injury using time-resolved near infrared light scanning,” Pediatr. Res. 39, 470–476 (1996).
[CrossRef] [PubMed]

Wabnitz, H.

H. Rinneberg, D. Grosenick, H. Wabnitz, H. Danlewski, K. Moesta, P. Schlag, “Time-domain mammography: results on phantoms, healthy volunteers, and patients,” in Advances in Optical Imaging and Photon Migration, J. G. Fujimoto, M. S. Patterson, eds., Vol. 21 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 278–280.

Wada, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Wrobel, W.

M. Kaschke, H. Jess, G. Gaida, J.-M. Kaltenbach, W. Wrobel, “Transillumination imaging of tissue by phase modulation techniques,” in Advances in Optical Imaging and Photon Migration, J. G. Fujimoto, M. S. Patterson, eds., Vol. 21 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 88–92.

Yamada, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Yamamoto, T.

H. Koizumi, Y. Yamashita, A. Maki, T. Yamamoto, Y. Ito, H. Itagaki, R. Kennan, “Higher-order brain function analysis by trans-cranial dynamic NIRS imaging,” J. Biomed. Opt. 4, 403–413 (1999).
[CrossRef] [PubMed]

Yamashita, Y.

H. Koizumi, Y. Yamashita, A. Maki, T. Yamamoto, Y. Ito, H. Itagaki, R. Kennan, “Higher-order brain function analysis by trans-cranial dynamic NIRS imaging,” J. Biomed. Opt. 4, 403–413 (1999).
[CrossRef] [PubMed]

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Y. Ueda, K. Ohta, M. Oda, M. Miwa, Y. Yamashita, Y. Tsuchiya, “Average value method: a new approach to practical optical computed tomography for a turbid medium such as human tissue,” Jpn. J. Appl. Phys. 37, 2717–2723 (1998).
[CrossRef]

Appl. Opt.

Inverse Probl.

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

J. Biomed. Opt.

H. Koizumi, Y. Yamashita, A. Maki, T. Yamamoto, Y. Ito, H. Itagaki, R. Kennan, “Higher-order brain function analysis by trans-cranial dynamic NIRS imaging,” J. Biomed. Opt. 4, 403–413 (1999).
[CrossRef] [PubMed]

Jpn. J. Appl. Phys.

Y. Ueda, K. Ohta, M. Oda, M. Miwa, Y. Yamashita, Y. Tsuchiya, “Average value method: a new approach to practical optical computed tomography for a turbid medium such as human tissue,” Jpn. J. Appl. Phys. 37, 2717–2723 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

Pediatr. Res.

J. P. Van Houten, D. A. Benaron, S. Spilman, D. K. Stevenson, “Imaging brain injury using time-resolved near infrared light scanning,” Pediatr. Res. 39, 470–476 (1996).
[CrossRef] [PubMed]

Philos. Trans. R. Soc. London B

B. Chance, C. E. Cooper, D. T. Delpy, E. O. R. Reynolds, eds., Feature Issue on Near-Infrared Spectroscopy and Imaging of Living Systems, Philos. Trans. R. Soc. London B 352, 649–763 (1997).

Phys. Med. Biol.

M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–960 (1995).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, “Application of temporal filters to time resolved data in optical tomography,” Phys. Med. Biol. 44, 1699–1717 (1999).
[CrossRef] [PubMed]

B. W. Pogue, M. S. Patterson, H. Jiang, K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).
[CrossRef] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, M. S. Patterson, “Improved continuous light diffusion imaging in single- and multi-target tissue-like phantoms,” Phys. Med. Biol. 43, 675–693 (1998).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

V. Ntziachristos, X. Ma, B. Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4233 (1998).
[CrossRef]

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

B. Chance, M. Cope, E. Gratton, N. Ramanujam, B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69, 3457–3481 (1998).
[CrossRef]

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

Science

F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977).
[CrossRef] [PubMed]

Other

B. Chance, R. R. Alfano, B. J. Tromberg, eds., Optical Tomography and Spectroscopy of Tissue III, Proc. SPIE3597 (1999).

J. G. Fujimoto, M. S. Patterson, eds., Advances in Optical Imaging and Photon Migration, Vol. 21 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998).

M. Schweiger, S. R. Arridge, “A system for solving the forward and inverse problems in optical spectroscopy and imaging,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 263–268.

M. Kaschke, H. Jess, G. Gaida, J.-M. Kaltenbach, W. Wrobel, “Transillumination imaging of tissue by phase modulation techniques,” in Advances in Optical Imaging and Photon Migration, J. G. Fujimoto, M. S. Patterson, eds., Vol. 21 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 88–92.

H. Rinneberg, D. Grosenick, H. Wabnitz, H. Danlewski, K. Moesta, P. Schlag, “Time-domain mammography: results on phantoms, healthy volunteers, and patients,” in Advances in Optical Imaging and Photon Migration, J. G. Fujimoto, M. S. Patterson, eds., Vol. 21 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 278–280.

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. S. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and data type extraction for time-resolved optical tomography,” Rev. Sci. Instrum. (to be published).

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “Performance of an iterative reconstruction algorithm for near infrared absorption and scatter imaging,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 360–371 (1993).
[CrossRef]

S. R. Arridge, J. C. Hebden, M. Schweiger, F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, H. Dehghani, D. T. Delpy, “A method for 3-D time-resolved optical tomography,” Int. J. Imaging Syst. Technol. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the 32-channel time-resolved imaging system MONSTIR.

Fig. 2
Fig. 2

Schematic diagram of the cylindrical solid tissue-equivalent phantom: (a) top view and (b) front view.

Fig. 3
Fig. 3

Photograph of the cylindrical phantom and the fiber holder ring.

Fig. 4
Fig. 4

Reconstructed absorption and scattering maps for 14 different cross-sectional planes along the phantom.

Fig. 5
Fig. 5

(a) Transverse and (b) vertical cross sections of the purely absorbing cylinder C, which was centered at 100 mm above the base. Corresponding (c) transverse and (d) vertical cross sections of the purely scattering cylinder A, which was centered at 50 mm above the base. Note that the vertical cross sections consist of one data point per slice.

Metrics